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Abstract
Neural stem cell (NSC) proliferation and differentiation are required to replace neurons dam-

aged or lost after hypoxic-ischemic events and recover brain function. Periostin (POSTN), a

novel matricellular protein, plays pivotal roles in the survival, migration, and regeneration of

various cell types, but its function in NSCs of neonatal rodent brain is still unknown. The pur-

pose of this study was to investigate the role of POSTN in NSCs following hypoxia-ischemia

(HI). We found that POSTNmRNA levels significantly increased in differentiating NSCs.

The proliferation and differentiation of NSCs in the hippocampus is compromised in POSTN

knockout mice. Moreover, NSC proliferation and differentiation into neurons and astrocytes

significantly increased in cultured NSCs treated with recombinant POSTN. Consistently, in-

jection of POSTN into neonatal hypoxic-ischemic rat brains stimulated NSC proliferation

and differentiation in the subventricular and subgranular zones after 7 and 14 days of brain

injury. Lastly, POSTN treatment significantly improved the spatial learning deficits of rats

subjected to HI. These results suggest that POSTN significantly enhances NSC prolifera-

tion and differentiation after HI, and provides new insights into therapeutic strategies for the

treatment of hypoxic-ischemic encephalopathy.

Introduction
Hypoxic-ischemia (HI) encephalopathy in neonates is a problem of enormous public health im-
portance [1, 2]. Most of the survivors have neurodevelopmental sequela, including cerebral palsy
and cognitive/behavioural/attentional deficits, especially in developing countries [1, 2]. There
are few clinically successful strategies for neuroprotection once damage has occurred [3, 4].

Neurogenesis occurs in two regions of the adult rodent brain, the subventricular zone (SVZ)
and the subgranular zone (SGZ) of the hippocampus dentate gyrus [5]. The persistence of
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neurogenesis throughout the lifetime raises the possibility that resident neural stem cells
(NSCs) can mount a regenerative response to replace neurons that are lost upon brain injury.
NSCs give rise to the three main cerebral cell types, which are neurons, astrocytes, and oligo-
dendrocytes [6]. Previous studies have shown that endogenous neurogenesis increases in the
immature rat brain in response to hypoxic-ischemic insult [7–9], which may serve to rescue
neuronal loss and restore cognitive function after brain injury [10].

Periostin (POSTN; also PN or OSF-2) is a secreted extracellular matrix glycoprotein with a
role in cell adhesion [11, 12]. POSTN is transiently expressed in multiple tissues, including the
CNS, during early development. In the mouse CNS, POSTN expression spans from embryonic
day 12.5 (E12.5) to 19.5 (E19.5) [13], a period that coincides with a critical period for neuron
maturation and axon extension. Increased expression of POSTN after injury has been found in
several adult tissues, such as fractured-bone-infarcted myocardial tissue and tissue undergoing
cutaneous wound healing [14–16]. Delivery of recombinant POSTN has also been shown to
promote cardiomyocyte proliferation and to improve cardiac remodeling [17, 18]. These data
suggest an important role for POSTN in tissue repair and regeneration. Moreover, POSTN con-
tains four domains that share homology with the insect growth cone guidance protein fasciclin
I, suggesting a role for POSTN in neurite outgrowth [19]. Recently, POSTN has been shown to
be re-expressed in the CNS after stroke and to reduce infarct volume when administered via
intracerebroventricular injection [20]. From the above viewpoint, we hypothesize that POSTN
may play an important role in brain repair and function recovery after hypoxic-ischemic injury.

Therefore, the purpose of the present study was to test the influence of POSTN deficiency
on NSC proliferation and differentiation into neurons, and to examine the role(s) of POSTN in
cultured NSCs and in neonatal rat brain after hypoxic-ischemic injury. The results indicate
that POSTN is robustly expressed in differentiating NSCs, and stimulates NSC proliferation
and differentiation in vitro and in vivo. POSTN treatment also rescued the cognitive deficits as-
sociated with hypoxia-ischemia (HI). These findings reveal novel functions of POSTN in the
developing rodent brain, and offer a potential avenue for therapeutic intervention after HI-
induced brain injury.

