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ABSTRACT

The spontaneous control of human and simian immunodeficiency viruses (HIV/SIV) is typically associated with specific
major histocompatibility complex (MHC) class I alleles and efficient CD8� T-cell responses, but many controllers main-
tain viral control despite a nonprotective MHC background and weak CD8� T-cell responses. Therefore, the contribution
of this response to maintaining long-term viral control remains unclear. To address this question, we transiently depleted
CD8� T cells from five SIV-infected cynomolgus macaques with long-term viral control and weak CD8� T-cell responses.
Among them, only one carried the protective MHC allele H6. After depletion, four of five controllers experienced a tran-
sient rebound of viremia. The return to undetectable viremia was accompanied by only modest expansion of SIV-specific
CD8� T cells that lacked efficient SIV suppression capacity ex vivo. In contrast, the depletion was associated with homeo-
static activation/expansion of CD4� T cells that correlated with viral rebound. In one macaque, viremia remained unde-
tectable despite efficient CD8� cell depletion and inducible SIV replication from its CD4� T cells in vitro. Altogether, our
results suggest that CD8� T cells are not unique contributors to the long-term maintenance of low viremia in this SIV con-
troller model and that other mechanisms, such as weak viral reservoirs or control of activation, may be important players
in control.

IMPORTANCE

Spontaneous control of HIV-1 to undetectable levels is associated with efficient anti-HIV CD8� T-cell responses. However, in
some cases, this response fades over time, although viral control is maintained, and many HIV controllers (weak responders)
have very low frequencies of HIV-specific CD8� T cells. In these cases, the importance of CD8 T cells in the maintenance of
HIV-1 control is questionable. We developed a nonhuman primate model of durable SIV control with an immune profile resem-
bling that of weak responders. Transient depletion of CD8� cells induced a rise in the viral load. However, viremia was corre-
lated with CD4� T-cell activation subsequent to CD8� cell depletion. Regain of viral control to predepletion levels was not asso-
ciated with restoration of the anti-SIV capacities of CD8� T cells. Our results suggest that CD8� T cells may not be involved in
maintenance of viral control in weak responders and highlight the fact that additional mechanisms should not be underesti-
mated.

Arare subset of human immunodeficiency virus type 1 (HIV-
1)-infected patients called HIV controllers (HIC) are natu-

rally able to maintain durable, tight control of the infection in the
absence of therapy (1, 2). These cases are often considered exam-
ples in the search for a functional HIV cure (3). Most HIC are
infected by replication-competent viruses (4–6), indicating that
host mechanisms actively restrain HIV-1 infection. An efficient
HIV-specific CD8� T-cell response is thought to play a decisive
role in natural control. Some HLA class I molecules (especially
HLA-B*5701 and -B*2705) are associated with lower viral loads
(VL) (7) and are overrepresented in HIC (8, 9). Many HIC (strong
responders [SR]) possess high frequencies of HIV-specific CD8�

T cells that are highly functional in response to HIV antigens (9–
11). These HIV-specific CD8� T cells can suppress ex vivo HIV
infection of autologous CD4� T cells (9, 12), probably due to their
ability to upregulate the cytotoxic-granule content (11, 13, 14).

However, HIC exhibit immunological heterogeneity; many of
them (weak responders [WR]) are able to maintain viremia at

undetectable levels despite displaying weak HIV-specific CD8�

T-cell responses (12, 15, 16). Differences in T-cell responses be-
tween SR and WR cannot be explained by their expression of HLA
class I alleles because they are overrepresented to the same extent
in both groups (17). This raises the question of the real contribu-
tion of CD8� T-cell responses to the maintenance of long-term
viral control in these patients. In WR, it is possible that highly
reactive HIV-specific memory CD8� T cells expand and acquire
effector functions in response to relapses in viral replication,
thereby controlling the virus when necessary. In fact, a recent re-
port showed that CD8� T cells from WR HIC can gain the capacity
to suppress HIV replication after a short period of in vitro stimu-
lation with HIV peptides (18). However, cells from antiretroviral-
treated patients have also been shown to acquire similar properties
following peptide stimulation (19) but cannot prevent viral re-
bound following treatment interruption.

Cases of spontaneous control of viral replication have been
reported in some macaques infected with simian immunodefi-
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ciency virus (SIV) (20–22). As in humans, these cases are mostly
associated with a favorable genetic background (e.g., Mamu B*08
or B*17 in rhesus macaques [RM] or the H6 haplotype in cyno-
molgus macaques [CyM]) (20, 23–26). CD8� T cell-mediated
control of infection in RM has been demonstrated through in vivo
CD8� cell depletion experiments (21, 27) or by the occurrence of
major histocompatibility complex (MHC) escape mutations in
viruses from progressor macaques (28). However, these studies
have focused mainly on animals carrying protective MHC alleles,
and this may be a confounding factor when evaluating the roles of
mechanisms other than T-cell responses.

Here, we report a high frequency of spontaneous set point viral
control in 6 CyM intrarectally infected with low doses (5 50%
animal infectious doses [AID50]) of SIVmac251. Five CyM dis-
played a long-term-controller profile. Four had an MHC haplo-
type distinct from the H6 haplotype that is usually associated with
this phenotype, and they all displayed a strong decrease in CD8�

T-cell antiviral activities over years of viral control. To our knowl-
edge, this is the first report of an animal model that resembles the
WR phenotype sometimes observed in HIC. We used this model
to explore the contribution of CD8� T-cell responses in WR by
transiently depleting CD8-expressing cells. Next, we performed
phenotypic analyses and directly assessed the anti-SIV activity of
CD8� T cells on superinfected autologous CD4� T cells, a func-
tion known to correlate with protection in HIV controllers. As
previously reported, CD8� depletion induced transient viral es-
cape, but unexpectedly, the CD8-mediated anti-HIV immunity
was not strongly recalled and no increase in ex vivo antiviral activ-
ity could be detected at the time of the reestablishment of viral
control.

