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Abstract

A joint analysis of FEV1 (Forced Expiratory Volume after one second) and height is reported 

using novel methodology, as well as a single-trait analysis of smoking status. A first goal of the 

study was to incorporate dense genetic marker information in a random regression (Bayesian) 

model to quantify the relative contributions of genomic and environmental factors to the 

relationship between FEV1 and height. Smoking status was analysed using a probit random 

regression model and a second goal of the study was to estimate the genomic heritability of 

smoking status. Estimates of genomic heritabilities for height and FEV1 are equal to 0.47 and to 

0.30, respectively. The estimates of the genomic and environmental correlations between height 

and FEV1 are 0.78 and 0.34, respectively. The posterior mean of the genomic heritability of 

smoking status is equal to 0.14 and provides evidence for the presence of genetic factors 

associated with the trait. Under the data augmentation strategy introduced, the joint posterior 

distribution of FEV1 and height factorises into two independent posterior distributions. This 

simplifies programming and results in excellent numerical behaviour. The approach can be readily 

extended for the joint analysis of an arbitrary number of traits. Details are shown in an Appendix.

Introduction

Lung function is a predictor of health, and a low lung function is a strong risk factor for 

mortality (Lange et al., 1990; Chinn et al., 2007; MacNee et al., 2008). Forced expiratory 

volume after one second (FEV1 hereinafter) is the most widely used and quoted lung 

function test in clinical practice as well as in patient based research and epidemiological 

studies (Kerstjens et al., 1997).

It is well established that FEV1 is phenotypically related to height (or alternatively, to body 

mass index), sex and smoking status. The purpose of this work is to have a closer look at 

these phenotypic relationships, and to incorporate dense genetic marker information to 

quantify the relative contributions of genomic and of environmental factors. More 

specifically, we present a joint (two-trait) Bayesian analysis of height and FEV1, conditional 

on smoking status, modelled as two Gaussian traits. The joint analysis informs about the 

degree of genomic and environmental associations between FEV1 and height and provides 

an estimate of the proportion of the variance of each trait captured by genetic marker 

information (genomic heritability). We also carry out a whole-genome Bayesian single-trait 
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analysis of smoking status, recorded as a binary variable and invoking a liability threshold 

model (Wright, 1934). The use of whole-genome information allows the investigation of 

possible genetic factors associated with smoking status and retrieves an estimate of the 

genomic heritability on the scale of liability.

In a classical genome wide associations study (GWAS) the focus is to detect significant SNP 

effects using extremely low p-values derived from single-marker regressions. Testing SNPs 

for association one at a time can be a sensible option when traits show simple Mendelian 

inheritance with one or few loci involved. However, there is increasing evidence that a 

number of important traits and diseases are affected by a very large number of genes 

(McClellan and King, 2010), as well as environmental factors. In this situation, a better false 

positive and false negative performance is achieved analysing all SNPs jointly (Hoggart et 

al., 2008) using whole genome random regression (WGRR) models, as in Yang et al. (2010) 

and de los Campos et al. (2013). For a recent review of different linear models and their 

implementation in the context of WGGR see de los Campos et al. (2013).

These methods, largely developed in the field of animal breeding (e.g. Meuwissen et al., 

2001), were proposed as a way of confronting the so-called missing heritability problem and 

have been used for estimation of the proportion of variance accounted for by regression on 

common SNPs (Yang et al., 2010; Lee et al., 2011), for prediction of genetic values of 

complex traits (Meuwissen et al., 2001) and for prediction of genetic risk to diseases (Wray 

et al., 2007; Daetwyler et al., 2008). The WGRR models have been implemented using 

either single trait or two-trait restricted maximum likelihood (as in Yang et al., 2010, and 

Lee et al., 2012) or using Bayesian, Markov chain Monte Carlo methods (McMC), for 

example, as in Meuwissen et al. (2001), and more recently, Janss et al. (2012) and Zou et al. 

(2013)) who include methods for the analysis of binary traits.

In the present work, the fitting of the highly parameterised genomic models for the joint 

analysis of FEV1 and height is made possible using a novel strategy that greatly alleviates 

the computational complexity and improves the numerical behaviour of the algorithm. Using 

this strategy the joint posterior distribution of the two-traits factorises into two independent 

posterior distributions. The extension to an arbitrary number of traits is straightforward. In 

the case of the binary analysis, the McMC algorithm updates the genomic variance and the 

genomic values in one step.

The article is organised as follows. The heading Material and Methods includes subsections 

with descriptions of the data, of the models for the single trait analysis of FEV1, conditional 

on SMOKING status and HEIGHT, and of the model for the joint analysis of FEV1 and 

HEIGHT. There is also a section that explains methods used for comparing versions of the 

models with and without marker covariates, and for studying how inferences are affected by 

prior assumptions and by putative population substructure. Details of the McMC 

implementation are also briefly mentioned. The section Results reports on the single trait 

analysis of FEV1, on the joint analysis of HEIGHT and FEV1 and on the single-trait 

analysis of SMOKING status. In the last section of the article we discuss some of the 

implications of our findings. Important technical details are relegated to appendices. In 

Appendix 1 we present the singular value decomposition which plays a central part of the 
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Bayesian implementation. Appendix 2 describes the data augmentation strategy for the two-

trait analysis of FEV1 and HEIGHT, and details of the prior and posterior distributions. 

Appendix 3 provides a detailed description of the model for SMOKING status, including the 

prior and posterior distributions, and details of the McMC algorithm. Appendix 4 presents 

the form of the induced prior distribution of the genomic heritability of FEV1, given the 

assumed prior distributions of the environmental and genomic variances, based on results in 

Sorensen and Gianola (2002). Finally Appendix 5 indicates the form of the induced prior 

distribution of the genomic heritability for SMOKING status, given the prior distribution of 

the genomic variance. The results in Appendices 4 and 5 are used to study the influence of 

prior assumptions, on posterior inferences of genomic heritability.

