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Abstract
Intracerebral hemorrhage (ICH) is a very complex 
pathology, with many different not fully elucidated 
etiologies and prognostics. It is the most severe subtype 
of stroke, with high mortality and morbidity rates. 
Unfortunately, despite the numerous promising preclinical 
assays including neuroprotective, anti-hypertensive, 

and anti-inflammatory drugs, to this moment only 
symptomatic treatments are available, motivating the 
search for new alternatives. In this context, stem cell 
therapy emerged as a promising tool. However, more 
than a decade has passed, and there is still much to be 
learned not only about stem cells, but also about ICH 
itself, and how these two pieces come together. To date, 
rats have been the most widely used animal model in 
this research field, and there is much more to be learned 
from and about them. In this review, we first summarize 
ICH epidemiology, risk factors, and pathophysiology. We 
then present different methods utilized to induce ICH 
in rats, and examine how accurately they represent the 
human disease. Next, we discuss the different types 
of stem cells used in previous ICH studies, also taking 
into account the tested transplantation sites. Finally, we 
summarize what has been achieved in assays with stem 
cells in rat models of ICH, and point out some relevant 
issues where attention must be given in future efforts.
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Core tip: In this review, we first summarize intracerebral 
hemorrhage (ICH) epidemiology, risk factors, and 
pathophysiology. We then present different methods 
utilized to induce ICH in rats, and examine how accurately 
they represent the human disease. Next, we discuss the 
different types of stem cells used in previous ICH studies, 
also taking into account the tested transplantation sites. 
Finally, we summarize what has been achieved in assays 
with stem cells in rat models of ICH, and point out some 
relevant issues where attention must be given in future 
efforts.
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INTRODUCTION
Marginal or no success was achieved from decades of 
research for therapeutic alternatives for intracerebral 
hemorrhage (ICH)[1,2]. Despite the numerous promising 
preclinical assays including neuroprotective, anti-
hypertensive, and anti-inflammatory drugs, only sym
ptomatic treatments are currently available[2,3], which 
motivates the search for new alternatives. In this 
context, cell therapy emerged as a promising tool[4-6]. 
However, more than a decade has passed, and there 
is still much to be learned not only about stem cells, 
but also about ICH itself, and how these two pieces 
come together. It is clear that achieving a more detailed 
knowledge of each involved element is crucial to obtain 
better results.

INTRACEREBRAL HEMORRHAGE: 
A SEVERE AND HETEROGENEOUS 
PATHOLOGY
Epidemiology
Cardiovascular diseases (CVDs) are the leading cause 
of morbidity and mortality worldwide. In 2008, nearly 
17.3 million people lost their lives because of CVDs 
(30% of all deaths); of these, 6.2 million (35.8%) 
were to cerebrovascular accidents[7], alternatively 
referred as stroke. Among CVDs, coronary artery 
disease is responsible for the highest mortality rate 
on a worldwide basis, followed by stroke[7]. However, 
stroke mortality rates surpass those of the coronary 
artery disease in some world regions, like East Asia, 
Africa, and South America[8].

There are two types of stroke: ischemic and hem
orrhagic. This review will focus on nontraumatic ICH, 
which corresponds to spontaneous leakage of blood 
within the brain parenchyma or ventricular spaces[1]. 
ICH is the most lethal subtype of stroke, often causing 
immediate death[9]. Secondary brain injuries may 
lead to delayed fatality when death does not occur 
shortly after the onset. One-year and five-year survival 
are estimated to be around merely 46% and 29%, 
respectively[10]. Beyond that, surviving patients are 
usually left with many limitations in motor and cognitive 
functions. Overall, ICH is less frequent than its ischemic 
counterpart, but the proportion fluctuates depending 
on the ethnic and racial group. Among Chinese people, 
for example, ICH accounts for about 33% of stroke 
cases, vs 12% in white populations[11]. On the same 
hand, global incidence of ICH per 100000 person-years 
is estimated to be around 24.6, reaching 51.8 in Asian 
populations[12].