MATERIALS AND METHODS
Ethics statement. Adult CyM (Macaca fascicularis) were imported from
Mauritius and housed in the facilities of the Commissariat à l’Energie
Atomique et aux Energies Alternatives (CEA) (Fontenay-aux-Roses,

France). CyMs are used at the CEA in accordance with French national
regulations and under the supervision of national veterinary inspectors
(CEA permit number A 92-032-02). The CEA complies with the Stan-
dards for Human Care and Use of Laboratory Animals of the Office for
Laboratory Animal Welfare (OLAW) (USA) under OLAW Assurance
number A5826-01. All experimental procedures were conducted accord-
ing to European guidelines for animal care. This experiment was ap-
proved by the ethics committee Comite d’Ethique en Experimentation
Animale de la Direction des Sciences du Vivant au CEA under reference
number 10-006.

Animals, infection, and CD8� depletion. The MHC haplotype was
determined as previously described (23). Six animals were intrarectally
inoculated with 5 AID50 of an uncloned SIVmac251 isolate (provided by
A. M. Aubertin, Université Louis Pasteur, Strasbourg, France). These an-
imals were followed for up to 6 years postinfection (p.i.). For CD8� de-
pletion, animals were intravenously treated with a single dose of the anti-
human CD8 monoclonal antibody CM-T807 (50 mg/kg of body weight)
provided by the National Institutes of Health nonhuman primate reagent
resources. These animals were compared to another group of 11 animals
infected intrarectally with 50 AID50 of the same isolate.

Sample collection and processing. Blood sampling (days �15, �8, 3,
7, 10, 13, 17, 21, 28, 35, 42, 65, and 177), bronchoalveolar lavages (BAL)
(days �15, 14, 44, and 177), lymph node (LN) biopsies (days �15, 13, and
35, 42, or 177, depending on the kinetics of the reconstitution of CD8� T
cells), and rectal biopsies (RB) (days �20, 15, and 35, 43, or 177, depend-
ing on the kinetics of the reconstitution of CD8� T cells) were performed
after ketamine anesthesia. Blood samples were collected in BD Vacutainer
Plus Plastic K3 EDTA tubes (BD Biosciences, France). Tissue samples
were collected in phosphate-buffered saline (PBS) or snap-frozen in liq-
uid nitrogen for storage at �80°C.

Plasma was isolated from EDTA blood samples by centrifugation for
10 min at 1,500 � g and cryopreserved. Whole blood, peripheral blood
leukocytes (PBLs), peripheral blood mononuclear cells (PBMCs), BAL
fluid, LN, RB cell suspensions, and purified CD4� and CD8� T cells were
used for experiments. Peripheral LN cells were obtained using a
GentleMACS dissociator (Miltenyi Biotech). Cell suspensions from RB
were obtained by a protocol used for humans (29) that was adapted in
house for macaques. Briefly, several 1-mm2 punches of mucosa were col-
lected and digested for 45 min with collagenase II (Sigma-Aldrich), me-
chanically disrupted with a syringe equipped with an 18-gauge blunt-end
needle, and passaged through a 70-�m-pore-size cell strainer. Finally, cell
suspensions were isolated using a 30%-70% Percoll gradient. BAL fluid
was passed through a 100-�m-pore-size cell strainer and washed with PBS
to obtain the final cell suspension.

CD4� and CD8� T cells were purified from cell suspensions with
antibody-coated magnetic beads in a Robosep instrument (Stemcell
Technologies). CD4� T cells were obtained with a custom positive non-
human primate CD4� T-cell selection kit, and untouched CD8� T cells
were obtained subsequently with a custom negative nonhuman primate
CD8� T-cell selection kit (Stemcell Technologies).

T-cell phenotypic characterizations by flow cytometry. Analyses
were performed on whole blood, PBLs, or cell suspensions. A list of the
antibodies used is provided in Table S1 in the supplemental material.
Naive cells were defined as CD95� CD28�, central memory (CM) cells as
CD95� CD28� CCR5� CCR7�, transitional memory (TM) cells as
CD95� CD28� CCR5�, and effector memory (EM) cells as CD95�

CD28�. Antibodies were added to 50 �l of blood or 2 � 106 cells from
tissues and, after 15 min of incubation, red blood cells were lysed with
fluorescence-activated cell sorter (FACS) lysing solution (BD Biosci-
ences). Ki67 staining was performed after permeabilization with the
IntraStain kit (Dako). The cells were washed and resuspended in CellFix
prior to acquisition.

ICS. For intracellular cytokine staining (ICS), cell preparation, cul-
ture, stimulation, staining, acquisition, and analysis were performed as
described previously (30). Peptide pools consisting of 15-mer overlapping
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peptides (11-amino-acid overlap, 1 �M each, covering the Gag, Vif, Rev,
and Nef proteins of SIVmac251 [Proteogenix, Strasbourg, France]) were
used for stimulation. Gag was covered by two peptide pools, one encom-
passing p6 to p8 and the other p15 to p27.

Measurement of CD8� T-cell-mediated SIV suppression. A previ-
ously described assay for measuring the capacity of human CD8� T cells
to suppress HIV infection of autologous CD4� T cells (31) was adapted to
the CyM-SIVmac251 model. Briefly, purified CD4� cells were stimulated
for 3 days with 10 �g/ml concanavalin A (ConA) in the presence of inter-
leukin 2 (IL-2) (Chiron) at 100 IU/ml. CD8� T cells were maintained in
culture in the absence of mitogens and cytokines. Then, CD4� T cells
(105) in 96-well plates were superinfected with SIVmac251 (multiplicity of
infection [MOI], 10�2) using a spinoculation protocol (32) in the pres-
ence or absence of CD8� T cells (CD8/CD4 ratio, 1:1). After challenge, the
cells were washed and cultured for 14 days. The capacity of CD8� T cells
to suppress infection was calculated as the log10 drop in p27 levels regis-
tered at the peak of viral replication in CD4� T cells when CD8� T cells
were present in the culture.

