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Hepatitis C virus contains a second open reading frame within the core gene, designated core+1/ARF. Here we demonstrate for
the first time expression of core+1/ARF protein in the context of a bicistronic JFH1-based replicon and report the production of
two isoforms, core+1/L (long) and core+1/S (short), with different kinetics.

H epatitis C virus (HCV) infection is a major cause of non-A,
non-B hepatitis, which frequently leads to chronic liver dis-
ease and hepatocellular carcinoma (1); no vaccine is available,
while the recent broadly effective therapy is highly expensive (2,
3). The single-stranded positive-sense RNA genome of HCV (9.6
kb) encodes a polyprotein precursor of about 3,000 amino acids
flanked by conserved untranslated regions (UTRs) (4, 5). The
UTRs are required for RNA translation and replication, and an
internal ribosome entry site (IRES) within the 5" UTR controls
translation initiation (6). The polyprotein is processed by cellular
and viral proteases to yield at least 10 structural and nonstructural
proteins (C, E1, E2, p7, NS2, NS3,NS4A, NS4B, NS5A, and NS5B)
(4,5).

Previous studies from our laboratory and others have shown
that HCV possesses a second functional open reading frame
(ORF) within the core region of the polyprotein encoding an ad-
ditional protein designated core+1/alternative reading frame
protein (ARFP) (7-9). This alternate ORF is present in all six HCV
genotypes (9) but has been studied only in subtypes 1a and 1b. At
first, a 17-kDa protein (p17), initially named ARFP (alternative
reading frame protein), F (frameshift), or core+1 (to indicate its
position), was shown to be synthesized in rabbit reticulocyte lysate
(RRL) from the initiating codon of the polyprotein sequence of a
genotype 1la HCV type 1 (HCV-1) strain by a +1 frameshift oc-
curring in an A-rich core-encoding region (codons 8 to 11) (7—
10). However, the expression of this form of core+1/ARFP
(known as F) is limited to the HCV-1 isolate, which is unique in
carrying a stretch of 10 consecutive adenine nucleotides within
codons 8to 11 (7, 11, 12), and its expression in transfected cells is
dependent on cytoplasmic transcription (11). Interestingly, other
core+1/ARFP forms are expressed independently of the A-rich
sequence by an alternative translation mechanism(s). Internal
translation initiation at methionine codons 85/87 of HCV-1a and
HCV-1b, resulting in a shorter form of core+1/ARFP, has been
observed in transfected hepatoma cells (13-15). Furthermore,
codon 26 of HCV-1a (12) and HCV-1b (15) was also found to
function as an internal translation initiation site in mammalian
cells. Additionally, a +1 frameshift at codon 42 of HCV-1b, fol-
lowed by a rephrasing into the core ORF at stop codon 144, was
observed in Escherichia coli (16).

The detection of specific anti-core+1/ARFP antibodies and
T-cell responses in HCV-infected patients (especially with hepa-
tocellular carcinoma), as reported by many independent labora-
tories, provides strong evidence that core+1/ARFP is produced
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during natural infection (7-9, 17-21). These studies suggest a link
between core+ 1/ARFP and development of liver cancer (22-27).
Conversely, core+1/ARFP has no obvious effect on virus replica-
tion following electroporation of Huh7-Lunet cells with full-
length JFH1 wild-type and mutated viral RNAs or in mice xeno-
grafted with human liver tissue (28). Those studies were based on
a mutational approach which theoretically abolishes the expres-
sion of core+1/ARFP and on comparisons of the replication ki-
netics of the wild-type and the mutated JFH1 viruses. However, to
date, elucidation of core+1/ARFP expression in the context of
HCV genome remains elusive.

The aim of this study was to investigate whether JFH1 supports
the expression of core+ 1/ARFP. To this end, we used JFH1-based
bicistronic replicons, tagged with the firefly luciferase gene at nu-
cleotide (nt) 630, which would allow us to monitor and compare
the levels of translation initiation of core and core+1 ORFs.

