Skip to main content
. 2015 Apr 20;3:50. doi: 10.3389/fbioe.2015.00050

Table 3.

Comparison of pyrolysis-molecular beam mass spectrometry measured to Raman spectroscopy predicted syringyl/guaiacyl ratiosa.

Plant species No. of samples Reference range pyMBMS S/G average No. of samples Prediction range Raman S/G average Predicted vs. reference comparisons (p-values)
Acacia microbotrya 5 1.2–1.5 1.3 ± 0.1 10 0.9–1.5 1.3 ± 0.2 0.83
A. saligna 4 1.4–1.9 1.7 ± 0.2 11 1.2–2.0 1.7 ± 0.2 0.69
Corymbia citriodora subsp. citriodora 17 2.1–2.8 2.4 ± 0.2 44 2.0–2.7 2.3 ± 0.1 0.61
Corymbia hybrids 47 1.6–2.8 2.2 ± 0.2 NA
C. torelliana 56 1.8–2.4 2.1 ± 0.1 NA
C. citriodora subsp. variegata 39 2.0–3.2 2.5 ± 0.3 61 2.2–2.7 2.5 ± 0.1 0.65
Eucalyptus argophloia 5 1.9–2.2 2.1 ± 0.1 5 1.7–2.0 1.8 ± 0.1 0.03
E. cladocalyx 3 2.3–2.6 2.5 ± 0.2 2 2.1, 2.4 2.2 ± 0.2 0.40
E. cloeziana 7 1.7–2.3 1.9 ± 0.2 15 1.7–2.4 2.1 ± 0.2 0.31
E. crebra 4 1.4–2.1 1.6 ± 0.4 6 1.2–2.1 1.8 ± 0.3 0.59
E. dunnii 4 2.2–2.8 2.5 ± 0.3 11 2.2–2.5 2.4 ± 0.1 0.36
E. globulus 11 2.3–3.0 2.6 ± 0.2 19 2.0–2.8 2.5 ± 0.2 0.15
E. grandis 2 1.9, 2.2 2.0 ± 0.2 13 1.9–2.4 2.2 ± 0.1 0.23
E. kochii 5 1.9–2.3 2.2 ± 0.2 10 1.7–2.5 2.2 ± 0.2 0.76
E. longirostrata 8 2.1–2.4 2.2 ± 0.1 7 2.0–2.3 2.2 ± 0.1 0.86
E. loxophleba 7 2.1–2.6 2.4 ± 0.1 23 2.2–2.7 2.4 ± 0.1 0.22
E. moluccana 5 2.0–2.5 2.2 ± 0.2 11 1.8–2.5 2.2 ± 0.2 0.91
E. occidentalis 6 2.1–2.5 2.4 ± 0.2 9 2.2–2.6 2.4 ± 0.1 0.55
E. polybractea 8 2.0–2.7 2.3 ± 0.2 12 1.9–2.5 2.2 ± 0.1 0.40

aData compiled from Lupoi et al. (2014a), “High-throughput prediction of eucalypt lignin syringyl/guaiacyl content using multivariate analysis: a comparison between mid-infrared, near-infrared, and Raman spectroscopies for model development,” Biotechnology for Biofuels, Volume 7, p. 93 and Lupoi et al. (2015), “High-throughput prediction of Acacia and eucalypt lignin syringyl/guaiacyl content using FT-Raman spectroscopy and partial least squares modeling” Bioenergy Research, open access.