Risk factors
High blood pressure is the major risk factor for CVDs[13], 
particularly ICH[14,15]. As a matter of fact, it is estimated 
that about 50% of ICH cases are caused by chronic 

hypertension[1]. There is a well established liaison 
between regular consumption of alcoholic beverages 
and high blood pressure, being this effect independent 
of age, body mass, smoking habits and physical 
activity[16-18]. Hypertension and ICH incidence are also 
linked to other lifestyle-related risk factors, such as 
smoking[19,20], physical inactivity[21], and high dietary 
sodium and/or fat consumption[22,23]. About 20% of 
cases are due to amyloid angiopathy, being this the 
second cause of ICH[24]. Amyloid deposition incidence 
is primarily associated with increasing age[25-27], but 
genetic factors also play an important role[28]. Oral 
anticoagulant intake is other important risk factor, 
which not only increases ICH risk, but also has higher 
intrinsic death rates[29,30]. Other relevant risk factors are 
obesity, diabetes mellitus, high blood cholesterol and 
other lipids, brain tumors, aneurysms, cerebrovascular 
malformations, cavernous angiomas, and arteriovenous 
fistulae[23,31].

Pathophysiology
As previously stated, hemorrhagic events in brain 
parenchyma or ventricular spaces are included in ICH. 
Bleeding associated with chronic hypertension usually 
originates from microaneurysms near or at bifurcations 
of penetrating brain arterioles which emanate from 
basilar arteries or anterior, middle, or posterior cerebral 
arteries[1,32,33]. In most cases, intraventricular hemorrhage 
is a consequence of ICH, resulting from hematoma 
expansion to the ventricular space[1]. This phenomenon 
increases mortality in nearly five times[34]. In more rare 
occasions, hematoma may extend to the subarachnoid 
space[31]. Amyloid angiopathy associated ICH is commonly 
lobar, often extending into the subarachnoid space 
and ventricles[35]. Size and location of hematoma are 
determinant factors in the disease outcome[36]. For 
example, even though patients commonly experience 
continued bleeding or rebleeding[37], the latter phe
nomenon is more recurrent in amyloid angiopathy-
derived ICH[38].

Initial injuries are consequent of mechanical dis
ruption of adjacent brain tissue by physical compression 
due to hematoma formation[1,31,39]. Most hematoma 
enlargement occurs in the first hours following ictus, but 
this growth can extend for many hours[40,41]. Disruption 
of the blood-brain barrier implies in the formation of 
plasma-derived perihematomal edema[42], which grows 
rapidly in the first two or three days and reaches full 
extension about fourteen days after ICH onset[43,44]. 
Edema evolution can be described in three phases[45]. In 
the first few hours, hematoma expands and retracts as a 
result of coagulation, depositing serum molecules in the 
surrounding tissue. In two to three days, inflammatory 
mediators come off from circulation. In the third and last 
phase, erythrocytes suffer degradation, which culminates 
in hemoglobin toxicity. Thrombin and iron from 
erythrocytes play major roles in secondary injuries[9,46]. In 
fact, iron overload seems to be related to the formation 
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of the perihematomal zone[47]. This area surrounds the 
edema and includes viable but very vulnerable tissue[45].

CELL THERAPY IN INTRACEREBRAL 
HEMORRHAGE ANIMAL MODELS
Rat: The animal model of choice
Most of the present ICH pathophysiology knowledge 
derives from studies in animal models. After all, 
animals assays offer many research advantages, such 
as the possibility to work with homogeneous groups by 
the control of variables concerning the subjects (e.g., 
age, weight, feeding, activity, genetics, etc.), and the 
ICH itself (e.g., time and site of the injury onset and its 
intensity). Moreover, this kind of study permits various 
types of biological assays from surviving subjects at 
any stage of the pathology.

By far, the majority of ICH studies on animals are 
performed on rodents, mostly on rats. This choice is 
understandable, once rats are cheap and convenient 
to house, easy to manipulate, have a plethora of 
related products for the most diverse purposes, and 
have a well described anatomophysiology, which, 
overall, shares considerable similarities with humans 
in cerebrovascular parameters[48]. However, there 
are some important differences that should not be 
underestimated or neglected.

White matter paucity in rat brains limits the similarities 
with the human condition[32]. Human brain proportion 
of white/gray matter shares more similitude with that 
of porcines and primates, but both are incomparably 
more expensive and complicated to handle if compared 
to rats[49]. In addition, if compared to humans, rats also 
have anatomical disparities in brain perforating arteries, 
as well as anatomical and biochemical differences 
in the basal ganglia[50]. It is important to notice that 
both structures have fundamental involvement in ICH 
model, especially considering that the commonest 
experimentally induced ICH is intrastriatal. Actually, this 
fact is probably included among the reasons why ICH 
prognostic differs so much in some parameters between 
rats and humans (more on these matters in the next 
section). Thus, even though rodents provide advantages 
as experimental models, multiple species should be used 
for more trustworthy results[51]. Additionally, rats and 
mice are also different in many anatomophysiological 
aspects[52], and tests should not be limited to either of 
the two.