In order to investigate whether the JFH1 isolate expresses
core+1/ARFP, we fused the firefly luciferase N-terminally with
core+ 1/ARFP in the context of a bicistronic JFH1-based replicon
(Fig. 1A and B). Luciferase tagging stabilizes the highly unstable
core+1/ARFP (29) and provides a quantitative measure of the
translation efficiency of core and core+1 ORFs (13, 29). Firefly
luciferase was fused at nt 630 of the JFH1 replicon in all three
reading frames (0/+1/-1 or core/core+1/core-1; Table 1) by PCR
amplification of the JFH1 core-coding region (nt 342 to 630) and
insertion into the Agel and Xbal sites of the original pFK-
1389LucNS3-3'-JFH1-dg replicon vector (30). Furthermore, to
exclude expression from the initial firefly luciferase AUG, the site
was mutated to GGG together with an introduction of a BglII site
(pFK-i630-BglII-core+1/LucNS3-3'-JFH1-dg) as well. A hybrid
luciferase-bearing replicon was constructed using the core-coding
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FIG 1 Expression from the core+ 1 frame within the JFH1-based replicon. (A) Prediction of the secondary RNA structure of stem-loops SL47, SL87, and SL248.
Nucleotide positions are illustrated within the boxes of the respective stem-loops according to JFH1 numbering. Mutations introduced at various codons (gray
boxes) of core+1 (CD) are shown with an arrow and designated according to codon number, while the mutated codons are noted in parentheses. The introduced
nonsense/stop codons are underlined. The gray circle highlights the start of the core+1 fusion with the firefly luciferase (Luc). (B) Schematic representation of
the bicistronic subgenomic JFH1-based replicon (pFK-i630-BglII-LucNS3-3’-JFH1-dg). The replicon is composed of the JEFH1 5" and 3" UTRs and nonstructural
protein region, while the core-coding region belongs to either JFH1 (nucleotides 342 to 630) or H77 (nucleotides 342 to 630) fused to the coding sequence of the
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TABLE 1 List of oligonucleotides used for cloning and real-time quantitative PCR”

Primer (assay)

Sequence

core 630 JFH1
core+1 630 JFH1
core-1 630 JFH1
core+1 630 H77
N328°

N329¢

N323B¢

CD20M F

CD20 M R
CD21SF
CD2ISR
CD25/26 M F
CD25/26 M R
CD14S F

CD14S R

CD28S F

CD28S R

CD48S F

CD48S R
CD85/87S F
CD85/87S R
CD87S F

CD87S R

CD90S F

CD90S R
JFH1-5NTR276F (RT-PCR for IRES)
JEH1-5NTR354R (RT-PCR for IRES)
YWHAZR
YWHAZF

5'-GGCGTCTTCCCCAGATCTCCATCCTGCCCAGCC-3’
5'-GGCGTCTTCCCCAGATCTGCCATCCTGCCCAGCC-3’
5'-GGCGTCTTCCCCAGATCTTCACCTGCCCAGCC-3'
5'-GGCGTCTTCCCCAGATCTGCCATCCCGCCCACCC-3'
5'-CTGTCTTCACGCAGAAAGCG-3'
5'-CCGAACGGACATTTCGAAG-3'
5'-GGGGAAGACGCCAAAAAC-3’
5'-CCCAGAAGACATTAAGTTCCC-3'
5'-GGGAACTTAATGTCTTCTGGG-3'
5'-CCAGAAGACGTGAAGTTCCCG-3’
5'-CGGGAACTTCACGTCTTCTGG-3'
5-AGTTCCCGGGGGGGGGCCAGATCG —3’
5'-CGATCTGGCCCCCCCCCGGGAACT —3’
5'-CCAAAAGAAACATGAACCCGTCGCCCAGAAG-3’
5'-CTTCTGGGCGACGGTTCATGTTTCTTTTGG-3'
5'-CGGCGGCCTGATCGTTGGCGGAG-3'
5'-GCCAACGATCAGGCCGCCGCCCG-3'
5-GGTGTGCGCACGATGAGGAAAACTACGG-3'
5'-CCGAAGTTTTCCTCATCGTGCGCACACC-3'
5'-GGCCCCTATGGGGGAGGGAGGGACTCG-3’
5-CGAGTCCCTCCCTCCCCCATAGGGGCC-3'
5'-CTATATGGGATAGAGGGACTCGGC-3'
5'-AGCCGAGTCCCTCTATCCCATATAG-3'
5-GGAATGAGGGACTAGGCTGGGCAGG-3’
5'-CCTGCCCAGCCTAGTCCCTCATTCC-3'
5'-GGCCTTGTGGTACTGCCTGATA-3’

5 -GGATTTGTGCTCATGGTGCA-3’
5'-GGATGTGTTGGTTGCATTTCCT-3'
5'-GCTGGTGATGACAAGAAAGG-3’

“ Mutated codons are underlined.

b Forward for core 630 JFH1, core+1 630 JFH1, core-1 630 JFH1, core+1 630 H77, and all reverse primers (R) of STable2.

