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Abstract

Congenital heart disease (CHD), the most common type of birth defect, is still the leading
non-infectious cause of infant morbidity and mortality in humans. Aggregating evidence
demonstrates that genetic defects are involved in the pathogenesis of CHD. However, CHD
is genetically heterogeneous and the genetic components underpinning CHD in an over-
whelming majority of patients remain unclear. In the present study, the coding exons and
flanking introns of the PITX2 gene, which encodes a paired-like homeodomain transcription
factor 2essential for cardiovascular morphogenesis as well as maxillary facial development,
was sequenced in 196 unrelated patients with CHD and subsequently in the mutation carri-
er's family members available. As a result, a novel heterozygous PITX2 mutation, p.Q102X
for PITX2a, or p.Q148X for PITX2b, or p.Q155X for PITX2c, was identified in a family with
endocardial cushion defect (ECD) and Axenfeld-Rieger syndrome (ARS). Genetic analysis
of the pedigree showed that the nonsense mutation co-segregated with ECD and ARS
transmitted in an autosomal dominant pattern with complete penetrance. The mutation was
absent in 800 control chromosomes from an ethnically matched population. Functional
analysis by using a dual-luciferase reporter assay system revealed that the mutant PITX2
had no transcriptional activity and that the mutation eliminated synergistic transcriptional ac-
tivation between PITX2 and NKX2.5, another transcription factor pivotal for cardiogenesis.
To our knowledge, this is the first report on the association of PITX2 loss-of-function muta-
tion with increased susceptibility to ECD and ARS. The findings provide novel insight into
the molecular mechanisms underpinning ECD and ARS, suggesting the potential implica-
tions for the antenatal prophylaxis and personalized treatment of CHD and ARS.
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Introduction

Congenital heart disease (CHD) is the most prevalent type of birth defect in humans, with an
estimated prevalence of 1% among living neonates, and is the most common non-infectious
cause of infant morbidity and mortality, accounting for roughly 30% of neonatal demises
caused by miscellaneous developmental malformations [1]. Traditionally, various CHDs are
categorized as at least 21 distinct entities with specific anatomic lesions, including ventricular
septal defect, atrial septal defect, tetraology of Fallot, endocardial cushion defect (ECD), double
outlet right ventricular, patent ductus arteriosus, and transposition of the great vessels [1]. Dis-
tinct forms of CHDs can occur separately or in combination, leading to reduced exercise per-
formance, degraded quality of life, delayed brain development or brain injury,
thromboembolic stroke, pulmonary hypertension, impaired pulmonary function, metabolic
disorders, muscle dysfunction, abnormal autonomic nervous activity, infective endocarditis,
cardiac enlargement or congestive heart failure, arrhythmias, and sudden cardiac death [2-13].
Obviously, CHD has imposed an enormous economic burden on patients and health care sys-
tems, and the socioeconomic burden is anticipated to increase in the future with increasing
CHD adults [14,15]. Despite the pronounced clinical importance, the molecular mechanisms
underpinning CHD remain poorly understood.

In vertebrates, the heart is the first organ that develops to function. Cardiovascular morpho-
genesis is a complex, dynamic biological process that requires the orchestration of cardiac cell
commitment, differentiation, proliferation and migration, and both environmental and genetic
risk factors may interrupt this accurate temporal and spatial cooperation, yielding a wide range
of CHD [16-38]. There is increasing evidence that highlights the pivotal role of cardiac tran-
scription factors in embryonic cardiogenesis, and a long list of mutations in the cardiac tran-
scription factor genes, including NK and GATA families, have been implicated in the
pathogenesis of CHD [39-65]. However, CHD is of striking genetic heterogeneity and the ge-
netic components predisposing to CHD in an overwhelming majority of patients remain to
be identified.