Materials and Methods

Animal surgery and HI induction
This study was conducted in accordance with the National Institutes of Health Guide for the
Care and Use of Laboratory Animals. All protocols were approved by Clinical Pharmacology
Ethics Committee of Fudan University, Pediatrics Ethics Committee in Shanghai. POSTN+/-

mice were purchased from Jackson Laboratory (Stock No.009067; B6:129-POSTNtm1Jmol/J;
Heterozygous X Heterozygous). We interbred mice that were heterozygous carriers of this mu-
tation and obtained wild-type (POSTN+/+) and homozygous mutant (POSTN-/-) offspring with
the expected Mendelian distribution. DNA analyzed by PCR was used to identify POSTN het-
erozygous (POSTN+/-), homozygous mutant (POSTN-/-) and wild-type (POSTN+/+)mice. The
pups were nursed by their biological mothers until they were sacrificed. The pups were given
intraperitoneal injection with freshly prepared 5-bromodeoxyuridine (BrdU; Sigma, 50 mg/kg
body weight) once daily until the time of sacrifice [21].

HI was induced in neonatal Sprague-Dawley rats at postnatal day 7 (P7) as previously de-
scribed [22–24]. Briefly, male or female pups were anesthetized with isoflurane, and the left
common carotid artery was isolated and ligated with surgical silk. The surgical procedure was
completed within 5 min and the pups were allowed to recover for 2 h in a temperature-
controlled incubator. Animals were then placed in a container perfused with a humidified
gas mixture (8% oxygen-nitrogen) at 37°C for 2 h. Control animals were not subjected to the
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surgical procedure. The animals were randomly assigned to four groups, where control and
HI-subjected pups were injected with either PBS or POSTN following the recovery period
(Sham + PBS, Sham + POSTN, HI + PBS, and HI + POSTN). Specifically, 2 μl PBS or recombi-
nant human POSTN (100 μg/ml; Abcam, UK) was injected into the lateral ventricles as previ-
ously described [25]. The pups were nursed by their biological mothers until they were
sacrificed at 7 or 14 days after HI. To label proliferating cells, the pups were given intraperito-
neal injection with freshly prepared 5-bromodeoxyuridine (BrdU; 50 mg/kg body weight) once
daily after HI until the time of sacrifice [21].

Tissue preparation and immunofluorescence
Both wild-type (POSTN+/+) and homozygous mutant (POSTN-/-) mice were deeply anesthe-
tized on P7, 14, 21, and 28; and SD rat pups from control and experimental groups were deeply
anesthetized at 7 and 14 days after HI, and perfused with 4% paraformaldehyde in 0.1M PBS.
The brains were removed and immersion-fixed in the same solution at 4°C for 24 h, then dehy-
drated in a graded series of sucrose (20%, 30% in PBS) until they were saturated. Coronal sec-
tions were cut on a freezing microtome (Jung Histocut Model 820-II; Leica, Nussloch,
Germany) at a thickness of 30 μm from Bregma 1.60 to −4.80 mm, and stored at −20°C in cryo-
protectant solution. For combined immunodetection of BrdU and cell type-specific markers in
NSCs, sections were first incubated with anti-BrdU antibody (1:250; Santa Cruz, Sc-32323,
USA) for 2 h at 37°C, then overnight at 4°C. Sections were rinsed with PBS, then incubated
with anti-mouse IgG-Cy3 (1:500; Invitrogen, USA) for 45 min at 37°C, followed by an over-
night incubation with anti-nestin (1:100; Millipore, MAB353, USA), anti-NeuN (1:200; Milli-
pore, MAB377, USA), anti-MAP2 (1:200; MAB5622, Millipore, USA), or anti-GFAP (1:150;
AB5804, Millipore, USA) at 4°C. After rinsing in PBS, sections were incubated with anti-rabbit
IgG-FITC (1:500; Invitrogen) or anti-sheep IgG-FITC (1:500; Invitrogen) for 45 min at 37°C.
Sections were washed and mounted onto glass slides using fluorescence mounting medium
(Vector Laboratories, USA). Fluorescence was detected with excitation/emission wavelengths
of 570/576 nm (Rhodamine) and 490/525 nm (FITC) using a Zeiss 510 confocal laser scanning
microscope (Zeiss, Thornwood, USA).

Neural Stem Cell culture
NSCs were obtained from dissociated embryonic cortex dissected from C57BL/6 mice at E12.5
[26]. The tissue was triturated and filtered before centrifugation, and cell suspensions were
plated at a density of 2 × 106 cells/ml with DMEM/F12 medium containing 1% N2, 2% B27
(Gibco, Carlsbad, USA), EGF (20 ng/ml; R&D Systems), and bFGF (20 ng/ml; R&D Systems).
Differentiation was induced by replacing the culture medium with a DMEM/F12 medium con-
taining 1% fetal bovine serum (Gibco) in addition to 1% N2 and 2% B27, but lacking growth
factors. The cells were treated with BrdU at 3, 5, and 7 days after switching to differentiation
medium (growth factor withdrawal).