Detection of viral production in culture supernatants. Reverse
transcriptase activity was measured by using the Lenti-RT Activity Assay
(Cavidi Tech), and p27 protein concentrations were assayed with the
Retro-Tek SIV p27 Antigen ELISA (enzyme-linked immunosorbent as-
say) kit (ZeptoMetrix), both following the manufacturer’s instructions.

vRNA quantification in tissues and plasma. Absolute concentrations
of plasma viral RNA (vRNA) and tissue vDNA were determined as previ-
ously described (33, 34). The SIV Gag primers and probe used were as
follows: Forward, GCAGAGGAGGAAATTACCCAGTAC; Reverse, CAA
TTTTACCCAGGCATTTAATGTT; and Probe, TGTCCACCTGCCATT
AAGCCCGA. The GAPDH (glyceraldehyde-3-phosphate dehydroge-
nase) primers and probe used were as follows: Forward, GAAGGTGAAG
GTCGGAGTC; Reverse, GAAGATGGTGATGGGATTTC; and Probe,
CAAGCTTCCCGTTCTCAGCC.

The quantification limit (QL) for vRNA in the classical assay was esti-
mated to be 111 copies/ml, and the detection limit (DL) was estimated to
be 37 copies/ml. A more sensitive method was applied for the follow-up of
the CD8 depletion phase, as previously described (35). In this case, the QL
and DL were 37 and 12.3 copies of vRNA/ml, respectively.

Cytokine quantification. Cytokine concentrations in plasma were as-
sayed with Luminex (23-plex nonhuman primate kit; Merck Millipore)
with a MagPix instrument. Plasma IL-7 levels were determined using a
Human IL-7 ELISA kit (R&D Systems), as previously described (36).

Western blot analysis. Western blots were performed using a com-
mercial SIV Western Blot Assay kit (ZeptoMetrix) following the manu-
facturer’s instructions.

Statistical analysis. The nonparametric Spearman rank correlation
test was used to investigate the relationship between variables. The non-
parametric Mann-Whitney test was used to compare data sets between
groups, and the paired nonparametric Wilcoxon signed-rank test was
used to compare data from the same macaques at different time points. All
statistical analyses were performed using GraphPad Prism 5.03 software
(GraphPad Software, La Jolla, CA, USA). In the 2-tailed tests, P values of
0.05 or lower were considered to be significant.

RESULTS
A high proportion of controllers among cynomolgus macaques
exposed intrarectally to 5 AID50 of SIVmac251. Atraumatic in-
trarectal exposure of 11 CyM to high doses (50 AID50) of an un-
cloned SIVmac251 isolate resulted in relatively similar peaks of
plasma viremia in all animals. The peaks were observed on day 11
p.i., with viral loads ranging from 7 � 105 to 6 � 107 RNA
copies/ml (median, 3 � 106 RNA copies/ml) (Fig. 1A). Three CyM
bearing the protective H6 haplotype (23, 24) demonstrated con-
trol of plasma viremia below 100 copies/ml at the set point (3

FIG 1 MHC H6 haplotype and low-dose intrarectal infection are both associated with spontaneous control of SIVmac251 infection in CyM. (A) Longitudinal
evolution of plasma viral loads in macaques exposed intrarectally to 50 AID50 (n � 11) (left) or 5 AID50 (n � 6) (right) of SIVmac251. In the 50-AID50 group,
MHC H6-bearing animals are shown in green and non-H6 animals in black. Animals in the 5-AID50 group are color coded, and MHC haplotypes are indicated
for each animal. The viral-RNA QL and DL were 111 and 37 copies of vRNA/ml, respectively. (B) Longitudinal evolution of CD4� T-cell blood counts in the
50-AID50 group (n � 11) (left) and in the 5-AID50 group (n � 6) (right). CD4� T-cell counts are expressed as a percentage of the mean preinfection value for
each macaque.
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months). In contrast, none of the non-H6 macaques controlled
their viremia to such a low level at this time (median, 3 � 104 RNA
copies/ml), and their CD4� T-cell counts declined during the first
year of infection (Fig. 1B).

In comparison, the exposure of six macaques to 10-fold-lower
doses (5 AID50) of the same virus isolate by the same route was
associated with diverse peaks of plasma viremia, ranging from 5 �
101 to 1.42 � 107 RNA copies/ml (median, 4.41 � 105 RNA
copies/ml) (Fig. 1A). Early spontaneous control below 100 RNA
copies/ml at the set point (3 months) was observed in all six ma-
caques, although only one (no. 13523) possessed the H6 haplo-
type. One macaque (13311) lost control of the infection shortly
after, between 3 and 6 months p.i. The remaining five macaques
remained below 400 RNA copies/ml for �5 years. One macaque
(13316) did not seroconvert and displayed only blips of viremia
early during the course of the infection. The CD4� T-cell count
declined during acute infection in four of the five controllers in the
5-AID50 group and recovered almost completely at the set point
with no major changes afterward (Fig. 1B).

These observations revealed a high proportion of long-term
SIV controllers (SIC) in a group of CyM exposed intrarectally to a
relatively low dose (5 AID50) of SIVmac251 that could not be re-
lated solely to a favorable MHC haplotype.

SIV controllers displayed weak CD8� T-cell activation, cyto-
kine production, and SIV-suppressive capacity during the
chronic phase of infection. Because the 5-AID50 CyM were not
initially dedicated to the analysis of T-cell immunity during pri-
mary infection, we could explore the CD8� T-cell response in the
five SIC only after 2 years p.i. We compared the CD8� T-cell
responses to those of the animal that had lost viral control (13311)
and six other CyM with uncontrolled viremia (median VL, 5 �
104 copies/ml) that were infected at the same time with a higher
dose of the same virus stock. T-cell activation, measured as either
CD69 expression or CD38 –HLA-DR coexpression, was lower in
controllers than in noncontrollers (Fig. 2A). ICS revealed that
Gag-specific CD8� T-cell responses (especially the gamma inter-
feron [IFN-�]- and MIP-1	-producing cells that constituted the
largest proportion of the response) were generally lower in con-
trollers than in noncontrollers (Fig. 2B).