Intracerebral hemorrhage replication
Bacterial collagenase injection is the most widespread 
method to induce ICH in rats, followed by autologous 
blood injection (ABI). The latter is one of the earliest 
methods developed to replicate ICH in rats. In this 
model, blood is collected from a superficial vessel and is 
injected directly into the brain, usually in the striatum[53]. 
The application of this protocol should be limited to 

blood toxicity and edema formation studies, once very 
important aspects of ICH pathology are absent, like 
small vessel rupture and hematoma expansion[54]. 
Moreover, especially in rats, ABI implies in exaggerated 
inflammatory response as a consequence of hemoglobin 
crystallization[55].

Collagenases are enzymes that break collagen 
peptide bonds[56]. Consequently, intracerebral injection of 
bacterial collagenase leads to the breakdown of the basal 
lamina of blood vessels, establishing the leakage of blood 
within the brain[57]. Through this method, rebleeding is 
present and functional impairments are more long lasting 
than that of ABI model[57]. Also, application is simpler[49]. 
However, dissolution of endothelial basal lamina causes 
ICH in an unnatural manner[32].

Even though collagenase injection model mimics 
ICH with more success than ABI, both show relevant 
limitations[54]. As previously stated, the standard 
collagenase and blood site of injection is the striatum, 
which differs importantly from the human counterpart 
in biochemical and anatomical features[50]. In top of 
that, ICH is often not restricted to single anatomical 
regions in humans, while this is what is achieved with 
both models[58]. Lastly, but certainly not least, both 
models comprise intracerebral injections. Therefore, 
some significant ICH unrelated injuries must be done in 
order to access the target structures: animal scalp and 
periosteum must be cut open, a hole must be drilled in 
the skull, and most importantly, a needle must perforate 
all brain superjacent structures[59].

As tacit in the Pathophysiology section of this review, 
ICH is a disease with multiple etiologies, which directly 
affect the prognostic. More than that, the role played by 
the ICH causing factors is probably unrestricted to the 
way the pathology is going to have a start, but is also 
determinant how it is going to evolve[49]. For example, it 
is deductible that ICH disrupted by anticoagulant intake 
develops differently, as hematoma might probably 
include uncoagulated blood[60].

Even though ICH affects mostly humans with chronic 
hypertension and advanced age, preclinical studies are 
predominantly conducted using young and healthy 
animals. The absence of comorbidities presumably 
implies in unrealistic outcomes and weaker translational 
power. Aware of this limitation, many efforts have been 
made on the last years to develop and use models 
with characteristic risk factors. ICH related functional 
outcomes are known to be more severe and long lasting 
in older[61-63] and chronic hypertensive[64] rats. The latter 
develop spontaneous ICH with location and distribution 
consistent to what is observed in hypertensive humans[32]. 
However, spontaneous chronic hypertension-derived ICH 
is hard to model, once animals tend to develop ischemic 
stroke instead of ICH[65].

Prognostic analysis of experimentally induced ICH
ICH in rats and humans have remarkably different 
prognostics. Human ICH is generally followed by 
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of few defined factors[75]. However, as embryonic 
stem cells, iPSCs can potentially generate teratomas 
after transplantation[76-78]. It happens as a result of 
their propensity for uncontrolled self-renewal and 
triploblastic differentiation[79].

