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The cyclin-dependent kinase 5 (CDK-5) activating protein, p35, is important for acute herpes simplex virus 1 (HSV-1) replica-
tion in mice. This report shows that HSV-1 increases p35 levels, changes the primary localization of CDK-5 from the nucleus to
the cytoplasm, and enhances CDK-5 activity during lytic or acute infection. Infected neurons also stained positive for the DNA
damage response (DDR) marker �H2AX. We propose that CDK-5 is activated by the DDR to protect infected neurons from
apoptosis.

Herpes simplex virus 1 (HSV-1) is a human pathogen that
establishes lifelong latent infection in sensory neurons (1,

46). It is not well understood how the virus switches from lytic
to latent infections in neurons and the mechanisms involved in
reversing this switch under stress stimuli to initiate reactiva-
tion. It is vital that the neurons survive an infection by HSV-1
if the virus is to efficiently establish a latent infection or reac-
tivate. Not surprisingly, HSV-1 has developed countermea-
sures to prevent neuronal apoptosis, in part, with the expres-
sion of the latency-associated transcripts (LATs) (2–4). While
the contribution of viral gene products that possess antiapop-
totic activities has been a major area of interest in HSV-1 re-
search, the role of cellular factors involved in neuronal survival
has received limited attention.

One neuronal factor that is highly active in postmitotic neu-
rons and is required for neuronal survival during stress is cyclin-
dependent kinase 5 (CDK-5) (5, 6). CDK-5 regulates many neu-
ronal processes (reviewed in reference 7) and has been shown to
play important roles in both neuronal survival and death. Inacti-
vation of CDK-5 has been shown to trigger neuronal death (8–11).
On the other hand, a survival function for CDK-5 is evident when
neurons are stressed (12–16). For its activation, CDK-5 binds to
p35 or a related protein, p39, which also modulate CDK-5’s sub-
cellular localization (17–20). Notably the activity of CDK-5 di-
rectly correlates with the levels of its major activator, p35, and
both are expressed predominantly in neurons (21), which likely
explains why CDK-5 is mainly active in neurons, although it is
constitutively expressed in many cell types (17, 22).

We have previously shown that HSV-1 acute replication is im-
paired in the eyes and trigeminal ganglia (TG) of p35 knockout
mice, reducing the establishment of latency and reactivation (23).
Given this previous result, we sought to determine whether
HSV-1 altered the expression or subcellular localization of the p35
and CDK-5 proteins during acute infection.

HSV-1 infection induces p35 protein levels. To examine how
HSV-1 acute TG infection affects p35, wild-type HSV (KOS)-
infected TG were harvested 3 days postinfection, as previously
described (24, 25). TG sections were immunostained for both
the HSV-1 immediate early protein, ICP0, used as a marker for
productively infected neurons, and p35. As shown in Fig. 1A,
HSV-1-infected neurons showed an increase in p35 staining

compared to mock-infected cells, with a distribution that was
primarily cytoplasmic. To confirm this result in cell culture, the
human neuronal cell line SK-N-SH was mock infected or in-
fected with KOS. As shown in Fig. 1B, p35 was not detected in
mock-infected cells, whereas it was readily detected in KOS-
infected cells and reached maximal levels of expression at 24 h
postinfection (H. H. Mostafa, J. M. van Loben Sels, and D. J.
Davido, unpublished data).

HSV-1 infection changes the localization of CDK-5 and en-
hances its activity. Because p35 function is linked to its binding
partner, CDK-5, we next wanted to determine if HSV-1 acute
infection affects CDK-5 expression and/or subcellular localiza-
tion. For these studies, TG sections from 3-day KOS-infected mice
were immunostained for ICP0 and CDK-5. As shown in Fig. 2A, in
contrast to the mock-infected neurons, where CDK-5 localization
was predominantly nuclear with diffuse cytoplasmic staining in
most cells, HSV-1-infected neurons had a CDK-5 localization that
was primarily punctate and both cytoplasmic and nuclear in
�70% of cells that stained positive for ICP0. It was difficult to
detect CDK-5 localization in SK-N-SH cells, as CDK-5’s staining
was faint (H. H. Mostafa and D. J. Davido, unpublished data);
CDK-5 protein levels, however, were apparent in HSV-1-infected
SK-N-SH cells and at comparable levels to those in mock-infected
cells (Fig. 1B). Thus, alterations in CDK-5 localization do not
appear to correlate with decreased protein levels. In order to test
whether HSV-1 infection modulated CDK-5’s kinase activity, SK-
N-SH cells were mock infected or infected for 24 h with KOS.
CDK-5 was immunoprecipitated and incubated with the CDK-5
substrate Tau (26) for 30 min at 37°C. As shown in Fig. 2B, KOS
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infection increased the amount of phosphorylated Tau by 4- to
5-fold as detected with the monoclonal antibody AT8 (27). This
indicates that HSV-1 infection enhances CDK-5 kinase activity in
neuronal cells.

