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Nutrient Influences on Leaf Photosynthesis
EFFECTS OF NITROGEN, PHOSPHORUS, AND POTASSIUM FOR GOSSYPIUM HIRSUTUM L.'
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ABSTRACT

The net rate of CO2 uptake for leaves of Gossypiun hirsutum L. was
reduced when the plants were grown at low concentrations of NO3-,
P042, or KV. The water vapor conductance was relatively constant for all
nutrient levels, indicating little effect on stomatal response. Although
leaves under nutrient stress tended to be lower in chlorophyll and thinner,
the ratio of mesophyll surface area to leaf area did not change appreciably.
Thus, the reduction in CO2 uptake rate at low nutrient levels was due to
a decrease in the CO2 conductance expressed per unit mesophylH cell wail
area (gco,). The use of gu and nutrient levels expressed per unit of
mesophyll cell wail provides a new means of assessing nutrient effects on
CO2 uptake of leaves.

Plant mineral status can markedly affect photosynthesis. For
instance, Jco,3 is reduced in leaves that are deficient in N (10, 16,
18, 25), P (16, 20, 22), or K (3, 16, 17, 21, 24). Describing Jco2 as
a diffusion process controlled by g, and gm' (8) facilitates
examination ofnutrient effects on photosynthesis. With decreasing
N content, gm' appears to be the main control ofJco2 in C3 plants
(11, 18). For sugar beet and clover, gm' is more responsive to
decreasing P or K than is g, (17, 18, 21).
Measurement of leaf anatomy allows division of gm' into a

geometrical component, Ame/A, and gc",. The cellular term
includes the diffusion pathway into the mesophyll cells, as well as
the initial biochemical step of CO2 fixation (14). Nutrient status
could affect Am'/A, since packing of mesophyll cells (6), the
amount of cell wall per unit leaf dry weight (19), specific leaf
weight (16, 25), and leaf thickness (2) have all been shown to vary
with N and/or P levels. Nutrient effects on g"11 are also probable,
since reductions in total soluble protein and total Chl are corre-
lated with low N levels (12). The objective of the present study
was to examine the specific effects of N, P, and K on Am'/A and
gceg for cotton.

MATERIALS AND METHODS

Seedlings of Gossypium hirsutum L. var. Acala SJ-2 were trans-
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3Abbreviations: Jco2: net CO2 exchange rate per unit leaf area; g,,:
water vapor conductance (primarily stomatal); g": CO2 mesophyll con-
ductance; Am"/A: surface area of mesophyll cells per unit leaf surface
area; g"11: cellular CO2 conductance expressed on a mesophyll surface
area basis.

ferred to hydroponic culture 12-14 days after germination. The
concentrations of N03, P042, and K+ were individually varied
from one sixty-fourth to four times their concentration in full
strength Hoagland No. 1 solution (with Hoagland minor solution
and 0.08 meq I1- Fe2+ sequestered with EDTA; ref. 7). Two
seedlings were grown per 8-liter container in growth chambers
using a 12-h day at 26 C with 375 ± 50,uE m 2 s-' PAR (provided
by cool-white fluorescent lamps supplemented 8% with incandes-
cent lights) and a 12-h night at 21 C.

Solution concentrations were expressed relative to Hoagland
solution No. 1, which contains 16 meq I` N03-, 2 meq 1'P ,

and 4 meq I` K+. For N03- variation, the solution was modified
by omitting KNO3, varying the concentration of Ca(NO3)2, adding
2.5 meq I` K+ as K2SO4, and adding CaCl2-2 H20 as needed to
give a minimum Ca2+ concentration of 5 meq I`. For P042-
variation, the KH2PO4 concentration was changed. For K+ vari-
ation, KH2PO4 was omitted, K2SO4 was varied, and 2 meq '-1
P042- as Ca(H2PO4)2 was added. The range in solution osmotic
potential from low to high N03, P042, and K+ averaged 0.17
MPa, which has little effect on morphology and photosynthetic
response of cotton (9).
Gas exchange and anatomical measurements were made on the

