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Streptococcus pneumoniae (the pneumococcus) is a highly recombinogenic bacterium responsible for a high bur-
den of human disease globally. Genetic recombination, a process inwhich exogenous DNA is acquired and incor-
porated into its genome, is a key evolutionary mechanism employed by the pneumococcus to rapidly adapt to
selective pressures. The rate at which the pneumococcus acquires genetic variation through recombination is
much higher than the rate at which the organism acquires variation through spontaneousmutations. This higher
rate of variation allows the pneumococcus to circumvent the host innate and adaptive immune responses, escape
clinical interventions, including antibiotic therapy and vaccine introduction. The rapid influx of whole genome
sequence (WGS) data and the advent of novel analysismethods and powerful computational tools for population
genetics and evolution studies has transformed our understanding of how genetic recombination drives
pneumococcal adaptation and evolution. Here we discuss how genetic recombination has impacted upon the
evolution of the pneumococcus.

© 2015 Chaguza et al.. Published by Elsevier B.V. on behalf of the Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license
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1. Introduction

Once described as the ‘Captain of the men of death’ by Sir William
Osler [1], Streptococcus pneumoniae (the pneumococcus) is a gram-
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positive, aerobic, human-adapted commensal that colonises the human
nasopharynx [2]. Pneumococcal carriage rates range from 10 to 80%
[3,4]. The wide range of carriage rates is mainly associated with age,
with children exhibiting higher carriage than adults [3]. Pneumococcal
carriage precedes spread to sterile parts of the body, which results in
non-invasive diseases such as otitis media, and invasive pneumococcal
diseases (IPD); bacteraemia, pneumonia and meningitis [5,6]. Pneumo-
coccal infections are responsible for approximately one million deaths
in children under five annually, of whichmore than 90% are in resource
poor settings, particularly in Sub-Saharan Africa, Latin America and Asia
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[7]. In addition to geography, additional factors including, age, smoking
and co-infection with other diseases such as HIV predispose individuals
to pneumococcal infections [8]. At least 93 pneumococcal serotypes are
known, based on the structure and antigenicity of the pneumococcal
polysaccharide capsule [9–12], a major virulence factor that surrounds
the pneumococcal cell wall [13]. Heterogeneity between pneumococcal
serotypes has been reported both in terms of the invasive disease po-
tential [14] and global geographical distribution [15]. Pneumococcal
Conjugate Vaccines (PCVs) that target the pneumococcal capsule offer
protection against the serotypes most commonly associated with inva-
sive disease. PCV7 consists of serotypes 4, 6B, 9V, 14, 18C and 23F
whereas the PCV10 consists of the same set of serotypes in PCV7 with
the addition of serotypes 1, 5 and 19F. Both PCV7 and PCV10 have
been shown to have high efficacy against the vaccine type (VT)
serotypes they incorporate and initially led to a dramatic decline in
IPD [16,17]. However, in the aftermath of the PCV7 rollout, several
studies have reported an increase in the rates of non-vaccine type
(NVT) serotypes in carriage [18] and invasive disease [19–22]. The
newly introduced PCV13 vaccine, which contains all the serotypes in
PCV10 plus 19A, 6B, 7F, promises to further reduce the overall IPD
burden by targeting additional serotypes some of which increased in
prevalence after the rollout of the previous formulations [17,23].

For S. pneumoniae to survive, it essential that it is able to rapidly
adapt to clinical interventions and its human hosts' immune responses
[24]. The introduction of genomic variation is one of the main mecha-
nisms it can employ to adapt to the host environment, avoid the host
immune response and evade clinical interventions. Genetic variation
arises in pneumococci and other bacterial genomes as a result of errors
by DNA polymerase and the DNA mismatch repair (MMR) system dur-
ing DNA replication [25]. These alterations in the encoded nucleotide
base sequence are known as random mutations. The rate at which
randommutations occur varies between bacteria due to the differences
in fidelity of DNApolymerases. Spontaneousmutations are eithermain-
tained or discarded in the population depending on the fitness cost of
the new genotypes [26]. Advantageous genotypes with a lower fitness
cost are likely to be favoured by positive Darwinian selection and can
rapidly spread and become prevalent within a bacterial population.
However, certain genotypes can increase in prevalence purely by
linkage to other loci that are undergoing selective sweeps, a process
known as genetic hitchhiking [27]. Furthermore within small popula-
tions certain genotypes are more likely to become more or less preva-
lent by chance alone regardless of the fitness costs, this is known as
genetic drift. Genomic variation can also arise through lateral transfer
of DNA fragments between bacteria followed by integration into the
host cell genome, in a process known as genetic recombination or
‘prokaryotic sex’ [28,29]. Numerous studies have demonstrated the
contributions of random mutation and recombination to the evolution
of bacteria [24,30–33]. However, variations exist in their relative impor-
tance depending on the bacterial species or individual strain considered
[34]. Together, all the aforementioned processes play a role in the
evolution and adaptation of the pneumococcus [35]. In recent years,
the rapid generation of WGS data, coupled with the development of
efficient analysis tools computational methods have helped to
provide better insights into the patterns and dynamics of bacterial
recombination.