CD8� T cells from HIC are endowed ex vivo with a strong
capacity to suppress HIV infection of autologous CD4� T cells (9,
12). We adapted this technique (31) to assess the capacity of CD8�

T cells from CyM to suppress SIV infection of autologous CD4� T
cells. CD8� T cells from the five SIC collected on day 634 p.i.
showed some capacity to suppress SIV infection, although their
capacities were not stronger than those from noncontroller CyM
(Fig. 2C). However, the CD8� T cells from the animal with the H6
haplotype (13523) had the strongest suppressive capacity, even at
low effector/target cell ratios (Fig. 2D). The suppressive capacities
of the five SIC decreased with time, although the anti-SIV activity
of the cells from the H6 animal (13523) faded later (Fig. 2E). The
SIV-suppressive capacity of the CyM that lost control shortly after
the set point (13311) was relatively stable over time, albeit low.
CD8� T cells from the remaining five CyM displayed weak cyto-
toxic activity 5.5 years p.i. (Fig. 2E). The virus could be isolated in
vitro by reactivation of enriched CD4� T cells from all six ma-
caques. When we evaluated the infectiousness of the viruses from
three SICs, we found that they were able to infect CD4� T cells
from uninfected macaques to the same extent as the original
SIVmac251 isolate (see Fig. S1 in the supplemental material).

In summary, the SIC displayed lower T-cell activation and lower
SIV-specific CD8� responses than viremic animals during the
chronic phase despite the persistence of cells infected with replica-
tion-competent viruses. The immune profile of these animals resem-
bles that of the HIC WR that we have described previously (12).

In vivo depletion of CD8� cells resulted in transient eleva-
tion of viral loads in four controllers. We assessed the conse-
quences of in vivo depletion of CD8� cells in the five SIC. Animal
13311, which lost control of viremia earlier during infection, was
included in this study as a reference control. A single injection of
the human monoclonal antibody CM-T807 resulted in profound
CD8� T-cell depletion from the blood (Fig. 3A; see Fig. S2 in the
supplemental material); the depletion lasted at least 10 days. The
CD8� T-cell pool progressively recovered in all controllers, with
kinetics differing between animals in the following order: 13523,
13457 (days 10 to 13), 13237, 13170 (days 17 to 21), and 13316
(days 65 to 177). The health of the progressor animal (13311)
quickly degraded 5 weeks after CD8� depletion, and the animal
died of AIDS hours before scheduled euthanasia and before any
detectable CD8� cell recovery was observed.

Similar kinetics were observed in the peripheral LN (Fig. 3B;
see Fig. S3A in the supplemental material), as well as in RB speci-
mens and BAL samples (see Fig. S3B in the supplemental material)
from all animals. Due to the limited tissue availability, we could
not determine whether the CD8� cell depletion was incomplete or
lasted for a shorter time in tissues from animals 13523 and 13457,
which had detectable CD8� cells in their LN at day 13 after deple-
tion. Other CD8� cells, including CD3� CD8� NK cells (data not
shown) and double-positive (CD4� CD8�) T cells (Fig. 3A),
showed amplitudes and kinetics of depletion similar to those of
CD8� T cells. During the depletion, all remaining CD3� T cells
were CD4� single-positive T cells, and no increase in the numbers
of double-negative CD3� T cells was detected (Fig. 3A).

Upon depletion, four of the five SIC and the viremic CyM
experienced a transient increase in their viral-RNA loads in
plasma (Fig. 3C) and their levels of cell-associated SIV DNA in
lymphoid and mucosal tissues (Fig. 3D). The viremia peaked on
day 13 (13523, 13457, and 13237) or 17 (13170) postdepletion.
The viremic animal (13311) experienced an earlier peak of viremia
(day 7), which then returned to the predepletion level and even-
tually increased again. Interestingly, the remaining SIC (13316)
never lost viral control following depletion, and the viral load in
plasma and in tissues remained undetectable throughout the fol-
low-up phase (see below).

The CD8� T-cell recovery appeared to coincide temporally
with the regain of viral control in three controllers (13170, 13523,
and 13457) (Fig. 3C), whereas the regain of viral control began
despite CD8� T cells remaining undetectable in blood or tissues in
one SIC (13237) (Fig. 3C; see Fig. S2 and S3 in the supplemental
material).

To characterize the CD8� T-cell recovery after depletion, the
naive and memory phenotypes and activation statuses of the cells
were assessed by flow cytometry. Most CD8� T cells returning
after the depletion phase possessed an EM phenotype (Fig. 4A)
and were much more activated during the reconstitution phase
than before depletion (Fig. 4B). EM CD8� T cell activation peaked
on day 28 postdepletion, reaching levels higher than that observed
in the progressor (13311) at baseline, and progressively faded with
time. The macaque bearing the H6 MHC haplotype (13523) re-
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FIG 2 SIV controllers display low T-cell activation and low CD8� T-cell responses during the chronic phase. Two years p.i., the five long-term controllers
of the 5-AID50 group were compared to the only viremic animal in the group (13311) and six other noncontroller macaques. (A) The coexpression of
HLA-DR and CD38 and the expression of CD69 by CD4� (left) and CD8� (right) T cells were assessed to evaluate chronic T-cell activation. (B) SIV
Gag-specific CD8� T-cell responses were assessed by ICS after stimulation with a pool of overlapping SIV Gag p15-p27 peptides. Shown are (from left to
right) the percentages of IFN-��, MIP-1	�, IL-2�, and tumor necrosis factor alpha-positive (TNF-
�) cells. (C) The SIV-suppressive activity of blood
CD8� T cells from SIC and noncontroller animals was measured on autologous activated CD4� T cells superinfected in vitro with SIVmac251. SIV
suppression is reported as the log decline in p27 titers in CD4� T cell supernatants when autologous ex vivo unstimulated CD8� T cells were added at a
1:1 ratio to the culture. (A to C) Each symbol represents one animal, and horizontal lines represent the median value for the group. (D) SIV replication
in culture supernatants of CD4� T cells from SIC 13170 and 13523 in the absence of CD8� T cells or at various CD4�/CD8� T-cell ratios. The error bars
indicate standard deviations. (E) Longitudinal follow-up of CD8� T-cell-dependent SIV-suppressive antiviral activity over 3 years in the six macaques
exposed to an inoculum of 5 AID50 of virus.
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constituted EM CD8� T cells the fastest and to the largest extent,
but with the lowest activation levels.