¢ Reverse for N323B and all forward primers (F) of STable2.
@ Forward for N329 in AUG—GGG of luciferase original start.

region (nt 342 to 630) of the H77 prototypic strain as described for
JFHI1. The replicons, after linearization with Mlul, were used to
produce RNA with T7 RNA polymerase (Promega), as described
previously (31). The in vitro-transcribed RNAs were introduced
into human hepatoma Huh7-Lunet cells by Lipofectamine trans-
fection (2 pl Lipofectamine 2000 [Life Technologies]—0.5 pg rep-
licon RNA on 10° cells plated in a 24-well tissue culture dish), and
firefly luciferase expression was measured (dual-luciferase re-
porter assay; Promega). A capped-polyadenylated Renilla lucifer-
ase expressing RNA, produced as previously described (32), was
included in the transfection (0.1 pg) as a normalizer and was
measured with the dual-luciferase reporter assay (Promega).
Expression from the core frame peaked 48 h posttransfection,
while core+1 frame expression peaked at 72 h (Fig. 1C). Expres-
sion of the core+1 frame relative to core expression increased
gradually over time. Expression from the —1 frame was used as a
negative control, as no ORF is predicted to exist in that frame.
Surprisingly, far less core+1 frame expression was observed with

the replicons bearing H77 sequences, suggesting that the insertion
of genotype 1 core-coding sequences into the genotype 2 genome
may negatively affect core+1/ARFP expression at a mechanistic
level (Fig. 1C). All the mutations described above had no effect on
replicon RNA abundance (Fig. 1D).

To provide insight into the expression of core+1/ARFP and
the isoforms produced in the replicon system, a number of muta-
tions were designed (Fig. 1A and Table 1). Initially, we sought to
confirm the specificity of expression of core+1/ARFP in the rep-
licon system, by introducing a nonsense mutation at core+1 ORF
codon 90 (CD90S), which was expected to abolish the production
of all known forms of core+1/ARFP. As shown in Fig. 2A, the
nonsense mutation at core+1 codon 90 abolished the expression
of core+ 1/ARF-luc at all of the time points tested.

To determine the starting codon of core+1 frame and the pos-
sible existence of more than one isoform, we designed a series of
nonsense mutations across the core sequence. Various starting
codons/mechanisms have been reported in the past, including the

firefly luciferase gene in the 0, +1, or —1 frame. The encephalomyocarditis virus (EMCV) IRES directs the expression of the nonstructural proteins. (C)
Huh7-Lunet cells were transfected with RNA of the pFK-i630-BglII-LucNS3-3’-JFH1-dg-based replicons with the luciferase gene fused in the 0, +1,and —1 (C,
C+1, and C-1) frame of the JFH1 core-coding region or the + 1 frame of the corresponding H77 core-coding region. The levels of JFH1 core+ 1 expression are
noted as percentages of the respective time point 0 frame expression level. (D) Real-time PCR quantification of replicon RNA abundance 48 h posttransfection.
Quantification was achieved by amplification of the 5" nontranslated region (5'NTR) of the replicon, while the YWHAZ cellular gene was used for normalization.
At least three independent repetitions were performed; the error bars represent standard deviations. *, P < 0.02 (Student’s ¢ test).
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FIG 2 core+1 frame expression initiates from two distinct sites within the core-coding region. (A and B) Huh7-Lunet cells were transfected with RNA from the
pFK-i630-BglII-core+ 1/LucNS3-3'-JFH1-dg-based replicons bearing mutations at various codons (CD) of JFH1 core+ 1. Firefly luciferase produced from the
mutated replicons at various time points posttransfection is expressed as a percentage of the production from the wild-type replicon (C+1) 48 h posttransfection.
The expression is normalized to Renilla luciferase expression from a DNA plasmid and further normalized to replicon RNA levels as measured by reverse
transcription-qPCR (RT-qPCR). CDs are designated according to the core+1 codon number. Codons annotated with an S represent introduced nonsense/stop
codons and those annotated with an M introduced mutated codons. (C and D) Real-time PCR quantification of replicon RNA abundance 48 h posttransfection.
Quantification was achieved by amplification of the 5'NTR of the replicon, while the YWHAZ cellular gene was used for normalization. At least three
independent repetitions were performed; the error bars represent standard deviations. *, P < 0.05; **, P < 0.02 (Student’s ¢ test).
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FIG 3 Immunodetection of core+ 1 production within the JEFH1-based replicon. (A) Huh7-Lunet cells were electroporated with RNA from the pFK-1630-BglII-
LucNS3-3'-JFH1-dg) firefly luc-JFH1-based replicons bearing nonsense mutations at various codons (CD) of JFH1 core+ 1. Firefly luciferase produced from the
mutated replicons at various time points postelectroporation is expressed as a percentage of the production from the wild-type replicon (C+1) 48 h postelec-
troporation. The expression is normalized to Renilla luciferase expression from a DNA plasmid and further normalized to replicon RNA levels as measured by
RT-qPCR. (B) Huh7-Lunet cells were electroporated with RNAs representing firefly luc-JFH1-based replicons with firefly fused on a core frame bearing nonsense
mutations at various codons (CD) of JFHI core+1. Firefly luciferase produced from the mutated replicons at various time points postelectroporation is
expressed as a percentage of the production from the wild-type replicon (C) 48 h posttransfection. The expression is normalized to Renilla luciferase expressed
from a plasmid. (C) Real-time PCR quantification of replicon RNA abundance 48 h postelectroporation. Quantification was achieved by amplification of the
5'NTR of the replicon, while the YWHAZ cellular gene was used for normalization. At least three independent repetitions were performed; the error bars
represent standard deviations. *, P < 0.02 (Student’s ¢ test). (D) SDS-PAGE autoradiography for immunoprecipitated firefly luciferase and NS5A from lysates 48
h postelectroporation of Huh7-Lunet cells electroporated with RNA from the pFK-i630-BglII-core+ 1/LucNS3-3'-JFH1-dg-based replicons. The arrow repre-