In bacteria, uptake of exogenous DNA is achieved via threemain pro-
cesses; transformation, conjugation and transduction. Bacterial conju-
gation occurs when there is direct cell-to-cell contact of the bacteria
exchanging DNA via a sex-pilus that protrudes from one cell into the
other. During transduction, DNA is transferred from one bacterium to
another by viruses that infect bacteria called bacteriophages. Bacterial
transformation involves the acquisition of exogenous DNA from the
bacterial surroundings followed by the integration of the acquired
DNA into the host cell genome [36]. Depending on the diversity
between donor and recipient DNA, this can result in the creation of
variable or mosaic regions within the chromosomes that exhibit
incongruent evolutionary histories with other loci within the chromo-
somes that originate from multiple strains. In the pneumococcus, up-
take of exogenous DNA predominantly occurs through transformation
followed by integration into the host cell genome (recombination)
[36,37]. DNA uptake is triggered by competence stimulating peptides
(CSP) or exported pheromones that work in a quorum-sensingmanner
[38]. Quorum sensing involves regulation of gene expression in re-
sponse to in changes in the cell-population density [39]. Induction of
competence after DNA damage is considered as an alternative to the
SOS system, which is present in other species such as Bacillus subtilis,
but absent in the pneumococcus [40]. Development of competence
and transformation occurs during logarithmic growth of S. pneumoniae
and requires the expression of key competence (com) genes [41,42].
These include comC gene that encodes a CSP and the two-component
system (TCS) consisting of a histidine kinase (HK) (comD) and a cyto-
plasmic cognate response regulator (RR) (comE) [43]. The TCS activates
comX, which activates the transcription of a cascade of late competence
genes in the pneumococcus [44]. Other dispensable competence genes
also help competent pneumococcal cells to outcompete the non-
competent cells though triggering autolytic enzymes that kill them
[45]. Competent pneumococci can thus acquire DNA released from the
killed cells, a process known as fratricide [45]. Conjugative transfers of
plasmids have also been documented, however, currently there is no
evidence that suggest that phage-mediated transduction occurs in the
pneumococcus [46].

Genetic recombination has been extensively studied in
S. pneumoniae as a model organism. In this review, we discuss some of
the recent findings on genetic recombination in the pneumococcus
from published literature. We provide an overview of the main mecha-
nisms of DNA uptake and exchange that facilitate pneumococcal recom-
bination with other bacteria using WGS. We also discuss the potential
biological and clinical impacts of recombination events in pneumococ-
cal genomes with specific reference to antibiotic resistance, virulence
and vaccine evasion.

2. Genetic Exchange in Pneumococcal Genomes

S. pneumoniae is a naturally competent bacterium, able to actively
transport DNA fragments from the environment through the cell wall,
into the cell cytoplasm. Transported DNA fragments can then be
incorporated into the pneumococcal genome, a process known as ge-
netic recombination [47]. In addition to pneumococcal competence,
the simultaneous presence of both a donor and recipient bacterial strain
is essential for genetic exchange to occur. Pneumococcal recombination
has primarily been reported to occur during nasopharyngeal carriage,
chronic polyclonal infection and biofilm formation [48,49]. The naso-
pharynx is a major reservoir for pneumococcal transmission and thus
plays a role in disseminating recombinant bacterium across the
human population. There are two main hypotheses to suggest why
pneumococcal recombination has predominantly been observed in the
nasopharynx. Firstly, the nasopharynx is an environment enriched
with other microbial species, in addition to S. pneumoniae, which pre-
sents the opportunity for genetic exchanges. Secondly, the differential
expression of the capsule has been suggested to play a significant role.
A thinner capsule is expressed during nasopharyngeal carriage to
facilitate attachment to the epithelial surface and this may indirectly
allow for easy uptake of DNA as the pneumococcal capsule has been
reported to inhibit recombination both in vivo and in vitro [50].
Additionally, comparative genomic analysis of over 3000 well sampled
carriage pneumococci from a refugee camp in Thailand showed that
unencapsulated pneumococci had a higher propensity to undergo
genetic recombination than encapsulated pneumococci [51].