Recently, there is increasing evidence demonstrating that the transcription factor PITX2, a
member of the bicoid-like homeodomain family of transcription factors, plays a crucial role in
cardiovascular morphogenesis and maxillary facial development. The PITX2 gene was origi-
nally identified as a causative gene for the human Axenfeld-Rieger's syndrome (ARS), which
is characterized by eye, teeth, craniofacial and umbilical abnormalities as well as heart defects
[66-68]. To date, four different isoforms of PITX2 transcripts, which are generated by differ-
ential mRNA splicing and alternative promoter usage, have been identified, of which PITX2a,
PITX2b and PITX2c differ only in their amino-termini and exist in human, mouse, chick, zeb-
rafish and xenopus, while the fourth isoform, PITX2d, which lacks most homeodomain along
with the entire amino-terminal domain, is detected only in humans. Notably, PITX2c is the
predominant transcript in the embryonic and adult heartsof the mouse and human, mainly
responsible for cardiogenesis [69-78]. In Xenopus embryos, partial depletion of PITX2c
mRNA using chemically modified antisense oligonucleotides resulted in cardiac dysmorphol-
ogy, including abnormalities of outflow tract, atrial septation and relative atrial-ventricular
chamber positioning as well as restriction of ventricular development [79]. In mice, targeted
disruption of PITX2c resulted in embryonic lethality with different kinds of congenital cardio-
vascular malformations, including ECD, atrial isomerism, double-outlet right ventricle, trans-
position of the great artery and abnormal aortic arch [80,81]. In humans, PITX2cmutations
have been causatively associated with isolated congenital heart diseases [82-84]. These find-
ings justified screening PITX2 as a preferred candidate gene for CHD in other cohorts
of patients.
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Materials and Methods
Study participants

In this study, 196 unrelated CHD patients and 400 unrelated individuals with no cardiac struc-
tural aberrations were enrolled from the Chinese Han population. The available relatives of an
index patient with an identified PITX2 mutation were also included. All participants under-
went detailed clinical evaluation, which included individual and familial histories, comprehen-
sive physical examination, and echocardiography with color flow Doppler. The patients also
underwent chest X-ray, electrocardiogram or cardiac catheterization examination when there
was a strong clinical indication. Medical records of the deceased or unavailable relatives of a
mutation carrier were also reviewed. The patients with known chromosomal abnormalities
were excluded from the study. Peripheral venous blood samples were taken from all partici-
pants. This study conformed to the ethical guidelines of the Declaration of Helsinki. The study
protocol was reviewed and approved by the ethics committee of Tongji Hospital, Tongji Uni-
versity (the ethical approval number for cases and controls: LL(H)-09-07; the date for the ap-
proval: July 27, 2009). Written informed consent was signed by participants or their guardians
prior to study.

Genetic analysis of human PITX2

Genomic DNA was isolated from peripheral blood leukocytes using the Wizard Genomic
DNA Purification Kit (Promega, Madison, WI, USA). The coding regions and splice junction
sites of the PITX2 gene was sequenced initially in 196 unrelated patients with CHD, and geno-
typing PITX2 was performed subsequently in the available relatives of a mutation carrier and
400 unrelated control individuals. The referential genomic DNA sequence of PITX2 was de-
rived from GenBank (accession no. NC_000004), which was at the National Center for Bio-
technology Information (NCBI; http://www.ncbi.nlm.nih.gov/). The primer pairs used to
amplify the coding exons and intron-exon boundaries of PITX2 by polymerase chain reaction
(PCR) were shown in Table 1. The PCR was performed and the PCR product was sequenced as
previously described [82]. A sequence variation was verified by re-sequencing an independent
PCR-amplified product from the same subject. Additionally, for an identified sequence variant,
the Exome Variant Server (EVS; http://evs.gs.washington.edu/EVS) and NCBI’s single nucleo-
tide polymorphism (SNP; http://www.ncbi.nlm.nih.gov/SNP) databases were queried to con-
firm its novelty.