sents the bands for core/core+ 1-luc proteins. The figure represents the results of one of three independent experiments.

frameshift at codons 8 to 11 (7-9, 33), internal initiation at codon
26 (12, 15), a frameshift at codon 42 (16), and a shorter form
initiating at codons 85/87 (13, 15). As shown in Fig. 2, a nonsense
mutation at codon 21 (CD21S) had no effect on core+1 expres-
sion, indicating that core+ 1/ARFP is not produced by ribosomal
frameshifting at codons 8 to 11 (Fig. 2B). A nonsense mutation at
codon 28 (CD28S) was the first that partially hindered core+1
expression, showing an increasing effect over time (Fig. 2A). A
similar effect was observed when a nonsense mutation was in-
serted at codon 79 (CD79S), suggesting the absence of a core+1
start codon within that region (Fig. 2A). The significant difference
between CD21S and CD28S in the measured levels and the total
abolishment of core+1 expression between CD79S and CD90S
indicated the existence of two isoforms of core+1: a short form
(core+1/S) initiating between codons 79 and 90 and a long form
(core+1/L) initiating between codons 21 and 28. Remarkably, as
the reduction of core+ 1 frame expression in CD28S was minimal
at the early stages of the replication, core+1/S seemed to be the
predominant form, while at later time points core+ 1/L took over,
reducing core+1/S expression to background levels (Fig. 2A). It
must be noted that all the mutations described above had no effect
on replicon RNA abundance, as measured by quantitative PCR
(qPCR) 48 h posttransfection (Fig. 2C and D and Table 1).

5168 jviasm.org

Journal of Virology

Among the aforementioned putative initiation codons,
those that fitted the expression profiles in the replicon system
were codons 25/26 for core+1/L and codons 85/87 for
core+1/S (12, 13, 15). After changing codons 26, 85, and 87
individually to GGG (which has never been reported to serve as
an alternative initiation codon), the expression from the
core+1 frame was similar to that seen with the control (data
not shown). However, when mutations were introduced into
both alternative initiation codons, codons 25 and 26 (CD25/
26M), the reduction in the expression from core+1 frame was
similar to that observed for CD28S and CD79S with similar
kinetics, signifying a major role of codons 25/26 in the initia-
tion of core+1/L (Fig. 2A). As the mutations in codons 25/26
partially disrupt the integrity of stem-loop SL47 (nt 388 to
423), we introduced analogous mutations on the complemen-
tary strand of the stem at codons 15 and 17 (CD15/17M) (Fig.
2B). The mutations showed a limited effect on core+1 frame
expression, especially late posttransfection, possibly highlight-
ing a mechanistic role of the stem in the core+1/L expression.
On the other hand, mutations in both alternative initiation
codons, 85/87 (CD85/87M), resulted in a significant early re-
duction of core+ 1 expression which was much less apparent 48
h posttransfection (Fig. 2A). The kinetics of CD85/87M were
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opposite those of CD28S and CD79S, demonstrating an early
gene type of expression from codons 85/87.