Lateral (or horizontal) gene transfer of exogenous DNA can result in
recombination of either related or unrelated DNA segments. When
transformation involves DNA exchange from closely related loci, it
is known as homologous (legitimate) recombination. Homologous
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recombination occurs in the core genome, a subset of genes that are
shared and conserved across all members of the species under consider-
ation. Homologous recombination also occurs between mobile genetic
elements (MGE) such as insertion sequences (IS), integrons, bacterio-
phages, plasmids and transposons, considered being part of the accesso-
ry genome (non-core genome) [52]. Such recombination exchanges can
occur between pneumococci or other closely related oral Streptococci
including Streptococcus mitis and Streptococcus oralis [53]. Homologous
recombination can also introduce new genes as exemplified by in
molecular biology laboratories where synthetic gene constructs are
inserted into the pneumococcal chromosomes [54]. When transforma-
tion occurs between unrelated loci, it is known as non-homologous
(illegitimate) recombination. The term ‘genetic recombination’ will be
used here to refer to all these forms of genetic exchanges.

3. Core, Accessory and Pan-genome of S. pneumoniae

Pneumococci possess a 2.1 megabases (Mb) pair circular genome
that consists of over 2000 predicted protein coding regions and approx-
imately 5% insertion elements [56]. The pneumococcus exhibits a high
degree of genomic plasticity as evidenced by the level of genomic
variability between isolates, with strains sharing approximately 74%
identity at the nucleotide level [55]. On average the core genome of
S. pneumoniae consists of 1647 predicted coding sequences (including
paralogs) [55]. The remaining coding sequences that are not conserved
in all members of the species are collectively referred as the ‘accessory’
genome, which usually contain dispensable genes that encode proteins
that are not essential to the species. The total gene repertoire available
to a species, the combined core and accessory genome, is termed the
pan-genome [57]. S. pneumoniae consists of an open pan-genome
which means that sequencing of new pneumococcal isolates continu-
ously adds novel genes to the current gene pool. Variation in the pneu-
mococcal core genome is predominantly introduced by random
mutations and homologous recombination that involves both short
and long stretches of DNA, whilst recombination involving unrelated
loci is more restricted to the accessory genome. The accessory genome
does not contain genes essential to cell survival however it plays an
important role in bacterial pathogen evolution [58]. This is largely due
to the acquisition of mobile genetic elements that harbour antibiotic
resistance determinants and virulence factors [58].

4. Capturing Genetic Recombination Signals

Multiple approaches have been employed to identify occurrences of
genetic recombination in bacterial genomes, reviewed elsewhere by Po-
sada et al. [59]. These range from laboratory methods such as DNA
hybridisation, to computational based methods such as Bayesian
methods [24,55,60–62]. The Genealogies Unbiased by Recombination
in Nucleotide Sequences (Gubbins) software was developed to identify
recombination events in closely related pneumococci [63] but it has
since been employed to study other bacterial species [64]. Closely
related pneumococcal isolates belong to the same sequence clusters
(SCs) or lineages. These SCs usually contains a single pneumococcal
serogroup or clone inferred by multi-locus sequence typing (MLST).
Within such similar isolates, the probability that a single nucleotide
polymorphism (SNP) would occur at a specific genomic location, the
‘background SNP density’, is estimated as the total number of SNPs
identified in the WGS divided by the overall size of the genome.
Whole genome scans are used to determine genomic regions with sta-
tistically higher number of SNPs than would be expected by chance.
This employs a sliding window approach that involves evaluation of a
specified number of nucleotides across the genome. The SNP density
within each sliding window is compared to the average background
SNP density for the whole genome to determine regions with signifi-
cantly higher number of SNPs than expected by chance alone [24,63].
Such atypical regions are most likely to have been acquired through
genetic recombination rather than spontaneous mutations, which on
average introduces 2–4 novel mutations per genome per year. The
amount of sequence diversity between donor and recipient strains de-
termines the likelihood that genetic recombination will occur [65].
The true levels of recombination in S. pneumoniae and other pathogens
are is likely to be underestimated because some events are undetectable
[59]. Such events occur between highly similar or identical loci and be-
tween distant species [59]. Ancient recombination events that involved
distantly related taxa before their divergence into different species are
difficult to detect by recombination algorithms because the signals in
such loci maybe obscured due to the accumulation of additional point
mutations [59].