Alignment of multiple PITX2 protein sequences across species

Multiple amino acid sequences of the PITX2 proteins from various species were aligned using
the online MUSCLE program, version 3.6 (http://www.ncbi.nlm.nih.gov/).

Table 1. The primers to amplify the coding exons and flanking introns of PITX2.

Exon

o O~ WD

doi:10.1371/journal.pone.0124409.t001

Forward primer (5’ to 3') Reverse primer (5 to 3') Amplicon (bp)
GAGGCTAGGCTGGAGATGCT CCACTGGCGATTTGGTTCTG 385
TTGCTCTTTGTCCCTCTTTC CCAGAGGCGGAGTGTCTAAG 399
CAGCTTGGCTTGAGAACTCG TGACTTCCTTGGGGCGAGAG 442
CAGCTCTTCCACGGCTTCTG GCTGCCTTCCACATTCTCTC 387
AATCTGCACTGTGGCATCTG AGTCTTTCAAGGGCGGAGTT 677

PLOS ONE | DOI:10.1371/journal.pone.0124409  April 20,2015 3/16


http://www.ncbi.nlm.nih.gov/
http://evs.gs.washington.edu/EVS
http://www.ncbi.nlm.nih.gov/SNP
http://www.ncbi.nlm.nih.gov/

@'PLOS ‘ ONE

PITX2 Mutation with ECD and ARS

Plasmids and site-directed mutagenesis

The expression plasmid PITX2c-pcDNA4 was a kind gift from Georges Christé at Physio-
pathologie des Troubles du RythmeCardiaque, Faculté de Pharmacie de Lyon, Université
Lyon 1, France. The recombinant expression plasmid NKX2.5-pEFSA and the atrial natri-
uretic factor (ANF)-luciferase reporter plasmid (ANF-luc), which contains the 2600-bp 5’-
flanking region of the ANF gene and expresses Firefly luciferase, were kindly provided by Dr.
Ichiro Shiojima, from the Department of Cardiovascular Science and Medicine, Chiba Uni-
versity Graduate School of Medicine, Chuo-ku, Chiba, Japan. The procollagen lysyl hydroxy-
lase (PLOD1) promoter plasmid PLODI-luc, which contains the nucleotides from -60 to
-3180 of the PLODI gene, was constructed as described previously [85]. The PITX2a and
PITX2b isoforms were PCR-amplified from cDNA clones as described previously [86] and
inserted into the pcDNA4 plasmid (Invitrogen, Carlsbad, CA, USA), respectively. The identi-
fied mutation Q102X, or Q148X, or Q155X was introduced into the wild-type PITX2a, or
PITX2b, or PITX2c, respectively, by using a QuickChange II XL Site-Directed Mutagenesis
Kit (Stratagene, La Jolla, CA, USA) with a complementary pair of primers. Each of themu-
tants was sequenced to confirm the desired mutation and to exclude any other sequence
variations.

Luciferase reporter gene assays

Chinese hamster ovary (CHO) cells were seeded in 12-well plates and cultured in Dulbecco’s
Modified Eagle Medium supplemented with 10% fetal bovine serum, 100 mg/ml penicillin,
and 100 mg/ml streptomycin in a humidified atmosphere containing 5% CO, at 37°C. Cell
transfections were performed 24 h after plating, with Lipofectamine 2000 Transfection Re-
agent (Invitrogen) according to the manufacturer’s protocol. The ANF-luc construct and an
internal control reporter plasmid pGL4.75 (hRluc/CMYV, Promega), which expresses Renilla
luciferase, were used in transient transfection assays. CHO cells were transfected with 2 pg of
wild-type PITX2-pcDNA4 or mutant PITX2-pcDNA4 or empty vector pcDNA4, 2.0 ug of
ANF-luc reporter construct, and 0.04 pug of pGL4.75 control reporter vector. For co-transfec-
tion experiments, 1 pg of wild-type PITX2-pcDNA4, 1 ug of mutant PITX2-pcDNA4, 2.0 pg
of ANF-luc, and 0.04 pg of pGL4.75 were used. Transfected cells were harvested 24 h after
transfection, then lysed and assayed for reporter activities. Firefly luciferase and Renilla lucif-
erase activities were measured with the Dual-Glo luciferase assay system (Promega). The activ-
ity of the ANF promoter was presented as fold activation of Firefly luciferase relative to Renilla
luciferase. Three independent experiments were conducted in triplicate for wild-type and mu-
tant PITX2a, or PITX2b, or PITX2c, and results are representative of three separate
experiments.