The mutational analysis described above clearly illustrated the
synthesis of two isoforms of core+1, an early short form and a late
long form, in the context of the HCV replicon. However, for the
verification of core+1 expression, we attempted to also detect the
expressed protein by biochemical methods. As the amount of
core+ 1 produced with the luciferase replicon is estimated to be at
picogram levels (~10 pg/10° cells, as extrapolated from the activ-
ity of recombinant firefly luciferase), we aimed for investigation of
the larger-scale replicon system via electroporation of replicon
RNA into Huh7-lunet cells. To recapitulate via electroporation
the results obtained by lipofection, we assessed the kinetics of
replicons encompassing a number of nonsense mutations in the
core+1 frame. Electroporation was performed in Huh7-Lunet
cells resuspended in RPMI medium or Cytomix as previously de-
scribed (34, 35). Nonsense mutations at codons 14, 28, 48, and 87
(CD14S, CD28S, CD48S, and CD87S, respectively) resulted in
unaffected core+1 frame expression for CD14S, more than 60%
inhibition of expression for CD28S/CD48S, and total inhibition
for CD87S, as expected (Fig. 3A). All the mutations described
above had no effect on replicon RNA abundance (Fig. 3B). CD14S
and CD48S further supported the absence of a frameshift at either
codons 8 to 11 or codon 42. It must be noted that introduction of
the mutations described above in the replicon expressing lucifer-
ase in the 0 frame had a minor effect or no effect on luciferase
expression (Fig. 3C). Notably, the replication efficiency peaked
earlier than in lipofection 48 h postelectroporation. In order to
optimize detection of core+1/ARFP, electroporated cells were
supplemented with 0.5 mCi of [**S]methionine-cysteine for 24 h
in methionine-cysteine-free Dulbecco’s modified Eagle’s medium
(DMEM)-0.5% fetal bovine serum (FBS). Cell extracts (48 h
postelectroporation) were subsequently immunoprecipitated us-
ing a rabbit polyclonal antibody against firefly luciferase (sc-
32896; Santa Cruz Biotechnology), and proteins were separated by
SDS-PAGE and visualized by autoradiography. A ca. 70-kDa band
was observed in the lanes corresponding only to core+1/ARFP/L-
luc (predicted 68 kDa) and core-luc (predicted 72 kDa) and not to
core-1-luc (Fig. 3D). A band corresponding to core+1/ARFP/S-
luc was not detected, possibly because of its low (~10%) abun-
dance 48 h postelectroporation. It must also be noted that the
luciferase intensity in the gel and its enzymatic activity may not
completely correlate due to the variations in the attached peptide
corresponding to HCV sequences at the 2 reading frames. Fur-
thermore, the expression of the core+1 ORF was also shown by a
replicon carrying a core+1 glutathione S-transferase (GST) fu-
sion (data not shown).

Our report provides evidence supporting the idea of expres-
sion of core+ 1/ARFP in JFH1-based replicons and shows for the
first time expression of core+1/ARFP from a 2a subtype strain; all
previous studies were limited to studying exclusively genotype 1
isolates. Specifically, we show the expression of two forms of
core+ 1/ARFP, designated core+1/L and core+1/S, with different
kinetics of expression during the replication of the JFH1 replicon.
Core+1/S was the predominant core+1 form during the early
stages of replication, while core+1/L expression increased later in
the replication cycle. Conversely, the lack of core+1 expression in
the context of the chimeric H77/JFH1 replicon suggests novel
translation mechanisms. It should be taken into account that the
two isoforms may differ in some of their functions. For example,
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different isoforms of the hepatitis D virus delta antigen play roles
in different stages of the viral replication cycle: the small delta
antigen is necessary for replication (36), while the large delta an-
tigen is produced at later stages and is involved in packaging (37).
Core+1/ARFP isoforms produced by frameshift have been ob-
served previously in cell-free systems (7, 8). Our results strongly
suggest that the core+1/ARFP/F isoform is not produced in the
replicon system. Alternatively, our mutational analysis provides
strong evidence that, in accordance with previous observations,
codons 25/26 serve as translation initiator codons for core+1/
ARFP/L, while codons 85/87 serve as translation initiator codons
for core+1/S (12, 15).

In conclusion, the results of this study support the idea of ex-
pression of core+1 ORF in the context of the HCV replication,
confirm the presence of alternative translation initiation mecha-
nisms that are based on internal translation at codons 25/26 and
85/87, and unambiguously demonstrate the lack of frameshift at
codons 8 to 11 which has long been speculated.
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