Material and Methods

The data

The British 1958-cohort data consist of longitudinal records from individuals born during a 

single week in 1958 in England, Scotland and Wales. A detailed description and sources of 

access to the data can be found in Power and Elliott (2006). The present study uses a subset 

of the original data consisting of records from approximately 3, 000 individuals that have 

been genotyped for 1 million SNPs using the 1M Affymetrix chip. After standard editing, 

the final number of markers amounted to 696, 823. From the 3, 000 individuals, records on 

FEV1, HEIGHT and SMOKING STATUS were also extracted, together with information 

on social status and sex which were included as environmental covariates. The latter were 

chosen on the basis of their effect on the dependent variables determined from preliminary 

analyses. SMOKING STATUS is registered as a binary trait: Never smoked/currently a 

smoker or have smoked. After editing the data to ensure that FEV1 measurements complied 

with the guidelines from the task force on Standardisation of Lung Function Testing (Miller 

et al., 2005), 2, 260 individuals remained for analysis. The size of the data set places a limit 

to the strength of our inferences. However the statistical methods implemented in this study 

are free from asymptotic assumptions and large sample approximations and provide a 

complete and fair picture of the degree of posterior uncertainty (conditional on the model 

posed).

Phenotype and genotype data from the British 1958 Birth Cohort are freely available to 

research scientists worldwide on application to the Access Committee for CLS cohorts. 

Information on the application procedure can be found on the website: http://www2.le.ac.uk/

projects/birthcohort. The software to fit the models will be freely available from the authors 

and we are currently working on making it suitable for distribution.

The single trait model for FEV1, conditional on HEIGHT and SMOKING status

Before embarking on the two-trait analysis of FEV1 and HEIGHT we fitted a single trait 

model to FEV1, conditional on SMOKING STATUS and on HEIGHT. The objective is to 

confirm and illustrate, in the case of our data, how FEV1 is affected by a number of factors, 

including HEIGHT and SMOKING STATUS (these are treated as covariates in the single 

trait analyses).
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Two single trait models are fitted. The first one is a standard fixed effects model with an 

overall mean, an effect of sex and linear regressions of FEV1 on HEIGHT and on 

SMOKING status. The prior distributions of the parameters associated with the mean, sex 

effects and linear regression coefficients are assumed to be normal, with zero mean and 

variance equal to 105. The second single trait analysis was based on a mixed effects model 

with the same covariates as the former and additionally, genomic values 

, as defined in (7) and (8). Variance components are assumed to have 

scaled inverse chi square a priori distributions with degrees of freedom equal to 4.5. The 

scale parameter of the residual variance was set equal to 0.32 and in order to investigate the 

sensitivity of the results to prior assumptions, three models with three different scale 

parameters of the genomic variance were investigated. This results in different induced prior 

distributions of the genomic heritability of FEV1, conditional on HEIGHT and SMOKING 

status, with respective modal values equal to 0.01, 0.06 and 0.13. Technical details can be 

found in Appendix 4.

The two-trait model for FEV1 and HEIGHT and the model for SMOKING status

The joint analysis of FEV1 and HEIGHT conditional on dispersion parameters, is based on 

assigning normal structures to both traits. The linear models for FEV1 (f) and HEIGHT (h) 

are

(1a)

(1b)

where yi, ei and μi, i = f, h are column vectors of length n, equal to the number of 

individuals, and Xi are observed incidence matrices. The n×m matrix W contains elements 

which are labels for the m observed marker genotypes (defined below). The vector of 

systematic effects μi contains the effect of sex and social status, and also smoking status as 

covariate in the case of FEV1. The choice of these covariates was based on preliminary 

analyses.

The m × 1 column vectors of unobserved marker effects (bf, bh) are assumed to be 

realisations from

(2)

where  are variances of marker effects, σbfbh are covariances of marker effects and I is the 

m × m identity matrix. The vectors W b in (1) represent genomic values, which are proxies 

for the unobserved (true) genetic values.

The residual terms (ef, eh) are assumed to be realisations from
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(3)

where  are residual variances and σef eh are residual covariances. The residual terms 

capture departures of the genomic values from the true genetic values (for example, due to 

unaccounted interactions or imperfect linkage disequilibrium between markers and 

genotypes at causal loci), and unspecified environmental effects. The I matrices in (3) are of 

dimension n×n. The linear structures (1), together with (2) and (3), give rise to the joint 

model for (yf, yh), conditional on (μf, μh) and on dispersion parameters, equal to

(4)

The model is implemented using a strategy described in Appendix 2, which also includes 

details of prior assumptions.

SMOKING STATUS is analysed as a single binary trait (yi = 1 if individual i is a smoker or 

has smoked; yi = 0 if never smoked) with a liability threshold model, used by Wright (1934) 

in studies of the number of digits in guinea pigs, and by Bliss (1935) in toxicology 

experiments. In the threshold model, it is postulated that there exists a latent or underlying 

unobserved variable (liability) which has a continuous distribution. The unobserved liability 

is described by the linear model

(5)

where μs contains the effect of social status only (in these data data, the proportion of 

smokers is the same (0.56) in both sexes), and bs is an m × 1 vector of marker effects 

affecting the liability of smoking status. This vector of marker effects is assumed to have the 

normal distribution

where  is the variance of the marker effect, the same for all markers. The vector of 

residual terms in (5) is assumed to have the normal distribution

The standard parameterisation in the case of binary responses is to assume that the observed 

response yi = 1 if the liability exceeds the threshold (set equal to zero), and if it is smaller 

than the threshold, the observed value is yi = 0. Then for the ith individual,
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where  and  are the ith row of matrices Xs and W, and  is the value of the liability for 

individual i. The parameters of the model for smoking status are  including 

the residual variance component of the liability that is set arbitrarily equal to 1. Further 

details of the model and its McMC implementation can be found in Appendix 3.