For the analysis of the synergistic transcriptional activation between PITX2 and NKX2.5
[87], another transcription factor crucial for normal cardiovascular development [40-48],
CHO cells were grown and transfected with 2ug of wild-type or mutant PITX2-pcDNA4,
alone or together with 2pg of wild-type NKX2.5-pEFSA, 5pg of PLOD1-luc, and 0.04 ug of
pGLA4.75 using Lipofectamine 2000 Transfection Reagent (Invitrogen).

Statistical analysis

The significance of differences in luciferase activity was analyzed using the unpaired Student’s ¢
test. A two-tailed P value less than 0.05 was considered to be statistically significant.
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Results
Baseline characteristics of the study subjects

A cohort of 196 unrelated patients with CHD was clinically investigated in contrast to a total of
400 ethnically-matched unrelated controls. All the participants had no established environ-
mental risk factors for CHD, such as maternal illness and drug use in the first trimester of preg-
nancy, parental smoking and long-term exposure to toxicants as well as ionizing radiation. The
control individuals had no evidence of organic cardiac diseases, and their echocardiographic
results were normal. The baseline clinical characteristics of the 196 CHD patients are summa-
rized in Table 2.

Table 2. Baseline clinical characteristics of the 196 unrelated patients with congenital heart disease.

Variable Statistic
Male gender (%) 102 (52.0)
Age (years) 52+24
Positive family history (%) 36 (18.4)
Prevalence of different types of CHD

Isolated CHD (%) 105 (53.6)
VSD (%) 32 (16.3)
ASD (%) 27 (13.8)
PDA (%) 20 (10.2)
ECD (%) 6 (3.1)
AS (%) 5 (2.6)
PA (%) 5(2.6)
CoA (%) 4(2.0)

PS (%) 3(1.5)
TA 2(1.0)
HLHS (%) 1(0.5)
Complex CHD (%) 72 (36.7)
TOF (%) 28 (14.3)
DORV + VSD (%) 17 (8.7)
ECD + TGA (%) 14 (7.1)
TA + VSD (%) 9 (4.6)
TGA +VSD (%) 4 (2.0)
Others (%) 19 (9.7)
Incidence of arrhythmia

Atrial fibrillation (%) 16 (8.2)
Atrioventricular block (%) 8 (4.1)
Treatment

Surgical repair (%) 118 (60.2)
Catheter-based closure (%) 57 (29.1)
Follow-up (%) 21 (10.7)

CHD, congenital heart disease; VSD, ventricular septal defect; ASD, atrial septal defect; PDA, patent
ductus arteriosus; ECD, endocardial cushion defect; AS, aortic stenosis; PA, pulmonary atresia; CoA,
coarctation of the aorta; PS, pulmonary stenosis; TA, truncusarteriosus; HLHS, hypoplastic left heart
syndrome; TOF, tetralogy of Fallot; DORV, double outlet of right ventricle; TGA, transposition of
great arteries.

doi:10.1371/journal.pone.0124409.t002
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Identification of a novel PITX2 mutation