POSTNmRNA quantification by real-time PCR
500 ng of total RNA was extracted from the NSCs at 0 h, 48 h, and 5 days after differentiation
using TRIZOL. The RNA was reverse-transcribed using PrimeScript RT Master Mix (Takara
Bio Inc., Shiga, Japan) according to the manufacturer’s instructions. 1 μl of cDNA was used in
20 μl reactions that consisted of 1× SYBR Green Realtime PCRMaster Mix (Toyobo, Osaka,
Japan), 0.5 μM forward and reverse primers, and nuclease-free water. GAPDH expression lev-
els were determined in parallel as an internal control for all the samples. PCR reactions were
performed using Qiagen Rotor-Gene Q (Qiagen, USA). Primers for POSTN and GAPDH
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mRNA detection were designed with PrimerBank. The sequences were as follows: for POSTN,
5’-GGGAGCCACTACCACTCAG-3’ (forward) and 5’-GTACGTGTAT GACCCTTTTCCTT-
3’ (reverse); and for GAPDH, 5’-ACGGCCGCATCTTCTTGT GCAGTG-3’ (forward) and 5’-
GGCCTTGACTGTGCCGTTGAATTT-3’ (reverse). All reactions were performed in triplicate,
and relative quantification values were calculated using the ΔCt method (95% CI) with calibra-
tion to 0 h samples. All primer sets were subjected to a dissociation curve analysis and pro-
duced single peaks on a derivative plot of raw fluorescence.

Morris water maze test
Animals subjected to the HI surgical procedure described above were tested for cognitive per-
formance in the Morris water maze at P42–46 (n = 20 animals per group). The water maze
(Med Associates Inc., Georgia, USA) (diameter: 1.6 m; height: 0.5 m; distance from floor to
bottom of maze: 0.45 m) was filled with water (21 ± 1°C). The black platform (diameter: 0.12
m; height: 0.30 m) was submerged to 1 cm below the water surface. The memory tests were per-
formed as previously described [27]. For the navigation test, the animals underwent four trials
daily with different starting points for four consecutive days. Animals escaping the platform
were restricted within 120 s, and were allowed to rest on the platform for 15 s. After removal of
the platform on the fifth day, animals were subjected to a 60 s space probe trial. The escape la-
tency, swimming distance, number of platform crossings, and the percentage of time spent in
the target quadrant were recorded. Data were analyzed using a tracking program (DigBehv-
MWM; Shanghai Jiliang Software Technology Co. Ltd., Shanghai, China).

Statistical methods
Three consecutive sections were selected for the quantification of NSCs in immunostained
tissue. Double-labeled cells in the SVZ and SGZ were counted using Stereo Investigator 6.5 soft-
ware (MicroBrightfield Inc., Williston, USA) using the Optical Fractionator probe at 20× objec-
tive (n = 8–10 animals per group) [28]. For cultured NSCs, six images per treatment condition
from randomly selected regions of the coverslip were acquired using a 40× objective lens, and
double-labeled cells were counted manually. Data from three independent experiments were
pooled and expressed as mean ± SEM. Differences between groups were analyzed by ANOVA
followed by the Student-Newman-Keuls test. Statistical significance was set at P< 0.05.

Results

POSTN expression was increased when accompanied by NSC
differentiation
POSTN expression in mouse CNS spans from E12.5 to E19.5 [13]. To investigate the manner
of POSTN expression during NSC differentiation, NSCs isolated from E12.5 mice were cul-
tured in proliferation and differentiation media successively. The levels of POSTN gene expres-
sion at 0 h, 48 h and 5 days after differentiation were determined by quantitative real-time
PCR. POSTN mRNA levels were significantly increased at 48 h and 5 days following NSC
differentiation compared to proliferating NSCs (0 h) (Fig 1A). We also detected the POSTN
protein expression in mouse NSCs. Western blot analysis showed that POSTN was stably ex-
pressed in mouse NSCs (Fig 1B).