The genomic heritability and genomic correlation

The elements of the n × m matrix W = {Wij} are normalised marker labels

(6)

where Xij can take values 0, 1 or 2 according to the number of copies of the allele coded as 1 

of SNP j in individual i, with frequency estimated with . All the models are parameterised 

using n × 1 vector of genomic values g, defined as

(7)

The conditional variance of g given W is

(8)

The term  is the n×n matrix of average (over SNPs) realised genomic relationships 

among the n individuals (genomic relationship matrix) and  is the genomic variance 

(Hayes et al., 2009). With standardised marker labels, a genomic heritability or proportion of 

variance accounted for by the SNPs can be defined as

(9)

Likewise, a genomic covariance between trait f and h is

and the genomic correlation is
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(10)

When the markers are the causal loci (the case of perfect linkage disequilibrium between 

markers and causal loci) then , the heritability of the trait, and the genomic 

correlation is equal to the genetic correlation between traits. In general the markers are in 

imperfect linkage disequilibrium with the causal loci and therefore  and the absolute value 

of rG represent lower bounds for the heritability of the trait and for the absolute value of the 

genetic correlation between traits (Yang et al., 2010).

Model comparison and influence of prior assumptions

The quality of fit of versions of the various models including and excluding marker 

information was studied using the pseudo log-marginal probability of the data. This is a 

standard measure of model comparison (Gelfand, 1996) and is defined and computed as 

follows. Consider data vector , where yi is the ith datum, and y−i is the vector 

of data with the ith datum deleted. In the case of the bivariate analysis of HEIGHT and 

FEV1, yi has two elements, one for each trait, and y−i is the vector of data corresponding to 

both traits, with yi deleted. The conditional predictive distribution has probability density

(11)

where θ is the vector of parameters of the model. This density can be interpreted as the 

probability of each data point given the remainder of the data; a low value indicates that the 

datum is poorly fit by the model. The actual value of p (yi|y−i) is known as the conditional 

predictive ordinate (CPO) for the ith observation. Thepseudo log-marginal probability of 

the data or pseudo marginal likelihood is given by

(12)

The collection of conditional predictive densities is equivalent to the marginal probability of 

the data, when the latter exists (Besag, 1974). The associated pseudo Bayes factor for 

comparing two models M1 and M2 (Gelfand et al., 1992; Gelfand, 1996) is

(13)

A Monte Carlo approximation of the CPO (11) for observation i is given by (Gelfand, 1996)

(14)
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where N is the number of McMC draws, Mk is a label for model k, and θ(j) is the jth draw 

from the posterior of θ under model Mk. The so-called LogCPO’s reported below are based 

on

Larger values indicate a relative better fit.

We also performed a limited study to investigate the influence of some of the prior 

assumptions on inferences of genomic heritability. Technical details are shown in 

Appendices 4 and 5.

Model implementation

The implementation of the Bayesian models uses Markov chain Monte Carlo (McMC). A 

description of the salient features of the McMC algorithm can be found in Appendix 2. One 

of these is a data augmentation strategy which in the case of the bivariate analyses renders 

the likelihoods of the two traits conditionally independent, given a vector of augmented 

parameters. This simplifies computation and can be generalised in an obvious manner to an 

arbitrary number of traits. A second important detail concerning the threshold model is the 

joint updating of the genomic variance and of the complete vector of genomic values, which 

leads to excellent mixing behaviour of the McMC chain. In both the bivariate Gaussian 

model and the threshold model, a singular value decomposition of the genomic relationship 

matrix  allows joint updating of the complete vector of genomic values (Janss et al., 

2012). Details of this decomposition are in Appendix 1.

The McMC algorithm was implemented using single long chains. Convergence was studied 

by running the algorithm using different starting values and by visual inspection of 

traceplots of Monte Carlo draws of posterior distributions of chosen parameters. A little 

experimentation indicated that a chain length of 110, 000 resulted in Monte Carlo 

coefficients of variation of genomic heritabilities and genomic correlations smaller than 3%. 

The single trait analyses of FEV1 and of SMOKING status took approximately 2 hours to 

execute. The two-trait analysis took a little more than 3 hours.

Quantifying the effect of population structure on inferences of genomic heritabilities

The effect of putative population substructure on inferences of genomic heritability was 

investigated using the approach described in Janss et al. (2012). Janss et al. (2012) show that 

the mixed model with marker effects as implemented in this work is equivalent to a random 

regression on all marker-derived principal components. The influence of a particular 

eigenvector on inferences depends on the magnitude of the regression coefficient of the 

phenotype on the eigenvector. This is governed by the size of the eigenvalue of the 

associated eigenvector. Eigenvalues of small size lead to small regression coefficients and 

the effect of the associated eigenvectors on inferences is minimal.
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When individuals cluster due to population substructure, the within cluster genomic 

heritability is

(15)

where αj is the regression coefficient of the phenotype on the jth eigenvector and n is the 

number of individuals (phenotypes). When the eigenvectors are sorted according to the 

decreasing size of their eigenvalues, expression (15) is the genomic heritability remaining 

after the largest d eigenvectors have been excluded. Below we provide estimates of genomic 

heritability for HEIGHT, FEV1 and SMOKING STATUS after removing the d = 20 largest 

eigenvectors.