By sequencing of PITX2 in the 196 patients, a heterozygous sequence variation was identified in
one patient, with a mutational prevalence of about 0.51%. Specifically, a substitution of thymine
for cytosine at the first nucleotide of codon 102 of PITX2a (¢.304C>T), or codon 148 of
PITX2b (c.442C>T), or codon 155 of PITX2c (c.463C>T), predicting the transition of gluta-
mine-encoding codon to a stop codon at amino acid 102 for PITX2a (p.Q102X), or 148 for
PITX2b (p.Q148X), or 155 for PITX2c (p.Q155X), was identified in an ECD patient with posi-
tive family history. The sequence electropherograms showing the identified nonsense PITX2
variation compared with the corresponding control sequence are shown in Fig 1A. The sche-
matic diagrams showing the structural domains of the wild-type and mutant PITX2 proteins are
presented in Fig 1B. The variation was neither observed in 800 control chromosomes nor re-
ported in the EVS’s and NCBI's SNP databases, which were consulted again on September 1,
2014. Genetic screening of the mutation carrier’s family members demonstrated that the varia-
tion was present in all affected family members available, but absent in unaffected family mem-
bers examined. Analysis of the pedigree showed that in the family the mutation co-segregated
with ECD transmitted as an autosomal dominant trait with complete penetrance. The pedigree
structure of the family is illustrated in Fig 1C. Besides, the proband (III-3) had also transposition
of the great arteries, and her father (II-5) and uncle (II-1) had also mitral valve cleft and right
aortic arch. Interestingly, all the mutation carriers had also oligodontia, maxillary hypoplasia
and iris hypoplasia, and the proband (III-3) and her father (II-5) had also congenital umbilical
hernia, a phenotype of Axenfeld-Rieger syndrome (ARS). The phenotypic characteristics and
results of genetic screening of the affected pedigree members are listed in Table 3.

Multiple alignments of PITX2 protein sequences across species

A cross-species alignment of PITX2 protein sequences displayed that the altered amino acid, p.
Q102 for PITX2a, or p.Q148 for PITX2b, or p.Q155 for PITX2c, was completely conserved
evolutionarily among all vertebrates (Fig 2).

Transactivational activity of the mutant PITX2

As shown in Fig 3, the wild-type PITX2a, PITX2b and PITX2c activated the ANF promoter by
~29-fold, ~14-fold and ~11-fold, respectively; whereas the same amount (2 pg) of mutant
PITX2a, PITX2b or PITX2c activated the ANF promoter by ~1-fold. When the same amount
of wild-type PITX2 (1 pg) was cotransfected with mutant PITX2 (1 pg), the induced activation
of the ANF promoter was ~14-fold for PITX2a, ~6-fold for PITX2b and ~4-fold for PITX2c.
These results suggest that the mutant PITX2 has no transactivational activity when compared
with its wild-type counterpart.

Synergistic transcriptional activity between mutant PITX2 and NKX2.5

As shown in Fig 4, in the presence of 2ug of wild-type NKX2.5, 2ug of wild-type PITX2a,
PITX2b and PITX2c activated the PLODI promoter by ~11-fold, ~5-fold and ~32-fold, respec-
tively; while the same amount (2ug) of Q102X-mutant PITX2a, or Q148-mutant PITX2b or
Q155X-mutant PITX2c¢ activated the PLODI promoter by ~2-fold, indicating that the muta-
tion blocks the synergistic transactivational activity between PITX2 and NKX2.5.