Defects in proliferation and Differentiation of NSCs in POSTN null mouse
POSTN+/- mice were purchased from Jackson Laboratory. The absence of protein expression
was comfirmed by western blot analysis on P7 developing brain extracts (Fig 1C). To examine
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Fig 1. Expression of POSTNmRNA in cultured NSCs and the effect of POSTN deficiency on NSC proliferation and differentiation in SGZ. A:
Compared to POSTN expression in proliferating NSCs (0 h), POSTN levels were increased at 48 h and 5 days following differentiation. B: POSTN is stably
expressed in mouse neural stem cells. C: The protein expression of POSTN was decreased in the brain of POSTN+/- mice (KO) compared to wild-type mice
(WT). D-E: The number of proliferating neurons was decreased at P7, 14, 21 and 28 in POSTN null mice. F-G: The number of proliferating NSCs was
decreased in POSTN null mice at P7, 14, 21 and 28. Cells were quantified per mm3 and data are shown as mean ± SEM. * P < 0.05; ** P < 0.01; n = 9
animals per group. Scale bar = 50μm.

doi:10.1371/journal.pone.0123585.g001
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the influence of POSTN deficiency on proliferation and differentiation of neural stem cells,
POSTN+/- mice were intercrossed to obtain homozygous POSTN-/- mice. BrdU and Nestin
double-immunostaining was used to label the proliferating NSCs. BrdU and NeuN double-
immunostaining was used to label new mature proliferating neurons. Compared to the
POSTN+/+ mice, both proliferating mature neurons (Fig 1D and 1E) and neural stem cells
(Fig 1F and 1G) in the dentate gyrus (DG) of the hippocampus were significantly decreased in
the POSTN-/- mice at P7, 14, 21 and 28.

POSTN promotes NSC proliferation and differentiation in vitro
To investigate the effects of POSTN on NSC proliferation and differentiation in vitro, NSCs
were cultured in the presence of 50 ng/mL POSTN. Proliferating NSCs were identified as cells
double-positive for BrdU and Nestin (BrdU+/Nestin+), while BrdU+/MAP2+ and BrdU+/
GFAP+ cells represented NSCs differentiating into neurons and astrocytes, respectively. NSCs
cultured in the presence of POSTN showed a prominent enhancement in proliferation (Fig 2A
and 2B). Proliferation rates were significantly increased at 5 and 7 days after NSC differentia-
tion compared to control NSCs (Fig 2C). Similarly, the numbers of neurons (Fig 2D–2F) and
astrocytes (Fig 2G–2I) were increased after POSTN treatment compared to controls, although
these increases were not statistically significant until 7 days after differentiation.

POSTN promotes NSC proliferation and differentiation in the SVZ and
SGZ in the neonatal brain after HI
Previous studies found that POSTN expression was increased in different tissues after injury
[14–16]. Also, POSTN exhibited neuroprotective function in a transient middle cerebral artery
occlusion model [20]. To examine the effects of POSTN on NSC proliferation and differentia-
tion in vivo, recombinant POSTN was injected into the lateral ventricles of neonates following
HI injury. Proliferating and differentiating NSCs were identified by combined immunodetec-
tion of BrdU and either Nestin, MAP2, or GFAP in the SVZ and SGZ. HI injury caused signifi-
cant increases in the proliferation and differentiation of NSCs (HI+PBS) compared to animals
that were not subjected to hypoxic-ischemic conditions (Sham+ PBS) (Fig 3 and 4). However,
the number of BrdU+/Nestin+ cells in the SVZ was markedly increased after POSTN treatment
(HI + POSTN) at 7 and 14 days (Fig 3A–3C). In contrast, treatment of POSTN in the absence
of HI injury (Sham +POSTN) had no effect on NSC proliferation. Similar increases in BrdU+/
MAP2+ (Fig 3D–3F) and BrdU+/GFAP+ (Fig 3G–3I) double-positive cells were observed after
POSTN treatment, reflecting an increase in differentiation of NSCs into neurons and astro-
cytes, respectively. Consistent observations were also made for NSCs in the SGZ (Fig 4). The
number of BrdU+/Nestin+ cells in the HI + POSTN group was significantly higher than those
in HI + PBS-treated animals (Fig 4A–4C), demonstrating that NSC proliferation was stimulat-
ed by POSTN. The numbers of differentiated neurons (BrdU+/MAP2+ cells; Fig 4D–4F) and
astrocytes (BrdU+/GFAP+ cells; Fig 4G–4I) were also higher in the HI + POSTN group at 7
and 14 days after HI compared to controls, consistent with a general effect of promoting differ-
entiation rather than of specifying a particular cell type.