Weak expansion of SIV-specific CD8� T-cell responses and
no increase in SIV-suppressive activity were observed during
the CD8� recovery phase. Next, we analyzed the evolution of the
SIV-specific CD8� T-cell response in these animals during the
CD8� cell recovery period. We followed the ability of recovered
CD8� T cells to suppress SIV replication in autologous CD4� T
cells in vitro. Activation of CD8� T cells during reconstitution was

not accompanied by an increase in their capacity to suppress SIV
infection, which was weak and did not change in the blood of any
animal at the time of CD8� T-cell reconstitution (Fig. 5A). Only
cells from macaque 13237 showed slightly higher antiviral activity
on day 28. The SIV-suppressive activities of CD8� T cells isolated
from BAL fluid and peripheral LN from SIC were also low at
baseline and did not significantly change upon CD8� T-cell re-
constitution (see Fig. S4A in the supplemental material). Total
PBMCs could be infected in vitro to the same extent as purified

FIG 3 In vivo depletion of CD8� cells after 5 years of chronic infection led to a transient increase in viremia in all but one SIV controller. The consequences of
CM-T807 monoclonal antibody (MAb) infusion for T-cell populations and viral loads were monitored by flow cytometry and quantitative PCR (qPCR),
respectively. (A) Evolution of circulating T-cell populations, including total CD3�, single-positive (CD4� or CD8�) (SP), double-positive (CD4� CD8�) (DP),
and double-negative (CD4� CD8�) (DN) T cells. Median values and ranges are reported. (B) Frequencies of CD8� T cells in peripheral LN before and after
CM-T807 MAb infusion. (C) Temporal association between CD8� T-cell counts (blue) and viral-RNA loads (red) for each macaque. The time period during
which CD8� T cells were undetectable is shaded in gray. The viral-RNA QL and DL were 37 and 12.3 copies of vRNA/ml, respectively. (D) Cell-associated
viral-DNA loads in the peripheral LN (top) and rectal mucosa (bottom).
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CD4� T cells (Fig. 5B; see Fig. S4B in the supplemental material),
suggesting the absence of other anti-SIV activities in these cul-
tures.

ICS after stimulation with pools of overlapping peptides cov-
ering the SIV Gag, Nef, Rev, and Vif proteins was used to evaluate
the frequency of SIV-specific CD8� T-cell responses in PBMCs
after depletion. A transient relative increase in the percentage of
cytokine-producing CD8� T cells was observed in the five SIC
upon CD8� T-cell reconstitution (Fig. 5C), but these increases
were translated into an increase in the absolute numbers of circu-
lating SIV-specific CD8� T cells in only two animals (13170 and
13457) and remained at low amplitude (Fig. 5C and D). Remark-
ably, the H6 macaque (13523) displayed the smallest relative in-
crease in the frequency of SIV-specific CD8� T cells. The poly-
functionality of the cells did not increase following the
reconstitution of the CD8� T-cell compartment, consistent with
the weak SIV suppression activities of the CD8� T cells observed

for these animals. Furthermore, no trend toward an increase in a
particular SIV antigen-specific response was observed (see Fig. S5
in the supplemental material).

Activated CD8� T cells can produce soluble factors, such as
	-chemokines, that are able to block SIV replication. Therefore,
we assessed plasma levels of MIP-1
 and MIP-1	. There was an
increase in the levels of both 	-chemokines that peaked a few days
postdepletion and decreased before viremia started to decline (see
Fig. S6 in the supplemental material).

ICS analysis revealed the expansion of SIV-specific CD4� T-
cell responses in all controllers upon CD8� depletion; these cells
retained better polyfunctionality than those from the viremic ma-
caque (Fig. 5E). Of note, the highest expansion of SIV-specific
CD4� T cells was observed in the H6 animal (13523) (Fig. 5F). In
contrast, the progressor macaque (13311) showed a contraction of
the SIV-specific CD4� T-cell response associated with a severe
depletion of CD4� T cells.

FIG 4 CD8� T cells recovering after depletion are mostly activated effector memory cells. CD8� T-cell subpopulations and activation levels (CD38 and HLA-DR
expression) in blood were monitored by flow cytometry. Naive, CM, and EM cells were distinguished on the basis of CD28 and CD95 expression levels. (A) Follow-up
of absolute counts of naive, CM/TM, and EM CD8� T cells in blood at various time points. (B) Expression of the activation markers CD38 (top), HLA-DR (middle), or
both (bottom) by EM CD8� T cells. Note that 13311 did not show any reconstitution of CD8� cells before death and 13316 exhibited extremely late partial reconstitution
of CD8� cells; this precluded any phenotypic analysis of CD8� T cells in 50 �l of whole blood for these 2 animals during this period.
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Overall, using a highly effective readout of T-cell functionality
(i.e., cytokine production, soluble-suppressive-factor secretion,
and direct suppressive ability), we were unable to show evidence
of a robust pattern of CD8� T-cell responses during the return to
predepletion viremia levels after viral rebound.