Somatic stem cells are multipotent, thus possessing 
the ability to differentiate into only certain cell types. As 
they can be found in adult tissues, they are sometimes 
referred as “adult stem cells”. This term, however, is 
misleading and should be avoided, once the embryo 
starts containing somatic stem cells shortly after 
implantation[80]. Mesenchymal stem cells (MSCs) are 
somatic stem cells present in virtually all organs[81]. 
They are able to differentiate into mesodermal cell 
lineages, like osteoblasts, chondrocytes, adipocytes, and 
myoblasts[82,83]. Some groups, however, showed that 
MSCs can be induced to differentiate into neurons, but 
is debatable if they are functional[84]. Bone marrow and 
adipose tissue have been the preferred sources for MSCs, 
and cells from each origin are biologically different[82,85]. 
Bone marrow-derived stem cells (BMSCs) were the first 
to be discovered, and are the most tested in preclinical 
assays. However, if compared to BMSCs, adipose-derived 
stem cells (ASCs) are simpler and less invasive to 
harvest, as large amounts of these cells can be obtained 
via liposuction with local anesthesia only[86,87]. If ASC 
allogeneic applications become someday proven to be 
safe, fat from liposuctions can be utilized for stem cell 
cultures instead of being discarded. Moreover, adipose 
tissue yields more stem cells than any other source[88]. 
For example, ASCs are more frequent in adipose tissue 
than BMSCs are in bone marrow in a 100 to 500 fold 
difference[86]. Although considered very promising[89,90], 
ASC use is relatively recent if compared to BMSCs. Thus, 
more studies are needed in order to effectively evaluate 
advantages of one over another on particular purposes, 
concerning efficacy, safety, etc. Neural stem cells (NSCs) 
are multipotent and can differentiate into neurons, 
astrocytes, and oligodendrocytes. Even though NSCs 
might initially sound as the most appropriate for nervous 
system diseases like ICH, the isolation of these cells is a 
complicated and delicate procedure[91].

Umbilical cord-derived stem cells (UCSCs) are the 
most used cells from perinatal tissues. Controversy still 
exists if UCSCs are MSCs or MSC precursors, as they 
differ in morphological and behavioral aspects[83]. UCSCs 
are harvested from umbilical cord or umbilical cord 
blood (UCB) from newborns[92,93], which are presently 
treated as medical waste. Thus, the isolation method 
completely avoids donor morbidity[94]. UCSCs are very 
abundant and show high proliferative capacity[94,95]. 
UCB contains mononuclear cells that are mostly 
leucocytes, but it also contains UCSCs. Importantly, 
0.6% of umbilical cord blood mononuclear cells are 
multipotent stress-enduring (Muse) cells. Muse cells are 
a non teratogenic pluripotent cell type that was recently 
isolated not only from UCB, but also from dermal 
fibroblasts, bone marrow, and adipose tissue[79,96,97].

important long lasting or permanent cognitive and motor 
impairments. In contrast, rats subjected to ICH exhibit 
no (or at least not long lasting) cognitive deficits[58,66]. 
Brain structural disparities might play a crucial role in 
this matter, implying in different affected structures[58]. 
Motor function impairments in rats are present and well 
described, but undergo notable recovery in few weeks[67]. 
Moreover, in rats, edema reaches full extension three to 
four days after ICH onset[68], whereas in humans it takes 
weeks[69]. Although there is much to be discovered in this 
matter, rat superior neurogenesis and/or neuroplasticity 
may explain these dissimilarities[70].

Many behavioral tests are used to assess ICH outcome. 
Among the most used are the modified limb placement 
test (mLPT)[71] and the modified neurological severity 
score (mNSS)[72]. In both tests, rats are subjected to a 
set of simple sensorimotor tasks that evaluate different 
aspects of neurological function. A score is attributed to 
the performance in each task, resulting in a final sum 
that ranges from 0 to 14. Both mLPT and mNSS are 
theoretically consistent, simple to perform, and cost-free, 
dismissing the need for complex training and special 
equipments. However, both tests should be always 
applied by blinded investigators, preferably the same 
ones for every session. If such attention is present, it 
is commonly unknown, as it is not always mentioned. 
Evaluating rat behaviors through mLPT and mNSS can 
be considerably subjective and interpretative tasks, 
relying strongly on the observer sensitivity and judging 
parameters. Importantly, the small score amplitude (0-2 
in mLPT and 0-1 in mNSS) attributed to each parameter 
may lead to significant variations in the final result. Thus, 
expectations of any nature and level should be absent 
in the assigned investigator for trustworthy results. 
Additionally, more than one single test should be applied 
for more solid assertions.

Last but not least, pathophysiological features of 
ischemic and hemorrhagic stroke diverge in many 
ways[73]. Thus, great caution should be taken when 
comparing findings from each disease.