Discussion

In the current study, a novel heterozygous mutation in the PITX2 gene, p.Q102X for PITX2a,
p-Q148X for PITX2b, or p.Q155X for PITX2c, was identified in a family with congenital ECD
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Fig 1. PITX2 mutation associated with endocardial cushion defect and Axenfeld-Rieger syndrome. (A)
Sequence electropherograms showing the heterozygous PITX2 mutation compared with its control. The
arrow indicates the heterozygous nucleotides of C/T in the proband (mutant) or the homozygous nucleotides
of C/C in the corresponding control individual (wild-type). The rectangle signifies the nucleotides comprising a
codon of PITX2. (B) Schematic diagrams showing the structural domains of wild-type and mutant PITX2
proteins with the disease related mutation indicated. The mutation found in patients with endocardial cushion
defect and Axenfeld-Rieger syndrome is shown above the structural domains of the mutant PITX2 proteins.
NH2 denotes amino-terminus; TAD1, transcriptional activation domain 1; HD, homeodomain; NLS, nuclear
localization signal; TID1, transcriptional inhibitory domain 1; TAD2, transcriptional activation domain 2; TID2,
transcriptional inhibitory domain 2; COOH, carboxyl-terminus. (C) Pedigree structure of the family with
endocardial cushion defect and Axenfeld-Rieger syndrome. Family members are identified by generations
and numbers. Square indicates male family member; circle, female member; symbol with a slash, the
deceased member; closed symbol, affected member; open symbol, unaffected member; arrow, proband; “+”,
carrier of the heterozygous mutation; “-”, non-carrier.

doi:10.1371/journal.pone.0124409.g001

and ARS. Genetic analysis of the pedigree showed that the nonsense mutation was transmitted
in an autosomal dominant pattern with complete penetrance. The mutation, which was absent
in the 800 reference chromosomes, altered the amino acid highly conserved evolutionarily
among vertebrates. Functional assays unveiled that each isoform of the mutant PITX2 lost the
ability to transactivate the ANF and PLODI promoters and that the mutation eliminated the
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Table 3. Phenotypic characteristics and status of PITX2 mutation of the affected pedigree members.

Subject information Phenotype Genotype
Identity Gender Age (years) Cardiac defects Extracardiac defects PITX2 mutation
I-1 M 502 ECD OD, MH, IH NA
-1 M 31 ECD, RAA, MVC OD, MH, IH +/—
II-5 M 26 ECD, RAA, MVC OD, MH, IH, UH +/—
1-3 F 1 ECD, TGA OD, MH, IH, UH +/—

M, male; F, female; ECD, endocardial cushion defect; MVC, mitral valve cleft; RAA, right aortic arch; TGA, transposition of the great arteries; OD,
oligodontia; MH, maxillary hypoplasia; IH, iris hypoplasia; UH, umbilical hernia; NA, not available; +/—, heterozygote.
3Age at death.

doi:10.1371/journal.pone.0124409.t003

synergistic transcriptional activation between PITX2 and NKX2.5. Hence, it is very likely that
genetically defective PITX2 confers enhanced susceptibility to ECD and ARS in these
mutation carriers.

It has been revealed that PITX2 is abundantly expressed in the developing hearts, craniofa-
cial organs, and abdominal wall, especially in myocardium related to endocardial cushions of
the atrioventricular canal, and functions to mediate multiple target genes that are amply ex-
pressed during embryogenesis, including ANF and PLOD1 [66-74]. Therefore, the transcrip-
tional effect of a mutant PITX2 may be characterized by using the ANF and PLOD1
promoters. In this study, functional analyses demonstrated that the mutation identified in