Controllers experienced transient proliferation and activa-
tion of transitional memory CD4� T cells associated with an
expansion of effector memory CD4� T cells and increased viral
replication. It was plausible that the increases in the SIV-specific
CD4� T-cell responses were related to the homeostatic expansion
of the CD4� T-cell compartment, which has been recently re-
ported to occur as a consequence of CD8� cell depletion in vivo
(37, 38). Thus, we monitored changes in the naive/memory sub-
populations and the activation and proliferation of CD4� T cells

by flow cytometry. All SIC experienced a progressive increase in
the absolute numbers of CD4� T cells in blood (Fig. 6A). In par-
ticular, there was a strong expansion of CD4� TEM cells (mean
increase, 8.47- � 5.40-fold). CM and TM CD4� T cell counts also
increased, although to a lesser extent (1.95- � 1.26- and 2.10- �
1.08-fold mean increases, respectively). During their expansion
phase, CD4� T cells showed a large increase in the expression of
the activation markers CD69 (Fig. 6B), CD38, and HLA-DR (data
not shown). Two consecutive peaks of proliferation based on Ki67
expression were observed in the 1st and the 3rd weeks after CD8�

cell depletion (Fig. 6B).
Transient increases in IL-2 (1.95-fold), IL-7 (2.6-fold), and

IL-15 (1.8-fold) concentrations in the plasma were observed fol-
lowing CD8� cell depletion and coincided with the initial peaks of

FIG 5 Regain of viral control in SIV controllers upon CD8� cell reconstitution was not associated with efficient SIV-suppressive antiviral activities. SIV-specific
responses were monitored in peripheral blood by functional assays and ICS. (A) Evolution of the capacity of CD8� T cells to suppress SIVmac251 replication in
autologous CD4 T cells. Predepletion activities (Fig. 2D) are represented in the gray-shaded area for reference. (B) Suppression of SIV replication in PBMCs and
in CD4�-CD8� cocultures (1:1 ratio) from animal 13523 at various time points in comparison to CD4� T cells cultured alone. ND, not done. (C and E) Cytokine
production by CD8� (C) and CD4� (E) T cells assayed by ICS. Cumulative responses after stimulation with pools of overlapping peptides from SIV Gag, Rev,
Nef, and Vif are represented. The size of each pie is proportional to the percentage of T cells expressing at least one cytokine, including IFN-�, TNF-
, MIP1	,
and IL-2, and the proportions of cells expressing 1 (1Pos), 2 (2Pos), 3 (3Pos), or 4 (4Pos) cytokines are displayed in each pie. NA, not applicable because the
samples did not contain enough CD8� T cells to be analyzed by flow cytometry. ND, not done because 13311 died 2 months after CD8� cell depletion. (D and
F) Absolute counts of circulating SIV-specific T cells expressing at least one cytokine.
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activation of memory CD4� T cells (Fig. 6C). The activation and
expansion of EM CD4� T cells coincided with the transient in-
crease in viremia in SIC, and the plasma viral-RNA loads follow-
ing CD8� depletion correlated with the percentage of Ki67�

CD4� memory cells (Fig. 6D). These findings suggest that the
transient rebound of viremia in SIC might result from homeo-
static CD4� T-cell activation and proliferation.

An exceptional profile of one SIV controller with persistently
undetectable viral loads despite CD8� cell depletion. Macaque
13316 was the only animal that did not experience any detectable
increase in viremia following the depletion of CD8� cells (Fig. 3C
and D). This animal showed the lowest levels of CD4� T-cell ac-
tivation and expansion following CD8� cell depletion (Fig. 7A
and data not shown). Moreover, only a few blips of detectable
plasma viral loads were detected in the animal during the acute

phase (Fig. 1), and the viral load remained below 12 copies/ml for
5 years during the chronic stage. Unlike all of the other animals in
the 5-AID50 group, macaque 13316 did not seroconvert and
showed no detectable reactivity against any SIV proteins before
the depletion experiment (Fig. 7B). This macaque had extremely
weak T-cell responses upon stimulation with SIV antigens (Fig. 5C
and E). The hallmark of persistent infection in this animal in-
cluded several in vitro reactivations of the virus, evidenced by
measuring SIVp27 and reverse transcriptase activity from purified
CD4� T cells collected from both blood and LN (Fig. 7C). The
virus isolate was able to infect heterologous CD4� T cells in vitro,
and the sequencing of a region of gag showed a match with the
original SIVmac251 sequence (data not shown). Interestingly, the
detection of viral replication was easier during the first years of
control, when SIV could often be reactivated by mitogenic stim-

FIG 6 Viral replication in SIV controllers upon CD8� cell depletion is associated with homeostatic activation levels of the CD4� T-cell compartment. Flow
cytometry and Luminex assays were used to monitor CD4� T cells and cytokine dynamics in response to CD8� cell depletion. (A) Absolute blood counts of naive,
CM, TM, and EM CD4� T-cell subpopulations in SIC. (B) Evolution of the activation and proliferation levels of blood CD4� T-cell subpopulations. Shown are
the percentages of activated CD69� (top) and proliferative Ki67� (bottom) naive, CM, TM, and EM CD4� T cells in blood. (C) Plasma IL-2, IL-7, and IL-15
concentrations. (A to C) Median values and ranges are reported. (D) Spearman correlation between Ki67 expression in CM, TM, and EM CD4� T cells and
plasma viral loads after CD8� cell depletion in SIC. Data pairs for which the viral load was undetectable were excluded.

Bruel et al.

3550 jvi.asm.org April 2015 Volume 89 Number 7Journal of Virology

http://jvi.asm.org


FIG 7 Macaque 13316 displayed an exceptional profile of control with no detectable increase in plasma viral loads but transient seroconversion after CD8� cell
depletion. (A) Frequencies of CD69� EM CD4� T cells from SIV controllers during the CD8� depletion experiment. (B) Western blot SIV reactivity of plasma
collected at various time points from macaque 13316, including pre- and postdepletion time points. (C) (Top) Summary of experiments involving the
reactivation of viral replication from purified CD4� T cells of macaque 13316. Samples were obtained from blood, LN, and purified CD4� T cells. ��, time
points at which SIV was isolated upon ConA activation and culture with IL-2; �, time points at which adjunction of heterologous PBMCs was needed for
detectable SIV production; �, time points at which SIV could not be detected. (Bottom left) Two representative examples of SIV reactivation upon stimulation
of CD4� T cells isolated from blood or LN from 13316. (Bottom right) Spearman correlation between p27 concentration and reverse transcriptase (RT) activity
in various culture supernatants (different time points in the summary) from macaque 13316 (�) and another CyM (Œ).
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ulation of blood CD4� T cells (Fig. 7C), than at later time points,
when it was observed only following stimulation of LN CD4� T
cells. After CD8� depletion, the viremia remained undetectable,
but partial Western blotting reactivity against the Gag and Env
proteins was transiently observed (day 65 after depletion) (Fig.
7B). Therefore, macaque 13316 presented an exceptional long-
term SIV controller profile that resisted CD8� cell depletion.