Stem cell types and clinical applications: An ever-
emerging science
Stem cells are characterized by ability of self-renewal 
(production of identical copies of themselves) and 
capability to differentiate into distinct functional cells. 
Cells with capability to differentiate into any body cell 
are called totipotent. These cells are only found in 
the earliest stages following fertilization. Embryonic 
stem cells (ESCs) are mostly pluripotent, meaning 
that they are able to maturate into cells of the three 
germ layers (endoderm, mesoderm, and ectoderm). 
Unfortunately, ESCs are very difficult to isolate, and 
their use is very limited and even avoided due to 
ethical, social and religious concerns[74]. Induced 
pluripotent stem cells (iPSCs) were developed to 
work around ESCs major issues. iPSCs are generated 
from somatic cells reprogrammed by the introduction 
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Autologous stem cell transplantation guarantees 
the absence of immune rejection. However, depending 
on the circumstances, this might not be feasible. For 
instance, somatic stem cells require several weeks in 
culture to achieve sufficient proliferation[91]. Additionally, 
the harvested cells themselves may not be appropriate 
in number and/or quality for therapeutic purposes (e.g., 
in case of elder patients). More than that, harvesting 
might be a painful and complicated procedure to the 
patient (e.g., BMSCs). Cells from perinatal tissues could 
be used for autologous administration, but this practice 
would be very resource demanding, comprising long 
term storage of the isolated cells in freezers until they 
are eventually needed[98].

It is not consensual if allogeneic delivery of MSCs 
would lead to immune rejection. Actually, many findings 
with somatic stem cells showed that they possess 
immunossupressive action, not being rejected by 
the host organism[99-102]. If lack of immune rejection 
becomes confirmed for allogeneic somatic stem cell 
transplants, this would certainly represent the preferred 
option, making it possible that cultured cells are readily 
available for the patients. ESCs, by the other hand, are 
known to trigger immune responses following allogeneic 
transplantation. Taking that into consideration, research 
is being conducted in order to inhibit donor-host immune 
reactions[103].

Stem cell therapeutic effects and underlying 
mechanisms
It was in the beginning of the last decade that stem cells 
started to be considered as a treatment for neurological 
disorders. Back then, the expected therapeutic 
mechanism was very simple: stem cells were expected 
to repopulate the damaged tissue, differentiating into 
functional neurons and glial cells[104,105]. Actually, a 
considerable number of earlier studies have mistakenly 
concluded that MSCs and UCBCs could in fact differentiate 
into functional mature neurons and astrocytes, but these 
findings were contested[84,106]. NSCs are the only type of 
somatic stem cell capable to differentiate into functional 
mature nervous cells. But again, probably it is not the 
main action underlying NSC therapeutic effects. The 
underlying mechanisms are presently recognized to be 
far more complex, and are still not fully understood.

Evidence show that therapeutic effects primarily 
emerge from the release of trophic factors, cytokines, 
and microRNAs that stimulate endogenous mechanisms 
of repair[106-109]. In consonance with this, in a recent 
work, Jeon et al[110] reported a modest, yet significant 
recovery in rats subjected to ICH treated only with ASC 
extract. Additionally, different research groups already 
reported that endogenous NSCs are stimulated and 
recruited to the injury site in response to exogenous 
stem cell injection[111,112]. In fact, the injury itself seems 
to stimulate stem cells, exogenous and endogenous, 
to migrate to the perihematoma perimeter[113-117] and 
to promote proliferation and plasticity[108,111,118,119]. 

These restorative reactions are probably consequent 
of the secretion of trophic factors, which is the most 
likely mechanism underlying apoptosis prevention as 
well[111,113,119-121]. The same is true to the intensified 
angiogenesis, presumably due to elevated VEGF 
release[66,113,122,123]. Hematoma area reduction is also 
often observed[66,115,119,121,124], but not always[112-114,117]. 
Likewise, decrement of brain edema volume is a 
commonly stated benefice[113,125,126]. Stem cells are also 
seen to exert important anti-inflammatory effects in 
the injury site[66,113,125,126], being known to modulate the 
action of dendritic cells, and B and T lymphocytes[127-129]. 
Stem cells were linked to astrocyte and microglia 
response modulation as well[130]. In fact, recent findings 
showed that some glial cells within the oligodendrocytic 
and astrocytic lineages present progenitor and neural 
stem cell functions, with active response to brain 
injury[131,132].