Results

Raw means (standard deviations in brackets) for FEV1 are 3.79 l (0.68 l) in males and 2.80 l 

(0.66 l) in females; for height 175.9 cm (6.8 cm) in males and 162.5 cm (6.2 cm) in females 

and the proportion of smokers in the data (currently a smoker or have smoked) is 56% in 

both sexes.

Single-trait analysis of FEV1

The results of the single trait analyses are displayed in Table 1 in the form of estimated 

posterior means and posterior standard deviations. The estimates of sex effects, and the 

regressions on height and on smoking status are virtually identical in both models. The range 

in height is more than 40 cm in both sexes. The estimate of the regression of FEV1 on height 

is 0.043, implying that height can explain differences in FEV1 ranging approximately 1.7 l 

(i.e. 0.043 l/cm × 40 cm = 1.72 l). An alternative interpretation is that height accounts for 

approximately 30% of the total variation in FEV1 (i.e. 0.0432 × 6.32/0.25 ≈ 0.542 ≈ 0.30, 

where 0.54 is the (phenotypic) correlation between FEV1 and height, and 6.32 and 0.25 are 

the (phenotypic) variances of height and FEV1, respectively).

It is interesting to observe that differences in FEV1 between males and females are not only 

explained by size, since there is an important sex effect (−0.404 l) after correcting for height.

The effect of smoking is not strikingly large, but this may reflect the way it is measured in 

the present study, where ex- and current smokers belong together in the same category.

The mixed effect model extracts a genomic component of variance from the residual 

variance of the fixed effects model, that comprises a little less than 13% of the total variance 

of FEV1 (corrected for effects of sex, height and smoking status). This figure, based on a 

posterior mean, can be interpreted as an estimate of the (conditional) genomic heritability of 

FEV1 (holding height and smoking status constant). Further analyses reported below 

indicate that statistical support for genomic variability of FEV1 in these data, after 

correction for HEIGHT and SMOKING status, is rather weak.
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A fixed effects model with an overall mean, an effect of sex and linear regressions of FEV1 

on height and height-squared and on smoking status was also fitted. The estimate of the 

residual variance was again 0.252 (see the second column of Table 1) and the estimate of the 

regression coefficient of FEV1 on height-squared was 1.27 × 10−4l/cm2. The remaining 

estimates were indistinguishable with those in the second column of Table 1, and the 

adjusted coefficient of determination R2 of the model with height as covariate and that with 

height-squared as covariate were both 0.566.

Model fit and influence of the prior distribution

The LogCPO for the model that includes marker information (genomic model) is −1, 

653.14; for the model without marker information, the figure is −1, 654, 11. This 

corresponds to a ratio of the pseudo Bayes factor (13) equal to 2.64 in favour of the genomic 

model. This constitutes weak evidence for a genetic component a ecting FEV1, after 

adjusting for SMOKING status and HEIGHT. This conclusion is further supported by 

studying the effects of prior information on posterior inferences. Table 2 displays the 

consequences of using different values of the scale parameter of the prior distribution of the 

genomic variance, on both, the induced prior distribution of the genomic heritability and on 

its posterior distribution. Derivation of the induced prior density of the genomic heritability 

can be found in Appendix 4. Values of the scale parameter associated with the genomic 

variance equal to 0.01, 0.04 and 0.10 translate into modal values of the induced prior 

distribution of the genomic heritability equal to 0.01, 0.06 and 0.13, respectively. The 

changes at the level of the prior distribution of genomic heritability, by factors 6 and 2, 

respectively (from 0.01 to 0.06 and to 0.13), translate into changes at the level of posterior 

modes by factors 4 and 1.6, respectively (0.03 to 0.11 and to 0.18). The table also provides 

figures for the prior and posterior mean and the 95% highest posterior density intervals. The 

results show that prior information is very influential on posterior inferences and confirm the 

weakness of the genomic signal associated with FEV1, after it has been adjusted for 

HEIGHT and SMOKING. The bivariate analysis reported below casts further light on the 

nature of the relationship between FEV1 and HEIGHT.

FEV1, conditional on HEIGHT and SMOKING status, was also analysed using restricted 

maximum likelihood (REML) using the software developed by Madsen and Jensen (2011). 

The REML estimate of genomic heritability was 0.07 with an asymptotic standard error 

equal to 0.13. This measure of uncertainty of the REML estimate includes values outside the 

allowed parameter space.

Joint analysis of FEV1 and height and single trait analysis of smoking status

The results of the joint analysis of FEV1 and height are displayed in Table 3. The marginal 

genomic heritabilities of FEV1 and of height (based on estimated posterior means) are 30% 

and 47%, respectively, indicating that an important proportion of the total variance for these 

traits is explained by genetic marker information. The estimated posterior mean of the 

genomic heritability for height is very similar to estimates reported in other studies (Yang et 

al., 2010; Janss et al., 2012). The genomic correlation between these traits is positive, as 

expected, and large (estimated posterior mean equal to 0.73; estimated posterior mode equal 

to 0.78), almost three times larger than the environmental correlation. The environmental 
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correlation is moderate, and 99% of the probability mass includes positive values of the 

environmental correlation. This indicates that environmental factors that affect one trait in 

one direction have also a partial effect on the other trait in the same direction. Histograms of 

Monte Carlo estimates of the genomic heritability for FEV1 and height, and of the genomic 

and environmental correlations are displayed in Figure 1, that provides a complete picture of 

the degree of posterior uncertainty.

The single trait analysis indicated that the phenotypic correlation between FEV1 and height 

is approximately 0.5 (0.043 × 6.3/0.55, where 6.3 and 0.55 are the standard deviations of 

height and FEV1, respectively). This is confirmed by the joint analysis which additionally, 

provides insight into the nature of this correlation. Another observation from the joint 

analysis is that the phenotypic regression of FEV1 on height, equal to 0.043 l/cm, can be 

partitioned into a genomic component, 0.024 l/cm, and a residual component, 0.019 l/cm 

(these are obtained from knowledge of the genomic covariance, equal to 1.019, and the 

residual covariance, equal to 0.806, and dividing each by the phenotypic variance of height, 

equal to 42.3).