Cognitive enhancement following POSTN treatment
To examine the effect of POSTN on cognitive function, which is impaired by hypoxic-ischemic
injury, animals were tested in the Morris water maze at P42–46. In the navigation trials, it was
observed that HI + PBS-treated control animals had greater escape latency (Fig 5A) and swim-
ming distance (Fig 5B) compared to animals that had not undergone HI surgery, indicating a
learning deficit resulting from HI. However, HI + POSTN-treated animals showed significant
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improvement in escape latency and swimming distance, which increased by 20% and 30%, re-
spectively (Fig 5A and 5B). Treatment of POSTN in control animals that were not subjected to
HI (Sham + POSTN) did not enhance performance over basal levels (Sham + PBS), indicating
that the effects of POSTN on cognitive function were specific to the conditions produced by
HI. In the probe trials, animals in the HI + PBS group spent less time in the target quadrant
(Fig 5C) and engaged in fewer platform crossings (Fig 5D) as compared to control animals.
Treatment of POSTN in HI animals restored the number of platform crossings and the time
spent in the target quadrant to values comparable to those of control animals.

Fig 2. Effects of POSTN on NSC proliferation and differentiation in vitro. A–C: The presence of POSTN (+POSTN) increases the number of proliferating
NSCs at 5 and 7 days after plating, as evidenced by an increase in BrdU+/Nestin+ double-positive cells. D–F: The fraction of NSCs undergoing differentiation
into neurons (BrdU+/MAP2+ cells) increases at 7 days after plating when POSTN is present. G–I: The fraction of NSCs undergoing differentiation into
astrocytes (BrdU+/GFAP+ cells) increased at 7 days after plating in the presence of POSTN. The ratio of double-positive cells to the total number of cells is
shown as mean ± SEM (* P < 0.05 from three independent experiments). Scale bar = 100 μm.

doi:10.1371/journal.pone.0123585.g002
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Discussion
Periostin is characterized as a matricellular protein with known functions in different physio-
logical and pathological conditions [29], especially in tissue remodeling as a response to insult/
injury. Our present study demonstrated that POSTN mRNA was stably expressed in NSCs,
and deficiency of POSTN depressed the proliferation and differentiation of NSCs. The prolifer-
ation and differentiation of cultured NSCs were stimulated after POSTN treatment. POSTN
promoted the neurogenesis and function recovery in HI brain injury. Taken together, these

Fig 3. Effects of POSTN on NSC proliferation and differentiation in the rat SVZ following HI. Hypoxic-ischemic injury (HI + PBS) stimulates NSC
proliferation (A–C; BrdU+/Nestin+ cells) and differentiation into neurons (D–F; BrdU+/MAP2+ cells) and astrocytes (G–I; BrdU+/GFAP+ cells) at 7 and 14 days,
but the effect is potentiated when POSTN is present (HI + POSTN). Cells were quantified per mm3 and data are shown as mean ± SEM. * or # P < 0.05; ** or
## P < 0.01; n = 8 animals per group. Scale bar = 100 μm.

doi:10.1371/journal.pone.0123585.g003
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findings indicate that POSTN plays an important role in brain development and brain
injury remodeling.

Emerging evidences have shown that during embryogenesis and in the neonate, expressions
of POSTN isoforms show a specific temporal and spatial pattern, which suggests different func-
tions in tissue development and remodeling [29]. Zhu et al. found that the effect of POSTN on
bone formation and remodeling is through an increase in osteoblast proliferation, differentia-
tion, adhesion, and survival [30]. Furthermore, POSTN has been shown to be expressed at
basal levels in healthy human skin but localized to the extracellular compartment during
tissue remodeling involved in wound repair [31]. POSTN plays a key role in cardiovascular

Fig 4. Effects of POSTN on NSC proliferation and differentiation in the SGZ following HI. Hypoxic-ischemic injury (HI + PBS) stimulates NSC
proliferation (A–C; BrdU+/Nestin+ cells) and differentiation into neurons (D–F; BrdU+/MAP2+ cells) and astrocytes (G–I; BrdU+/GFAP+ cells) at 7 and 14 days,
but the effect is potentiated when POSTN is present (HI + POSTN). Cells were quantified per mm3 and data are shown as mean ± SEM. * or # P < 0.05; ** or
## P < 0.01; n = 8 animals per group. Scale bar = 100 μm.

doi:10.1371/journal.pone.0123585.g004
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development, however, the expression of POSTN can be rapidly increased in response to injury
[32–35]. The previous studies have shown that POSTN has an effect on promoting non-neuro-
nal cell genesis in development and pathology [30, 36, 37]. However, our present study sug-
gested that POSTN also expresses in NSCs and plays important roles in brain development
and remodeling.