Preclinical studies: an heterogeneous approach for an 
heterogeneous disease
Present available data concerning stem cell therapy for 
ICH derives from investigations conducted with notably 
different approaches. Many stem cell administration 
routes have been tested, but it remains unclear which 
is the best option. Findings in ICH model support that 
cervical vein delivery is inefficient[133], whereas good 
outcomes were already observed following stem cell 
delivery in brain parenchyma[66,111,113-116,121,126,134-137], lateral 
ventricle[120,133], tail vein[117,119,122,124-126,138,139], and carotid 
artery[133,140,141]. However, each one of these alternatives 
has drawbacks. Intracerebral and intracerebroventricular 
routes are very invasive alternatives, hardly representing 
the best clinical options. In this sense, intravascular 
injections are incomparably more feasible and less 
troublesome, and allows injections with higher cell 
doses[142]. However, due to their size, stem cells were 
reported to get trapped in the lungs, liver and spleen and 
to cause embolisms, following tail vein and intracarotid 
injections, respectively[143-145]. Importantly, the latter 
adversity can be surpassed with slower injection 
rates[143], a generally overlooked variable. It was reported 
that carotid artery delivery favors cell migration to the 
brain if compared to tail vein delivery route[146]. However, 
no differences in this aspect were seen when comparing 
carotid artery and jugular vein stem cell injections[147]. 
Additionally, concerning intravascular transplantation, the 
potential of other systemic interactions is of unknown 
impact, being the safety of this route debatable.

Recently, efforts have been devoted to the development 
of new cell administration routes. Among these, intranasal 
cell delivery represents a promising alternative for the 
treatment of neurological disorders. Not only intranasal 
administration is simple and noninvasive, but also avoids 
potentially dangerous systemic interactions[148-151]. Positive 
results were reported following the delivery of growth 
factors[152-154] and MSCs[155-158] following experimentally-
induced ischemic stroke in rodents. To our knowledge to 
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date, no intranasal delivery trials were conducted on the 
treatment of ICH using MSCs.

Some comparative studies using different routes 
have been made on ischemic stroke models. Findings 
comparing cell migration and possible systemic adversities 
resulting from different stem cell injection routes 
represent potential lessons to apply in future ICH model 
investigations.

Stem cells have been delivered at many different 
times after experimental ICH onset, ranging from one 
hour to two months following ictus (Table 1). Apparently, 
earlier NSC transplantation (acute phase) is particularly 
important in intravenous delivery[126]. Interestingly, in 
the same study, time matter seemed to be indifferent 
when stem cell injection was intracerebral. Also working 
with NSCs, other group tested the effects of different 
carotid artery injection times. Acute phase delivery, in 
this case, returned the worst therapeutic effects[140]. 
In late transplantation studies, intracerebral stem cell 
implantation was performed only two months after 
ictus. Even so, good functional and morphological 
outcomes could be observed[111,136]. It is also important 
to keep in mind that ICH dynamics in rats and humans, 
as previously discussed, are clearly different in many 
aspects, including temporality. Thus, time windows in 
these different organisms are proportionally divergent, 
e.g., 24 h after ICH onset, rodents and humans suffer 

from different pathological actions, due to the different 
paces in the development of the pathology.

The ideal amount of cells and vehicle to be injected 
is another unanswered question. The only studies 
performed with variations in that parameters used the tail 
vein route[122,122,124]. BMSC injection of 1 million cells was 
more therapeutically effective than half of it[122,122]. UCMCs 
were also more effective in the highest tested amount (16 
million cells), reducing injury area with more success[124]. 
However, apart from this studies, the most common 
quantity injected in the tail vein is of 3 million cells, 
suspended in 1 or 2 mL of saline solution[117,119,124,125]. The 
amount of intracerebrally grafted cells varied up to 25 
fold among studies[66,113,115,121,136]. Interestingly, in general, 
the vehicle volume is not necessarily proportional with 
the number of cells in suspension (Table 1).