The results of the joint analysis can be used to draw conditional inferences. A little 

manipulation of the output indicates that the conditional genomic heritability of FEV1 

(holding height constant) is of the order of 13% (using the posterior mode of 0.78 as point 

estimate of the genomic correlation), in good agreement with the output from the single trait 

mixed model. Taken at face value, this indicates that a large proportion of the genomic 

variability in FEV1 is explained by genomic variability in height.

To investigate whether smoking status accounts for part of the genomic variation for FEV1, 

the joint analysis was repeated fitting a model without smoking status as covariate. The 

estimate of genomic variance of FEV1 did not differ from that obtained fitting the full 

model. This provides indirect evidence for lack of genomic covariability between FEV1 and 

smoking status.

The bivariate analysis was also carried out using REML. The estimates of genomic 

heritability of FEV1 and HEIGHT (asymptotic standard errors in brackets) were 0.25 (0.11) 

and 0.41 (0.12), respectively. The REML estimate of the genetic and environmental 

correlations were 0.84 (0.15) and 0.29 (0.12), respectively. The overall picture provided by 

the REML analysis is similar to that from the Bayesian analysis. However, particularly in 

small samples, inferences based on a joint maximiser of a 6-dimensional hypersurface (2 

genomic variances, 2 environmental variances and 2 covariances), as provided by the REML 

estimates, are expected to differ from those based on marginal distributions, as provided by 

the Bayesian approach.

The single trait analysis of smoking status retrieves an estimated posterior mean of genomic 

heritability equal to 0.14 and a posterior mode of 0.13. A histogram of the Monte Carlo 

estimate of the genomic heritability is shown in Figure 2. Notice that the posterior 

distribution is a little asymmetrical but reasonably sharp, notwithstanding the rather coarse 

measure of smoking in the present data.
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There have been early studies documenting the presence of genetic variation on smoking 

consumption (Swan et al., 1990) and on smoking initiation and nicotine dependence (Vink et 

al., 2005). Both studies used twins. More recently, a variant associated with nicotine 

dependence was detected in a genome-wide association study (Thorgeirsson et al., 2008). 

However, a quantification of variation explained by genetic factors using whole genome 

marker regression models, as far as we know, has not been previously reported.

In general, the results from these analyses must be interpreted with the necessary caution in 

view of the limited amount of data.

Model fit and influence of the prior distribution

The LogCPO’s for the joint analysis of HEIGHT and FEV1 were computed for two versions 

of the model. In the first one, marker information was not included and the correlation 

between traits was only of environmental origin. The second version included marker 

information as reported in Table 3, and the correlation structure between the traits has a 

genomic and an environmental component. The LogCPO’s for these two models were −8, 

357.99 and −7861.21, respectively, indicating a substantially larger quality of fit in favour of 

the model with genetic marker information. This result is in marked contrast with that 

presented in the univariate analysis of FEV1, conditional on SMOKING STATUS and 

HEIGHT. Clearly, genetic factors are important when FEV1 and HEIGHT are analysed 

jointly. However in the case of FEV1, a large proportion of the genomic variance is 

explained by HEIGHT. Therefore when marker information is added in the analysis of 

FEV1, corrected for HEIGHT and SMOKING STATUS, only a modest improvement of fit 

is observed.

The LogCPO’s for the analysis of SMOKING status with and without marker information 

were −1530.51 and −1, 532.51, respectively. This corresponds to a ratio of the pseudo Bayes 

factor (13) equal to 7.4 in favour of the genomic model.

The effect of varying the scale parameter of the scaled inverse chi square prior distribution 

of the genomic variance, on both, the modal value of the induced prior distribution of the 

genomic heritability, and on posterior inferences of heritability for SMOKING STATUS, is 

summarised in Table 4. Details of the derivation of the induced prior distribution of genomic 

heritability, based on the prior distribution of genomic variance, are shown in Appendix 5. 

The degrees of freedom parameter was kept unchanged at a value of 4.5. Values of the scale 

parameter of the scaled inverse chi square prior distribution of the genomic variance, equal 

to 0.11, 0.23 and 0.46, induce modal values for the prior distribution of heritability equal to 

0.07, 0.15 and 0.28, respectively. This translates in posterior modes of genomic heritability 

equal to 0.11, 0.13 and 0.15, respectively. The figures indicate that prior information is 

mildly influential, but that there is substantial Bayesian learning from the data. A change of 

effectively 100% in the prior modal values results in corresponding changes at the level of 

posterior modes of between 15% and 18%. This result is perhaps a little unexpected, in view 

of the limited amount of data and the rather coarse measure used to analyse SMOKING.
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Quantifying the effect of population structure on inferences of genomic heritabilities

The posterior means of the genomic heritabilities for FEV1, HEIGHT and SMOKING 

STATUS were 0.296, 0.465 and 0.140, respectively. After removal of the 20 largest 

eigenvectors, the posterior means were 0.292, 0.460 and 0.138, respectively. Clearly, 

unaccounted substructure in these data do not affect inferences of genomic parameters. Not 

surprisingly, these results agree with those reported by Janss et al. (2012), where a similar 

data set was used and where further details can be found.