HSV-1 infection induces DDR in TG. CDK-5 is important for
neuronal survival in response to stressful conditions, including
the DNA damage response (DDR) (12–16). In this context, HSV-1
infection triggers and counteracts the DDR in nonneuronal cell
lines (28–32). However, the induction of the DDR in cultured
neurons (28) or in the neurons of HSV-1-infected animals has not
been reported. To determine whether HSV-1 infection triggers
DDR in infected neurons, KOS-infected TG were isolated 3 days
postinfection, sectioned, and immunostained with �H2AX, a his-
tone variant and one of the earliest markers of the DDR (33–35).
Interestingly, neurons that stained positive for HSV-1 antigens
were positive for �H2AX, whereas mock-infected neurons had no

apparent �H2AX staining (Fig. 3). This indicates that acute
HSV-1 neuronal infection can trigger early DDR events.

Model of CDK-5 alteration and p35 induction during HSV-1
infection. p35 levels are induced secondarily to neurotrophic
factors that stimulate extracellular-signal-regulated kinase 1/2
(ERK1/2), activating the transcription factor Egr1 (36–38). Inter-
estingly, a previous report showed that HSV-1 infection activates
the ERK/mitogen-activated protein kinase (MAPK) signaling
pathway (39). Moreover, it has been shown that HSV-1 lytic in-
fection induces Egr1 in rabbit corneal cells (40). Oxidative stress is
capable of initiating the DDR (41) and is reported to enhance the
expression of Egr1 (42), and HSV-1 has the ability to induce neu-
ronal oxidative stress (43). With these observations and our data,
we propose that oxidative stress and/or activation of DDR during
acute HSV-1 infection of neurons stimulates p35 levels via Egr1
(Fig. 4).

FIG 1 Alterations in p35 expression by HSV-1. (A) p35 staining in response to HSV-1 infection. CD-1 mice were infected with 2 � 105 PFU of HSV-1 (strain
KOS) per eye. Three days postinfection, mice were sacrificed, and TG were collected, fixed, paraffin embedded, and processed for immunofluorescence staining
of ICP0 and p35. More than 10 sections from two independent experiments were examined, and the image shown is a representative section. Magnification,
200�. Arrows point to the expanded view shown below each panel. (B) p35 and CDK-5 protein levels after HSV-1 infection. SK-N-SH cells were mock infected
(M) or infected at a multiplicity of infection (MOI) of 2 with KOS. Twenty-four hours postinfection, cells were harvested, and protein levels from cell extracts
were determined by Western blot analysis.
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It has been shown that cytoplasmic CDK-5 inhibits apopto-
sis by preventing neurons from entering mitosis (15, 44), and
its protein levels are stabilized by p35 (45). Our data allow us to
propose a model in which HSV-1 induces CDK-5 kinase activ-

ity to protect lytically infected neurons from dying (Fig. 4). In
support of this possibility, we examined acutely infected TG for
signs of apoptosis 3 days postinfection using terminal deoxy-
nucleotidyltransferase-mediated dUTP-biotin nick end label-

FIG 2 HSV-1 affects CDK-5 localization and kinase activity. (A) CDK-5 localization in response to HSV-1 infection. CD-1 mice were infected with 2 � 105 PFU
of KOS per eye. Three days postinfection, mice were sacrificed, and TG were collected, fixed, paraffin embedded, and processed for immunofluorescence staining
of ICP0 and CDK-5. More than 10 sections from two independent experiments were examined, and the image shown is a representative section. Magnification,
400�. Arrows point to the expanded view shown below each panel. In about 30% of the ICP0-positive neurons, CDK-5 colocalized with ICP0 in the nucleus but
showed punctate staining, as evident in the expanded view. (B) In vitro CDK-5 kinase assay. SK-N-SH cells were mock infected or infected with KOS for 24 h.
CDK-5 protein was immunoprecipitated (IP) and incubated with bacterially purified Tau protein. Phosphorylated (Phos) versus total Tau was determined by
Western blot analysis and quantified by densitometry. Data from two independent experiments are shown.

FIG 3 DNA damage response to HSV-1 infection. CD-1 mice were infected with KOS at 2 � 105 PFU per eye. Three days postinfection, mice were
sacrificed, and TG were collected, fixed, paraffin embedded, and processed for immunofluorescence staining of HSV-1 and �H2AX. More than 10 sections
from two independent experiments were examined, and the image shown is a representative section. Magnification, 200�. Arrows point to the expanded
view shown below each panel.
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ing (TUNEL) staining and did not detect an increase in apop-
totic neurons in KOS-infected cells (H. H. Mostafa and D. J.
Davido, unpublished data), consistent with other studies (2–
4). In the future, we will determine how p35 is upregulated to
promote lytic replication.
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