third or fourth leaf above the cotyledonary leaves. These were
mature leaves that had developed under a given nutrient treatment
for 21-28 days. Rates ofwater vapor loss and Jco2 were determined
at 2,000 ± 100,E m-2 s-1 PAR (light saturation) on attached
leaves of at least two plants from each nutrient using a null-point
closed-circuit flow system with circulating air containing approx-
imately 1% 02 (15). The low 02 minimized effects of respiration
and photorespiration. Leaf temperature was maintained at 30 ±
1 C, and the water vapor pressure difference between leaf and air
was 1.6 ± 0.2 kPa.
Gas exchange rates were analyzed using the appropriate con-

ductances (8, 14). The transpiration rate divided by the water
vapor concentration drop from leaf to air gave g,, (8). Jco2 was
plotted versus the CO2 concentration in the intercellular air spaces
next to the stomates, which was the CO2 concentration outside the
leaf minus 1.56 Jco,/g,v; the slope of the line connecting the CO2
compensation point and the Jco2 value at ambient CO2 concentra-
tion (340,ul -F) was designated gm' (9, 14). Individual Jco2 values
varied less than 10%1o from the reported means. To determine Am'/
A, fresh sections cut from the side of the leaf midvein were
infiltrated with distilled H20 and examined using a Zeiss micro-
scope with a camera lucida. Cell surface areas were calculated
assuming that palisade cells were cylindrical with hemispherical
ends and spongy cells were spheres (13). Using Ames/A and gcm',
gceo2was calculated:

cel = cel /(Ames/A)

Tissue N03- concentration was measured with a nitrate ion
electrode (Orion 92-07) on samples ground in 25 mm A12(SO4)3
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(5). Total P and K was measured using emission spectrography
(23). To express N03 , P, and K per unit mesophyll cell surface
area, the amounts per unit leaf surface area were divided by Ames/
A. Chl was measured on 80% acetone extracts (1), and soluble
protein using a Bio-Rad protein assay (4). Approximately 50 cm2
leaf tissue, measured with a Lambda LI-3000 leaf area meter, was
dried to constant weight at 60 C for determination of specific leaf
weight (mg dry weight/cm2 leaf area).

RESULTS

The hydroponic treatments produced a wide range of leaf
nutrient levels. Leaf NO3 -N ranged from 0.02 to 0.55% (dry
weight/dry weight) from the low to high NO3- treatment, leaf P
ranged from 0.05 to 1.34% for the P042- treatments, and K+
ranged from 0.16 to 2.97% for the K+ treatments. Total Chl was
reduced 50% in the low N03 and K+ treatments, but only about
8% in low P042- (Table I). Specific leaf weights for all leaves used
in Jco2 measurements averaged 4.4 mg cm-2, 10-20%o higher values
occurring at the lower nutrient levels. Soluble protein/cm2 leaf
area (assayed for the N03 treatment only) increased 300%o from
one sixty-fourth to one-fourth strength N03 and remained con-
stant at higher concentrations.

Nutrient treatment did not affect epidermal thickness (upper
surfaces averaged 15 ,um and lower surfaces, 16 ,um), and so
differences in leaf thickness mirrored differences in mesophyll
thickness. For the lowest nutrient concentrations the mesophyll
region was 8-12% thinner than the average value (Table 1).
However, Ames/A was relatively constant for all treatments (Fig.
1).
At the lowest nutrient concentrations, Jco2 was approximately

50%7o of the value found at one-fourth strength Hoagland solution
(Fig. 2A). Stomatal conductance (indicated by g,) changed little
with increasing concentration of each nutrient (Fig. 2B). The
increase in Jco2 with increasing nutrient levels reflected a greater
gmo", (Fig. 2C), which in turn was due to changes in g . In fact,
gce2 more than doubled from the low to one-fourth strength NO3-,
P042-, and K+ (Fig. 3). For each nutrient, gco2 rose rapidly at low
nutrient levels (expressed as amount per unit of mesophyll cell
surface) and then remained constant at about 0.15 mm s-' over a
large range (Fig. 4).
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FIG. 1. Am/A from leaves of cotton grown hydroponically under
various concentrations of NO3- (0), P042- (A), or K+ (O).
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FIG. 2. Jco2 and related conductances, g.,g ", for plants grown under
various concentrations of N03- (0), P042- (A), or K+ (E).