Discussion

The present work reports the results of a genomic analysis of FEV1, height and smoking, 

where the first two traits are analysed jointly and smoking is analysed as a single binary 

trait. The data consist of a little more than 2, 200 nominally unrelated individuals. The 

incorporation of rich genetic marker data in the form of almost 700, 000 SNP genotypes and 

the use of a whole-genome random regression approach whereby all markers were fitted 

simultaneously, made possible the extraction of a considerable amount of information from 

a relatively small number of unrelated individuals. With this data structure, this could not 

have been achieved using traditional quantitative genetic methods that rely on pedigree 

information.

The Bayesian method used in this work has a number of attractive features. One of these is 

the ability to incorporate prior information, and importantly, to quantify how this a ects 

inferences. In contrast with traditional likelihood-based methods, the Bayesian approach 

implemented using McMC is free from asymptotic assumptions and does not incur in 

measures of uncertainty that span invalid values of the parameters (the 95% asymptotic 

confidence interval of the REML estimator of genomic heritability of FEV1, conditional on 

smoking status and height is (−0.19; 0.33)). This is particularly important in scenarios with 

limited data or with highly parameterised models, as is the case here. The posterior 

distributions displayed in figures 1 and 2 illustrate this point. If data had been very 

informative the histograms would tend to be symmetric. The limited amount of information 

in the data is well captured by the Bayesian machinery and avoids understating uncertainty. 

Further, in our experience with highly parameterised hierarchical models, Bayesian McMC 

methods show more stable numerical behaviour than likelihood-based alternatives. The 

McMC implementations provides a very flexible environment and allows to study the 

consequences on inferences of not only using different prior distributions but also of using 

different likelihoods. This flexibility extends to the possibility of constructing measures of 

global model fit with little extra programming effort, that, in contrast to traditional 

likelihood, allow comparisons involving non-nested models. Often the Bayesian McMC 

models take longer time than those based on traditional likelihoods. However, given the 

huge efforts and costs often involved in collection of data, this may not always be the correct 

criterion to guide the choice of the method of analysis.

The single trait analysis of smoking status revealed a genomic component of variability at 

the level of the liability. The posterior mean of this genomic heritability is 0.14. An 

implication of the existence of genomic variation is that one can quantify the probability that 
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an individual turns out to be a smoker, given the smoking status of its parents. Specifically, 

if neither father nor mother smoke, the answer is obtained computing

where yo = 1 is the smoking status of an offspring (smoker or have smoked), and yf = 0, ym = 

0 represent the smoking status of the father and mother respectively (never smoked). A little 

mathematics involving numerical integration of multivariate normal distributions reveals 

that the answer is 51%. If both parents smoke or have smoked we obtain Pr (yo = 1|yf = 1, ym 

= 1) = 0.60. These figures must be compared with the (marginal) probability of drawing an 

individual that smokes from the data, which is 56%. These calculations assume that the 

regression of the offspring on its father is the same as that on its mother and equal to one 

half the genomic heritability. This is admittedly a rather simple model to describe a complex 

behavioural trait (knowledge of the genomic correlation could be supplemented with 

knowledge of the fraction that quantifies effect of parental environment, for example the 

smoking status of the parents) but is used here as an illustration. A more refined analysis 

would retrieve the probability that the individual smokes, given its genetic marker 

information (and information of other determining factors), which involves isolating genetic 

markers that are associated with the trait. This is the kind of promise held by personalised 

medicine, that still remains a task for the future, with the exception of simple Mendelian 

diseases with known mechanisms of inheritance.

The main conclusions from this study are that HEIGHT and FEV1 are genetically and 

environmentally correlated, and that approximately 60% (0.782 × 100) of the total genomic 

variation in FEV1 is explained by its genomic association with HEIGHT. After accounting 

for HEIGHT and SMOKING status, genomic variability explains 13% of the total variance 

of FEV1. However, judging by the measures of global fit and by the influence of prior 

information on posterior inferences, statistical support in favour of genomic variation for 

FEV1, after adjusting for HEIGHT and SMOKING status, is weak. The study also provides 

evidence for the presence of genetic factors associated with SMOKING STATUS. Indeed, 

approximately 14% of the total variation on the liability scale is explained by genetic 

markers. This figure must be interpreted as a lower bound of the heritability of the trait.

The Bayesian McMC methods use here can in principle be extended quite easily to 

partitioning the total genomic variation into components due to chromosomes or 

chromosome segments in a single analysis and to localising regions with strong genomic 

signals (Janss et al., 2012). Such information, combined with knowledge already available 

of metabolic pathways and gene networks could lead to a deeper understanding of the 

mechanisms involved. However, inferences of this kind would require a larger amount of 

genotyped individuals than those available here.

In a recent study Klimentidis et al. (2013) presented pedigree-based estimates of heritability 

of FEV1 (and other pulmonary function traits) based on whole-genome marker data 

(genomic heritability). In contrast with our study, theirs used family data, did not correct for 

HEIGHT, and report estimates of approximately 50% based on both the marker and the 

pedigree data. In the present study the estimate of the genomic heritability from the marginal 
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posterior distribution of FEV1 is 30% (see Table 3), 60% of that reported by Klimentidis et 

al. (2013). This discrepancy is in good agreement with evidence from the literature: the 

unaccounted 40% in our case, is often interpreted as missing heritability observed in 

analyses involving nominally unrelated individuals. One explanation is imperfect linkage 

disequilibrium between markers and QTL, exacerbated by the fact that marker and causal 

loci may have different distributions of allele frequency (Yang et al., 2010). In this situation, 

the realized proportions of allele sharing at markers and at causal loci can be very different. 