POSTN also has a neuroprotective role in vitro and in vivo during cerebral ischemia [38].
Shimamura et al. reported that POSTN expressed in various cells, such as reactive astrocytes/
microglia, fibroblasts, and neuronal progenitor cells, and might be associated with pathophysi-
ology in post-ischemic inflammation and neurogenesis [39]. However, there are no reports
that suggest a role of POSTN in the neonatal hypoxic-ischemic rodent brains, especially a po-
tential role in stimulating proliferation of NSCs and promoting neurogenesis following injury.

Fig 5. Effect of POSTN on promoting cognitive deficits after HI. Perinatal POSTN injection (HI + POSTN) rescues cognitive deficits caused by HI (HI
+ PBS) at P42–46, as assessed by escape latency (A), swimming distance (B), percentage of time spent in the target quadrant (C), and number of platform
site crossovers (D) in the Morris water maze test. Data are shown as mean ± SEM. * or # P < 0.05; ** P < 0.01; n = 20 animals per group.

doi:10.1371/journal.pone.0123585.g005
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In the present study, it was observed that POSTNmRNA levels were increased upon NSC
differentiation. These data suggest that even under non-pathological conditions, endogenous
POSTN is associated with NSC differentiation. Indeed, POSTN treatment significantly en-
hanced NSC differentiation into neurons and astrocytes in vitro (Fig 2). Consistent with results
from previous studies [40, 41], following hypoxic-ischemic injury, POSTN treatment in neona-
tal rat brains also enhanced the proliferation and differentiation of NSCs in two neurogenic
regions, the SVZ (Fig 3) and the SGZ (Fig 4). HI in itself increases NSC self-renewal, differenti-
ation and maturation [42]. However, endogenous neurogenesis following HI injury is ineffec-
tive on repairing damage; studies have shown that the capacity for neuronal replacement in the
adult brain is very low, with only an estimated 0.2% to 10% of lost neurons being replaced [43,
44]. The results described herein suggest that POSTN has an effect on stimulating neuron pro-
duction following HI beyond basal levels.

Factors that promote NSC proliferation and differentiation may be useful as potential thera-
peutic tools for treating brain injury [45, 46]. In the present study, POSTN significantly en-
hanced NSC proliferation and differentiation when applied exogenously; moreover, Morris
water maze test showed that POSTN-treated animals had a significant improvement in spatial
learning and memory, which were impaired by HI, compared to untreated control animals.
These results indicate that POSTN may reverse cognitive deficits resulting from HI injury by
stimulating NSC self-renewal and neuronal and glial cell differentiation.

Periostin is thought to play a critical role in cell apoptosis. Recent study has found that peri-
ostin silencing significantly increased the number of apoptotic colon cancer cells through
supressing the PI3K/Akt/survivin pathway [47]. Aukkarasongsup et al. [48] also demonstrated
that the percentage of apoptotic periodontal ligament cells was markedly decreased under hyp-
oxia after treatment with recombinant human POSTN via TGF-β signaling. However, other
study has shown that POSTN deficiency decreased the hypoxia-stimulated proliferation, but
had no effect on cell apoptosis [49]. In our study, we tested the anti-apoptosis effect of POSTN
on neurons and found that POSTN protected neurons from apoptosis under hypoxia condi-
tions (data not shown). The anti-apoptosis effect of POSTN on NSCs under hypoxia and the
related molecular mechanism need the further study.

Conclusions
In summary, POSTN treatment significantly enhanced NSC proliferation and stimulated the
production of neurons and astrocytes both in vitro and in vivo. Furthermore, POSTN im-
proved cognitive functions that were compromised by HI-induced brain injury. Additional
studies need to be undertaken in order to examine the mechanisms underlying POSTN-
induced stimulation of neurogenesis for these findings to be useful in the development of
clinical approaches for the treatment of perinatal HI, and improving the prognosis of HI en-
cephalopathy and other types of brain injury.
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