Q102X for PITX2a or Q148X for PITX2b or Q155X for PITX2c

NP_700476.1 (Human PITX2a) 78 LTEARVRVWEFFNREAKWRFRERNQ AELC-==—- KNGFGPQFNGLMQP 120

NP_700475.1 (Human PITX2b) 124 LTEARVRVWFKNRRAKWRKRERNQ AELC-==-- KNGFGPQFNGLMQP 166

NP_000316.2 (Human PITX2c) 131 LTEARVRVWEKNRRAKWRKRERNQ AELC----- KNGFGPQFNGLMQP 173

XP_001141234.1 (Chimpanzee PITX2) 131 LTEARVRVWFKNRRAKWRKRERNQ AELC----- KNGFGPQFNGLMQP 173

XP_001091288.1 (Monkey PITX2) 132 LTEARVRVWFKNRRAKWRKRERNQ AELC----- KNGFGPQFNGIMQP 174

XP_851370.1 (Dog PITX2) 132 LTEARVRVWEFKNRRAKWRKRERNQ AELC---—- KNGFGPQFNGLMQP 174

NP_001091460.1 (Cattle PITX2) 132 LTEARVRVWFKNRRAKWRKRERNQ| Q@ |AELC----- KNGFGPQFNGLMQP 174

NP_001035967.1 (Mouse PITX2) 131 LTEARVRVWEFKNRRAKWRKRERNQ AELC————- KNGFGPQFNGLMQP 173

NP_001035970.1 (Rat PITX2) 131 LTEARVRVWEKNRRAKWRKRERNQ AELC-—---- KNGFGPQFNGLMQP 173

NP_990341.1 (Fowl PITX2) 140 LTEARVRVWFKNRRAKWRKRERNQ| @ |AELC----- KNGFGPQFNGLMQP 182

NP_571050.1 (Zebrafish PITX2) 121 LTEARVRVWEKNRRAKWRKRERNQ AELC-=——- KNGFGPQFNGLMQP 163

NP_733410.2 (Fruit fly PITX2) 303 LTEARVRVWFKNRRAKWRKRERNA NAAVARRDFKSGEFGTQF---MQP 347

sxo:o:o:o:o:o:o:oaoaoolq-
=]
(2]

XP_310944.5 (Mosquito PITX2) 287 LTEARVRVWEFKNRRAKWRKRERNQ N-AIAAADFFNGFGPQF---VQP 330

NP_001017227.1 (Frog PITX2) 152 LTEARVRVWEFFNRRAKWRKREFNQ| Q |AELC----- KNGFGPQFNGLMQP 194

Fig 2. Alignment of multiple PITX2 amino acid sequences among species. The altered amino acid of p.Q102 for PITX2a, or p.Q148 for PITX2b, or p.
Q155 for PITX2c is completely conserved evolutionarily among vertebrates.

doi:10.1371/journal.pone.0124409.9002
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Fig 3. Transactivational defects caused by PITX2 mutation. Transcriptional activation of atrial natriuretic factor promoter driven luciferase reporter in CHO
cells by wild-type or mutant PITX2, alone or in combination, showed that the mutant PITX2 did not transactivate gene expression. Data are derived from three
independent experiments repeated in triplicate. Mean fold activation and standard deviations are shown. ** and * represent P<0.001 and P<0.01,
respectively, when compared with wild-type PITX2.
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patients with ECD and ARS abolished the transcriptional activation of ANF- or PLOD1-driven
luciferase reporter by PITX2 and eliminated the transcriptionally synergistic activation be-
tween PITX2 and NKX2.5, indicating that functionally impaired PITX2 is potentially an alter-
native molecular mechanism underpinning CHD and ARS.
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Fig 4. No synergistic transcriptional activation between NKX2.5 and mutant PITX2. The synergistic transactivation of the PLOD1 promoter in CHO cells
by NKX2.5 and mutant PITX2 was eliminated by the mutation. All data are derived from three independent experiments repeated in triplicate. Mean fold
activation and standard deviations are shown. ** represents £<0.001, when compared with NKX2.5 plus wild-type PITX2.

doi:10.1371/journal.pone.0124409.g004
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Previous studies have established that multiple important genes are transcriptionally regu-
lated by PITX2c during cardiovascular development [87], and mutations in several target
genes, such as NKX2.5 and GATA4, have been causally implicated in CHD including ECD
[40-48,51-58]. Therefore, mutated PITX2c may increase the vulnerability to CHD by altering
the expressions of such cardiac-specific target genes.