DISCUSSION

In contrast to the rapid-progression macaque models of SIV in-
fection, the SIVmac251 infection model of CyM closely resembles
HIV infection in humans in terms of viral load, CD4� T-cell de-
pletion, and rates of progression (39). Thus, it appears to be an
optimal model to study host mechanisms able to naturally control
infection. Our work provides further evidence that the H6 haplo-
type in CyM is associated with the control of infection: following
intrarectal inoculation of 11 CyM with 50 AID50 of SIVmac251, the
three H6 macaques, but none of the eight non-H6 macaques, were
able to control the infection. This association between MHC and
the control of infection in CyM seemed to lessen when lower doses
of SIVmac251 were used for inoculation: intrarectal inoculation of
six CyM with 5 AID50 of SIVmac251 resulted in control of infection
in all animals at the set point, despite only one possessing the H6
haplotype. Although one CyM lost control a few months later, the
remaining five CyM continued to control SIV viremia for 5 years.
This model of CyM controlling infection after intrarectal expo-
sure to low doses of SIVmac251 may be useful for investigating the
mechanisms leading to the spontaneous control of HIV/SIV
viremia independent of known protective MHC haplotypes, as
well as those with MHC-associated control (23, 24, 26, 40–42), in
the context of pathogenic-virus infection.

Both a low-dose inoculum and infection through the mucosal
route in macaques have been associated with a decreased number
of transmitted/founder viruses and lower genetic complexity of
the infecting virus (43, 44). This restricted viral diversity may fa-
cilitate the control of infection by host mechanisms, possibly due
to the lack of necessity for broad-spectrum responses. Although
we cannot exclude subtle differences in the fitness of the viruses,
all low-dose controllers carried replication-competent viruses
that are able to infect heterologous CD4� T cells to the same
extent as the original SIVmac251. Low-dose SIV exposure in ma-
caques has also been associated with lower plasma proinflamma-
tory cytokine levels during the early phases of infection (45),
which may provide an optimal context for the development of
adaptive responses.

Unfortunately, we were not able to analyze the immune re-
sponses during primary infection in our group of CyM exposed to
low-dose SIV. After a couple of years of controlling the infection,
they exhibited weaker SIV-specific CD8� T-cell responses and
weaker T-cell activation than noncontroller CyM. We analyzed
the ex vivo capacities of CD8� T cells from these macaques to
suppress SIV infection of autologous CD4� T cells using a tech-
nique developed for HIV-infected patients to highlight the quali-
tatively superior HIV-specific CD8� T-cell response often ob-
served in HIC (9, 12). This activity was not stronger in SIC than in
viremic CyM; the exception was macaque 13523, carrying the H6
haplotype, whose CD8� T cells were able to efficiently suppress
SIV infection even at low E/T ratios. Nevertheless, the longitudinal
follow-up showed that CD8� T-cell-mediated SIV suppression
waned over time in the SIC. SIV-specific CD8� T-cell responses

were weak and displayed low anti-SIV capacity in blood, BAL
fluid, and LN. Only macaque 13311, the animal that lost viral
control, maintained almost constant anti-SIV activity ex vivo, al-
beit at a modest level. Although further analyses including the
primary phase of infection are needed, our results are compatible
with a scenario in which the CD8� T-cell response contracts once
viremia has been efficiently controlled.

Human HIV controllers are usually characterized after several
years of control of the infection. During chronic infection, many
HIC show high frequencies of robust HIV-specific CD8� T cells
(9–11). However, many others continue to control their viremia
despite low frequencies of HIV-specific CD8� T cells and a weak
suppressive capacity in the blood or rectal mucosa (12, 15, 16, 46).
In HIC with weak T-cell responses, an efficient memory CD8�

T-cell response may proliferate in response to viral rebound, rap-
idly acquire effector functions, and thereby control viral relapses
(18), but the quiescent T-cell status in many of these patients
suggests that these cells are not actively repressing infection (12).
After several years of viral control, our SIC with weak T-cell acti-
vation and weak SIV-specific CD8� T-cell responses resembled
these HIC; this finding prompted us to explore the role of their
weak CD8� T-cell responses in the long-term maintenance of SIV
control.

The in vivo depletion of CD8� cells in SIC macaques has been
used to highlight the role of CD8� T-cell response in the control of
SIV infection (21, 27), although the interpretation of such exper-
iments deserves discussion. In our study, we observed a transient
rebound of viremia in four of the five SIC, which is consistent with
previous reports (21, 27). The viral load in one SIC started to
decline before we could detect the recovery of CD8� T cells in the
blood or any of the various tissues tested. In the three other SIC
who lost control, recovery of their CD8� T-cell compartments
began earlier and coincided with the drop in viremia. The kinetics
of the SIV-specific CD8� T-cell responses indicates that the fre-
quency of these cells expanded very modestly during the CD8�

T-cell recovery phase compared with the baseline levels and the
frequency of SIV-specific CD8� T cells in the viremic CyM. The
only exceptions in which a significant expansion of SIV-specific
CD8� T cells were observed corresponded to late time points in
animals 13170 and 13237, when viremia was already back to pre-
depletion levels. No differences in CD8� T-cell polyfunctionality
or capacity to suppress SIV infection were found in pre- and post-
depletion blood, LN, and BAL fluid samples, including those col-
lected from the H6-bearing CyM (13523), whose cells had the
strongest activities at earlier time points. Intriguingly, CD8� T
cells from this macaque, which reconstituted the CD8� T-cell
compartment faster and more strongly than the other animals,
expressed by far the lowest levels of HLA-DR and showed the
smallest increase in SIV-specific CD8� T cells during reconstitu-
tion. Overall, our findings suggest that other mechanisms may
have contributed to the reestablishment of the control of infection
in these macaques.