DISCUSSION

Reduction in the net rate of CO2 uptake occurred at low
concentrations of N03, P042, and K+ for cotton (Fig. 2). The
reduction was primarily due to a decrease in g", similar to
findings for nutrient effects on other species (1 1, 18, 20, 21). Cell
dimensions decreased slightly at the lowest nutrient levels, but in
such a way that Anes/A varied little (Fig. 1). Thus, nutrient effects

Table I. Total Chl and Leaf Thicknessfor Plants Grown at Various
Concentrations ofN03 , P042, or KF

SE ofmeans averaged 4% for Chl (n = 6) and 5% for mesophyll thickness
(n = 10 or 12).

Solution Concentration
(Hoagland units)

Y64 Y16 Y4 1 4

Total Chl (Ug cm-2)
NO3- 21 39 48 46 49
P042- 42 50 46 47 51
K+ 26 48 46 50 46

Mesophyll thickness (um)
NO3- 198 214 211 223 232
P042- 208 214 220 242 226
K+ 200 228 240 240 224
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FIG. 3. g"11 for plants grown under various concentrations of N03-
(0), P042- (A), or K+ (O).

on Jco2 reflected changes at the cellular level as represented by
gceil2 (Fig. 3), similar to previous results on Plectranthusparvflorus
(13). Such responses are in contrast to those for differences in
illumination during leaf development, which affects primarily
A`'/A (13, 14), and salinity, which can affect both Am"/A and

cell (

Changes in stomatal conductance (deduced by measuring g,4)
did not appreciably affect Jco2 at any nutrient concentration (Fig.
2). Although previous work with C3 plants indicated that varia-
tions in NOa- mainly influenced gm' (1 1, 18), appreciable changes
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FIG. 4. gco, at different nutrient levels per unit area of mesophyll cell
wall.

in gW, can occur. Terry and Ulrich (20, 21) showed that gw
declined under P042- and K+ stress, but this occurred after
declines in gm' had substantially lowered Jco2. Likewise, as K+
deficiency increased in Medicago sativa, gm' responded before g.,
(17). Therefore, changes in g,,, may be a secondary response to
nutrient stress.
Although Am`/A varied little (Fig. 1), low nutrient levels had

an effect on several leaf properties. Cotton leaves from plants
developing under nutrient stress were thinner than those devel-
oping under normal concentrations (Table I), unlike two Austra-
lian tree species, in which leaf thickness increased with N and P
stress (2). Similar to wheat (16), but contrary to rice (25), specific
leafweight of cotton was highest at the lowest N03 concentration
(as well as lowest P042- and K+ for cotton). As in previous reports
(11, 12), total Chl was reduced in low N03-, low K+, and to a

lesser extent low P042-; soluble protein was reduced in low N03-.
Our results suggest that some chemical component related to the
photochemistry or biochemistry of photosynthesis was leading to
the lower g'co"2 under low nutrient treatments.

Relating gc'u, which varied more with nutrient treatment than
the other factors controlling JCO2, to nutrient level per unit cell
surface area (Fig. 4) provides a direct assessment of the nutrient
level necessary for maximum gce. The lower the level necessary

to produce a maximum gCO2, the better potential there is for
adaptation of the plant to low nutrient values. This type of
comparison could be used to quantify adaptation to nutrient stress
of different species or to screen genotypes of crop species for use
in nutrient-poor soil.
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