This is exacerbated with unrelated individuals (de los Campos et al., 2013). A number of 

approaches have been suggested to adjust the marker-based relationship matrix in order to 

obtain estimates of genomic heritabilities that are more in line with the trait heritability 

(Speed et al., 2012; Lee et al., 2013; Speed et al., 2013). However it is doubtful whether 

these alternatives can mitigate the fact that the likelihood function of the marker-based 

model may misrepresent the underlying data generating process. This can lead to inferential 

problems that can further contribute to the discrepancy between genomic and trait 

heritabilities (de los Campos and Sorensen, 2013). More research is needed to fully 

understand the properties of inferences based on WGRR models.
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Appendix 1: the singular value decomposition of the genomic relationship 

matrix

For the three traits, the matrix W is decomposed as

and therefore

where U = [U1, U2, …, Un], of order n × n is the matrix of eigenvectors of WW’, Uj is the 

jth column (dimension n × 1), and D is a diagonal matrix with elements equal to the 

eigenvalues λ1, λ2, …, λn associated to the n eigenvectors. Since WW’ is non-negative 

definite the eigenvalues are λi ≥ 0, i = 1, 2, …, n (due to the centering of W, its rank is equal 

to n-1, and the last eigenvalue is equal to zero. Therefore the last diagonal element of D is 

equal to zero). The eigenvectors satisfy U’U = UU’ = I. The n × 1 vector of principal 

components α are assumed to originate from the distribution

(16)
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This decomposition results in important computational advantages because the fully 

conditional posterior distribution of the vector α (for the three traits) is Gaussian with 

diagonal covariance matrix (de los Campos et al., 2010; Janss et al., 2012). Notice that

where  is the genomic relationship matrix and  is the genomic variance. 

Since Uα and Wb are both Gaussian, with the same mean and variance, they represent two 

parameterisations of the same probability model. The vector of genomic values can be 

expressed as .

Appendix 2: An augmented hierarchical model for FEV1 and HEIGHT, and 

prior and posterior distributions of the augmented model

Here we present a data augmentation strategy of the two-trait analysis of FEV1 and height 

that leads to conditional independence of the conditional posterior distributions of each trait.

In a first step, the n × 1 vectors of genomic values gi = Wbi are replaced by . The new 

expressions are

(17a)

(17b)

The observed n × n matrix  is defined as

where WW’ = UDU’. The column vectors of length n, αi, are assigned the linear structures

(18a)

(18b)

Prior distributions

The n × 1 vectors δi are , i = f, h. The scalars, vf, vh are N(0, 105) iid 

random variables, and the n × 1 vector s1 is a N (0, I) iid random variable. The column 

vectors ei in (17) are expressed as

Janss et al. Page 16

Ann Hum Genet. Author manuscript; available in PMC 2015 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(19a)

(19b)

In (19), ,  are n × 1 independently distributed vectors, z1 is 

a N (0, I) n×1 independently distributed vector, and the q’s are iid N (0, 105) random 

variables.

The conditional augmented model, given vf , vh, qf , qh, , , , , generates the 

following covariance structures:

(20)

(21)

The relationship between the random variables defined in (2) and (3) and those in (20) and 

(21) is:

The posterior distribution

Let

be the vector of parameters of the augmented model. Let
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The posterior distribution is

(22)

In the augmented model, the posterior distribution of the complete data factorises into two 

conditionally independent terms.

The prior distribution of the parameters of the model admits the factorisation

(23)

The McMC algorithm

The fully conditional posterior distributions are standard, and therefore the McMC updating 

strategy consists of a Gibbs sampler with either scaled inverse chi square distributions for 

the variance parameters, or normal distributions for the remaining parameters.

Appendix 3: The model for SMOKING STATUS

SMOKING STATUS is analysed as a single binary trait (yi = 1 if individual i is a smoker or 

has smoked; yi = 0 if never smoked) with a liability threshold model, used by Wright (1934) 

in studies of the number of digits in guinea pigs, and by Bliss (1935) in toxicology 

experiments. An McMC implementation of the threshold model was described by Albert and 

Chib (1993) and a quantitative genetic application was presented by Sorensen et al. (1995).

In the threshold model, it is postulated that there exists a latent or underlying variable 

(liability) which has a continuous distribution. The standard parameterisation in the case of 

binary responses is to assume that the response yi = 1 is observed, if the liability exceeds the 

threshold (set equal to zero), and if it is smaller than the threshold, yi = 0.

The vector of liabilities of dimension n × 1 is modelled as

with

(24)

The residual variance component  of the liability is set equal to 1. Define
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Then the liability of individual i is assumed to be a draw from

(25)

where  is the ith row of matrix Z. For individual i

(26a)

(26b)

(26c)

where Φ is the cdf of N (0, 1). One can therefore write

(27)

where I is the indicator function, equal to 1 if the argument is satisfied, and equal to 0 

otherwise. Expression (26a) implies that

and therefore in general, the term  can be written as

(28)

Prior distributions

The vector of parameters of the model, augmented with the vector of liabilities (Albert and 

Chib, 1993), is

and assuming that p (μ) ∝ constant, the prior distribution admits the factorisation
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The prior distribution of  is specified in (16). The prior of  is a scaled inverted chi 

square distribution and of  is shown in (25).

The posterior distribution

The posterior distribution is

(29)

where the last line is obtained using (28).

The McMC algorithm

The McMC algorithm samples

where D includes the remaining parameters (that is, all parameters except the one to be 

updated) and the observed data. Assuming an improper uniform prior distribution for μi, the 

update based on the single-site Gibbs sampler consists of drawing from

(30)

where .

The fully conditional posterior distribution of the liability is proportional to . 

Using (29)

The term in square brackets has the effect of truncating the . The density of the 

fully conditional posterior distribution for the ith observation becomes

(31)

This implies that if  and the fully conditional posterior density is proportional to 

, which is truncated normal with support (−∞, 0). If yi = 1, 
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and the fully conditional posterior density is proportional to , which is 

truncated normal with support (0, ∞).