In humans, PITX2c mutations have been implicated in the pathogenesis of other CHDs.
Wang and co-workers [82] screened PITX2c in 382 unrelated patients with CHDs and found
two heterozygous mutations, p.W147X and p.N153D, in two patients with CHD, respectively,
including a one-year-old male patient with double outlet right ventricle in combination with
ventricular septal defect and a four-year-old female patient with isolated ventricular septal de-
fect. Yuan et al. [83] scanned PITX2c¢ in 150 unrelated patients with CHDs and identified two
novel heterozygous PITX2c mutations, p.H98Q and p.M119T, in two patients with atrial septal
defects, respectively. Wei and colleagues [84] also sequenced PITX2c in 170 unrelated neonates
with CHDs and detected two novel heterozygous PITX2c¢ mutations, p.R91Q and p.T129S, in
two unrelated newborns with transposition of the great arteries and ventricular septal defect,
respectively. Functional analysis demonstrated that all the above-mentioned PITX2c mutations
were consistently associated with significantly diminished transcriptional activity [82-84]. In
this study, a novel PITX2 loss-of-function mutation is identified in patients with ECD and
ARS, thus expanding the phenotypic spectrum linked to PITX2 mutation.

Association of genetically compromised PITX2 with enhanced susceptibility to ECD has
been demonstrated in animal models [79-81]. In mice, PITX2 deficiency results in complicated
cardiac defects, including atrial septal defect, ventricular septal defect, ECD, hypoplasia of the
right ventricle, and failure to form normal cardiac valves [81]. Further studies shows that abla-
tion of PITX2 results in distortion, rather than loss, of muscle anlagen, suggesting that its func-
tion becomes critical during the colonization of, and/or fiber assembly in, the anlagen. In
addition, myogenic cells lacking PITX2 are smaller and more symmetrical with decreased mo-
tility, which may prevent proper assembly of higher-order fibers within anlagen [88]. Never-
theless, PITX2c expression in mesenchymal cushion cells remains a controversial topic.
Furtado and colleagues [70] reported that in mice PITX2c was expressed in trabecular and sep-
tal, as well as non-trabecular, myocardium, and had a strong expression bias in myocardium
associated with individual endocardial cushions of the atrioventricular canal and outflow tract,
which are essential for cardiac septation. Two other groups [80,89] also reported the expression
of PITX2c in these structures. Fate-mapping studies using a PITX2 cre recombinase knock-in
allele showed that daughters of PITX2-expressing cells populated the right and left ventricles,
atrioventricular cushions and valves and pulmonary veins. In PITX2 mutant embryos, descen-
dents of PITX2-expressing cells failed to contribute to the atrioventricular cushions and valves
and the pulmonary vein, resulting in abnormal morphogenesis of these structures [80]. Howev-
er, lineage-tracing studies in mice showed that myocardium did not transform into mesen-
chyme in cushions [90]. In humans, PITX2c was expressed predominantly in left atria, with
lower levels in right atrium and left and right ventricles [72]. Due to pronounced spatial and
temporal difference in gene expression even for the same species, further work will be necessary
to clarify this issue, especially for all isoforms of PITX2 in human heart.

Up to now, in humans mutated PITX2 has been linked to type 1 ARS [66-68], type 2 irido-
goniodysgenesis [91], Peters’ anomaly [92], ring dermoid of cornea [93], various congenital
heart diseases [16,82-84], and atrial fibrillation [94-97]. In this study, a novel PITX2 mutation
was linked to atypical ARS with ECD being the main phenotype. The remarkable phenotypic
diversities caused by PITX2 mutations may be explained as follows. Firstly, different genetic
backgrounds, including possibly common SNPs altering disease susceptibility, contribute to
the variable phenotypes. Secondly, distinct epigenetic modifiers may account for the significant
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phenotypic heterogeneity among these mutation carriers. Thirdly, delayed penetrance or in-
complete penetrance may also be responsible for the discrepant clinical expressivity. Finally,
mutations as found in this study may be merely a genetic risk factor predisposing to a disease,
rather than a direct cause, and environmental risk factors may be required for the onset of the
disease [98].

Conclusions

In conclusion, this study firstly links PITX2 loss-of-function mutation to ECD and ARS, which
provides novel insight into the molecular mechanisms of CHD and ARS, implying potential
implications in antenatal prophylaxis and personalized treatment of CHD and ARS.
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