CD8� T cells can inhibit HIV/SIV infection through noncyto-
lytic soluble factors (47). Several reports have suggested that these
mechanisms may play a major role in the CD8-mediated partial
control of SIV infection during primary infection in macaques
(48–50). In vitro infection of mitogen-activated PBMCs has been
widely used to reveal the presence of strong activities of these
various soluble antiviral factors. Using this system, we did not
observe any significant differences between the levels of
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SIVmac251 replication in mitogen-activated autologous CD4� T
cells and whole PBMCs. We observed a sharp increase in the
plasma MIP-1
 and MIP-1	 levels a few days after CD8� deple-
tion, but their peaks preceded the peaks of viremia and their levels
subsequently decreased so that they were much lower during the
decreasing phase of viremia. Thus, it is unlikely that CD8� cell-
produced soluble factors influenced the viremia during this phase
of the study. Although we could not directly analyze the role of NK
cells or �� T cells, our results with PBMCs suggest that no efficient
anti-SIV effectors significantly expanded following CD8� cell de-
pletion and recovery.

In contrast to SIV-specific CD8� T-cell responses, SIV-specific
CD4� T cells from SIC (which retained better polyfunctionality
than those from the viremic macaque) expanded after CD8� cell
depletion, especially in the case of the H6-bearing CyM, 13523.
Antigen-specific CD4� T cells provide help for the generation of
functional CD8� T-cell responses (51). Over the last few years,
various reports have suggested that HIV/SIV-specific CD4� T-cell
responses may themselves be endowed with cytotoxic potential
(52–54), although it is not clear how this activity is exerted in vivo
(40). We cannot rule out the possibility that these cells may have
contributed to the reestablishment of the control of infection in
SIC, although no direct activities were detected in cultures of pu-
rified CD4� T cells from the SIC before or after CD8� depletion;
indeed, these cultures could be infected in vitro to levels similar to
those of cells from healthy macaques (data not shown).

In agreement with previous reports, the expansion of SIV-spe-
cific CD4� T cells was associated with the activation and expan-
sion of the memory CD4� T-cell compartment and, in particular,
of EM cells (37, 38). Indeed, CD8� cell depletion was followed by
an increase in the number of memory CD4� T cells upregulating
the early activation marker CD69, a subsequent increase in the
frequency of Ki67� proliferating CD4� T cells, and an expansion
in the number of memory cells at later time points. It has been
suggested that there is an expansion of EM CD4� T cells in CD8�

cell-depleted macaques in response to the increased IL-15 concen-
trations in plasma, but the viral dynamics in primary infection are
not affected by this expansion (38). We observed two peaks of
CD4� T-cell activation following CD8� cell depletion in our
group of SIC, reminiscent of an early depletion study in SIV-
infected RM (55). These peaks coincided with peaks in plasma
levels of IL-15, but also of IL-2 and IL-7. All of these cytokines are
regulators of T-cell homeostasis (56). Therefore, it is possible that
memory CD4� T cells were activated in response to transient in-
creases in the levels of these interleukins. CD4� T-cell activation
in SIC may increase the number of target cells for SIV replication,
and IL-2, IL-7, and IL-15 have been shown in vitro to increase the
susceptibility of cells to infection (57, 58) and to reactivate latent
provirus from CD4� T cells (59, 60), including those from HIC
with extremely small viral reservoirs (5). We found significant
correlations between the levels of plasma viremia and the levels of
Ki67� CD4� T cells in SIC following CD8� cell depletion. Our
results agree well with the report by Mueller et al. of a correlation
between plasma viremia and the number of proliferating CD4� T
cells in CD8� cell-depleted CyM chronically infected with
SHIV89.6P (37). These observations suggest that the homeostatic
activation of CD4� T cells may have played an important role in
the loss of the control of viremia in four of our SIC.

Finally, one CyM (13316) represented an exceptional case of
control of infection. This macaque did not show a real peak of

viremia during acute infection, experienced only two viral blips,
and did not seroconvert. Viral RNA and cell-associated DNA were
undetectable in either LN or the rectal mucosa at all time points
analyzed during chronic infection. Although this profile was evoc-
ative of transient or defective infection, the virus could be success-
fully reactivated in vitro from CD4� T cells purified from this
animal at various time points during the follow-up of the study
(up to 6 years after infection), confirming that the animal was
infected. Viral reactivation from blood samples was easier at ear-
lier time points, and later, the virus could be rescued only from
larger quantities of LN cells. These results suggest that the viral
reservoir in this CyM was small and shrank further during the
study. This type of occult infection is not unknown; a few similar
cases have been reported in various macaque models of SIV infec-
tion (61, 62) and even among highly HIV-exposed seronegative
individuals (63–65). Remarkably, in vivo CD8� cell depletion in
this animal lasted for several months, during which SIV replica-
tion remained undetectable in either plasma or tissues. Thus, the
extreme control of SIV infection in the macaque was independent
of the CD8� T-cell response, further arguing for the existence of
additional mechanisms contributing to maintaining control of the
infection.

Although it is likely that the CD8� T-cell response makes an
important contribution to establishing natural control of SIV in-
fection, our results suggest that its role may be less important for
the maintenance of viral control. Several results from this study
support this hypothesis: (i) the anti-SIV CD8� T-cell responses
appear to wane over time, while the viremia remains controlled;
(ii) although in vivo CD8� depletion in the SIC was accompanied
by a transient loss of control, the viremia was correlated with the
activation of CD4� T cells; (iii) the control of viremia in macaque
13237 started before CD8� T cells were detected in the blood or
tissues; (iv) the regain of viral control was not accompanied by a
boost in the SIV-specific CD8� T-cell response, and 13523
achieved the fastest and deepest control of infection while main-
taining extremely low frequencies of SIV-specific CD8� T cells;
and (v) one animal with an extreme phenotype of control main-
tained an undetectable viremia despite the absence of CD8� T
cells for more than 3 months.

In conclusion, once control of viremia has been established,
other mechanisms, perhaps including control of small viral reser-
voirs, regulation of T-cell activation, or robust specific CD4� T-
cell responses, may overtake the CD8� T-cell response, at least
partially, to maintain control of the infection in the long term.
Future longitudinal studies in CyM exposed to a low-dose viral
inoculum may provide information about these mechanisms.
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