Joint updating of α and 

We write the fully conditional posterior distribution of α and  as

where

and the density of the marginal distribution  is

(32)

where .

The joint updating strategy consists of updating first α from  and secondly  from 

.

Updating α from  The fully conditional posterior distribution of α is

which leads to

(33)

where

(34)

Updating  from  Expression (32) is of the form
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(35)

Let . Then (35) can be written

(36)

Regarded as a function of  this does not reduce to a standard density and a Metropolis 

Hastings update is necessary. The strategy implemented is based on a Gaussian random 

walk kernel on . Specifically, let  represent the current value and let  be the 

proposed value, drawn from . This is a normal distribution with mean 

 and variance k. The variance k is a user-tuned input parameter. If  is normally 

distributed then the density q of  is log-normally distributed and the Metropolis-Hastings 

ratio takes the form

(37)

where q is the log-normal density

Notice that

To arrive at (35) we use
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Appendix 4. Single trait analysis of FEV1: Influence of the prior 

distributions of the genomic and environmental variances on the induced 

prior distribution of the genomic heritability

The prior distributions of the genomic and environmental variances for FEV1 are a scaled 

inverse chi square distributions with scale parameters ,  and degrees of freedom vg, ve, 

respectively. The densities are

As shown in Sorensen and Gianola, 2002, page 109, the density of the induced prior 

distribution of the genomic heritability is given by

(38)

where ai = vi/2, , i = e, f. Using vi = 4.5, (i = e, f), and , the modal values 

of (38) for , 0.100 and 0.200, are 0.055, 0.134 and 0.306, respectively. These three 

prior distributions of FEV1 are shown in Figure 3.

Appendix 5. SMOKING STATUS: Influence of the prior distribution of the 

genomic variance on the induced prior distribution of the genomic 

heritability

The prior distribution of the genomic variance is a scaled inverse chi square distribution 

with scale parameter S2 and degrees of freedom v. This density takes the form

(39)

The genomic heritability is
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and the inverse function is . The Jacobian is given by  and the 

induced prior density of  is given by

(40)

The modal values of the three distributions, using v = 4.5 and (from left to right) S2 = 0.11, 

0.23, 0.46, are equal to 0.07, 0.15 and 0.28, respectively. These three prior distributions of 

FEV1 are shown in Figure 4.
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Figure 1. 
Histograms of Monte Carlo estimates of posterior distributions. TOP: genomic heritabilities 

of FEV1 (left) and height (right). BOTTOM: environmental (left) and genomic (right) 

correlations between FEV1 and HEIGHT.

Janss et al. Page 26

Ann Hum Genet. Author manuscript; available in PMC 2015 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Histogram of Monte Carlo estimate of the posterior distribution of the genomic heritability 

of smoking status.
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Figure 3. 
Induced prior distribution of genomic heritability for FEV1, with vi = 4.5, (i = e, f), 

, and (from left to right) , 0.04 and 0.10.
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Figure 4. 
Induced prior distribution of genomic heritability for SMOKING STATUS, with v = 4.5 and 

(from left to right) S2 = 0.11, 0.23 and 0.46.
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Table 1

Single-trait analysis of FEV1 excluding (SNP EXCLUDED) and including (SNP INCLUDED) whole-genome 

marker information. The figures represent estimated posterior means (estimated posterior standard deviations 

in brackets).

PARAMETER SNP EXCLUDED SNP INCLUDED

Sex (effect of female, l) −0.404 (0.031) −0.407 (0.031)

Regression on height (l/cm) 0.043 (0.002) 0.043 (0.002)

Regression on smoking status (l) −0.126 (0.021) −0.125 (0.021)

Residual variance 0.252 (0.008) 0.221 (0.024)

Genomic variance 0.032 (0.023)
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Table 2

Effects of different values of the scale parameter of the prior distributions of genomic variance ( ) on the 

modal and mean value of the induced prior distribution andon posterior inferences of genomic heritability ( ) 

for FEV1. The degrees of freedom parameter is set equal to 4:5, and the scale parameter of the environmental 

variance is set equal to 0:32, in all cases. The last row shows the 95% highest posterior density (HPD) 

intervals.

Sg
2 0.01 0.04 0.10

Mode prior h G
2 0.01 0.06 0.13

Mean prior h G
2 0.05 0.16 0.27

Mode posterior h G
2 0.03 0.11 0.18

Mean posterior h G
2 0.06 0.13 0.21

95% HPD (0.005; 0.131) (0.044; 0.276) (0.090;0.353)
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Table 3

Joint analysis of FEV1 and HEIGHT and single-trait analysis of SMOKING STATUS. The figures represent 

estimated posterior means and 95% highest posterior intervals in brackets, below). Diagonals: genomic 

heritabilities; upper off-diagonal: genomic correlation; lower off-diagonal: environmental correlation.

TRAIT FEV1 HEIGHT SMOKING

FEV1 0.30
(0.08; 0.51)

0.73
(0.47; 0.95)

-

HEIGHT 0.34
(0.04; 0.54)

0.47
(0.22; 0.70)

-

SMOKING - - 0.14
(0.04; 0.24)
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Table 4

Effects of different values of the scale parameter (Sg) of the scaled inverse chisquare prior distribution of the 

genomic variance on the modal value of the induced prior and posterior distribution of genomic heritability 

( ), for SMOKING STATUS. The degrees of freedom parameter is set equal to 4:5. The last row shows the 

95% highest posterior density (HPD) intervals.

Sg 0.11 0.23 0.46

Mode prior h G
2 0.07 0.15 0.28

Mode posterior h G
2 0.11 0.13 0.16

Mean posterior h G
2 0.12 0.14 0.16

95% HPD (0.042; 0.210) (0.057; 0.233) (0.082;0.257)
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