Most of the aforementioned findings, however, are 
very hard to counterweigh and take as conclusive. 
Not only the time window after ICH varied between 
studies, but also the cell type, amount, and injection 
site. Moreover, it must be never forgotten that rats 
and humans are different organisms, and studies in 
more models must be performed before calculating 
the extrapolation to human applications. As stated 
in previous sections, different stem cell types have 
different attributes, and knowledge is in its youth about 
how all these divergences may affect ICH outcome.
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Table 1  Methodologies used in preclinical trials of stem cell therapy for intracerebral hemorrhage

Ref. ICH model Cells Time after ICH Amount Vol (μL) Delivery site

Bao et al[113] Col Ⅶ hBMSC (Flk-1+) 24 h 2 × 105 15 BP
Chen et al[120] Col Ⅳ ASC 48 h 3 × 106 10 LV
Fatar et al[112] Col Ⅳ hASC 24 h 3 × 106 500 TV
Jeon et al[110] Col Ⅶ ASC extract 1 h - - IP
Jeong et al[138] Col Ⅳ hNSC 24 h 5 × 106 500 TV
Kim et al[125] Col Ⅶ hASC 24 h 3 × 106 2000 TV
Lee et al[126] Col Ⅶ hNSC 2 h; 24 h 5 × 106 (TV); 1 × 106 (IC) 500 (TV); 2 (BP) TV; BP
Li et al[139] Col Ⅶ NSC 2 h; 7 h; 14 h; 21 h; 27 h 4 × 106 400 CA
Liang et al[114] Col Ⅳ BMSC 24 h 1 × 106 10 BP
Liao et al[66] Col Ⅶ hUCSC 24 h 2 × 105 10 BP
Nan et al[158] Col Ⅶ hUCB 24 h 2.4 × 106-3.2 × 106 500 SV
Otero et al[134] Col Ⅳ BMSC 72 h 2 × 106 10 BP
Otero et al[115] Col Ⅳ BMSC 2 m 5 × 106 15 BP
Otero et al[111] Col Ⅳ BMSC 2 h 2 × 106 15 BP
Qin et al[116] Col Ⅶ iPSC 24 h 2 × 106 10 BP
Qin et al[135] Col Ⅶ iPSC 24 h 1 × 106 10 BP
Seghatoleslam et al[124] Col Ⅳ hUCBMC 24 h 4 × 106; 8 × 106; 16 × 106 1000 TV
Seyfried et al[140] ABI BMSC 24 h 1 × 106 100 CA
Seyfried et al[122] ABI BMSC 24 h 5 × 105; 1 × 106 1000; 2000 TV
Vaquero et al[136] Col Ⅳ hBMSC1 2 m 5 × 106 30 BP
Wang et al[119] Col Ⅶ BMSC 1 h 1 × 106 1000 TV
Wang et al[137] Col Ⅶ NSC 72 h 1 × 106 500 (TV); 2 (BP) TV; BP
Yang et al[121] Col Ⅰ BMSC (overexpressing GDNF) 72 h 5 × 105 20 BP
Yang et al[117] ABI hUCSC 24 h; 72 h; 7 d 3 × 106 2000 TV
Yang et al[159] Col Ⅶ hASC 24 h 1 × 106 200 FV
Zhang et al[133] Col Ⅶ BMSC 24 h; 72 h; 5 d; 7 d 2 × 106 20 CA; CV; LV

1Delivered in platelet-rich plasma scaffolds. Intracerebral hemorrhage (ICH) model: autologous blood injection (ABI) and collagenase (Col). Cell type: ASC: 
Adipose-derived stem cell; BMSC: Bone marrow-derived stem cell; GDNF: Glial-derived neurotrophic factor; iPSC: Induced pluripotent stem cell; UCB: 
Umbilical cord blood; UCBMC: Umbilical cord blood mononuclear cell; UCSC: Umbilical cord-derived stem cell; NSC: Neural stem cell. Delivery site: BP: Brain 
parenchyma; CA: Carotid artery; CV: Cervical vein; FV: Femoral vein; LV: Lateral ventricle; SV: Saphenous vein; TV: Tail vein.

Cordeiro MF et al . Stem cells for intracerebral hemorrhage



CONCLUSION
In this review, we highlighted that there is still much to 
be learned about ICH and stem cells, both individually as 
interacting with each other. The approaches adopted by 
different groups were diverse, concerning not only the 
outcome evaluation, but also ICH induction and stem cell 
treatment protocols. Although it is important to perform 
tests under diverse conditions, more comparative 
studies should be motivated, including different times for 
interventions, stem cell types, quantities, and delivery 
sites. Homogeneity of all implicated variables except the 
one to be tested is imperative for the improvement of our 
understanding, preventing waste of hopes and resources 
in forthcoming human ICH trials.
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