5. Contributions of Recombination and RandomMutations

Beneficial mutations can sometimes arise independently in different
bacterial strains. However, competition between strains and Darwinian
selection can cause some beneficial mutations to be eliminated or be-
come less prevalent in the bacterial population. This process is known
as clonal interference. Genetic recombination provides a mechanism
for sustaining such independent beneficial mutations from different
strains through combining the different loci that contains the
mutations, thus giving rise to recombinant strains that possess both
mutations [66]. Although this process has been studied in Escherichia
coli and Saccharomyces cerevisiae, it is presumptive that such mecha-
nisms also occur in S. pneumoniae due to its highly recombinant nature
[66,67]. The relative contributions of genetic recombination and
random mutations to genomic diversifications of bacterial species
have been previously reported [33]. A study that used the sequences
of the seven MLST housekeeping genes to compare alleles introduced
through random mutations and recombination events showed that
the recombination to mutation (r/m) ratios varies between species.
The r/m ratio measures the total number of SNPs imported from exoge-
nous DNA through recombination (r) to those introduce randomly (m).
For the pneumococcus, it was shown that a single nucleotide site is 50-
fold more likely to change due to recombination than spontaneous
point mutation [33]. Further studies usingWGS have shown that genet-
ic recombination in pneumococci is widespread, however, the r/m
ratios reported were much lower (~7) than observed using MLST
sequences [24]. Overall, these results suggest that nearly 90% of all
polymorphisms in the pneumococcus have been introduced through re-
combination exchanges [24]. Further studies have also shown no signif-
icant variations in the mutation rates between pneumococcal SCs
(lineages); an SC consists of a group of isolates with the same genetic
backbone, which might not necessarily represent the same serotype
[51]. Overall, an average of 2–4 mutations are introduced within a
pneumococcal isolate per year regardless of the SC analysed in the
phylogenies [51]. In contrast, every recombination event gives rise to
an average of 72mutations per isolate [24,32] but significant differences
exist in levels of genetic recombination (r/m rates) observed between
pneumococcal SCs [51].

The pneumococcal polysaccharide capsule is a major pneumococcal
virulence factor. However as stated earlier, it is hypothesised to inhibit
genetic recombination. New evidence from WGS analyses has shown
that the rate of genetic recombination is higher among non-typeable
(NT) pneumococci, which do not express a capsule, to encapsulated
(typeable) pneumococci [51]. Analysis of pneumococcal strains within
a single monophyletic clade consisting of serotype 14 isolates and NTs
with the same genetic backbone as serotype 14, showed that thehighest
rates of genetic exchanges occurred in the NTs [51]. Pneumococcal iso-
lates can undergo capsule switching whereby the serotype of a clone
changes due to alteration in the capsule biosynthesis locus or through
genetic recombination [68]. Capsule switching between encapsulated
and unencapsulated states has been suggested as a transient state via
which pneumococci can acquire rapid genetic diversity through recom-
bination without the inhibitive effect of the surface capsule. The genetic
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diversity acquired through this unencapsulated state would allow
pneumococci to evade host immune responses or acquire novel
resistancemechanisms that can lead to non-susceptibility to antibiotics
upon return to the original or other capsular types [51,69]. Natural
capsule switchesmediated by recombination at the capsule polysaccha-
ride synthesis (CPS) locus have previously been documented in pneu-
mococci and preceded the introduction of the earliest pneumococcal
vaccines [68,70].

Recombination events vary in size. Regardless of the pneumococcal
serotype considered, genetic recombination events identified in the
pneumococcus range from very small fragments to thousands of base
pairs (bp) [68,71,72]. Two classes of recombination have been proposed
based on the sizes of the recombination events: 1)micro-recombination
which involve single and short stretches of DNA occur more frequently
and 2) macro-recombination, which are usually rare and consists of
multi-fragment replacements of DNA [72]. In vitro transformation of
the pneumococcus followed by sequencing has shown that average re-
combination events are ~2 kilobases (Kb) [37]. Such in vitro experi-
ments coupled with sequence analysis provide invaluable insight into
the nature of recombination in the pneumococcus. Analysis of diverse
collections of isolates at the population level has shown that on average,
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the sizes of in vivo recombination events are higher than observed
in vitro using the transformedmutants [24]. In a study of a single lineage
of ST81 pneumococci (designated PMEN1 by the Pneumococcal Epide-
miology Network) [73], recombination events were found to range
from 3 bp to 72Kb with a mean of ~6Kb [24]. However, the mean size
of recombinant blocks was higher in CC180 (serotype 3) lineage
compared to PMEN1 indicating that the distribution of events varies
by the lineage considered (Fig. 1) [71]. Overall, the sizes of recombina-
tion events in WGS follow a geometric distribution (specifically the
exponential distribution) whereby short events are more prevalent
than large recombination replacements. The large and multi-fragment
recombination events (N30Kb) have been associated with major
phenotype alterations such as capsule switching, which can also result
in co-transfer of β-lactam resistance genes located near the CPS locus
[68,72].

6. Pneumococcal Virulence and Antibiotic Resistance

A landmark experiment on pneumococcal transformation (recombi-
nation) by Fred Griffiths is the first and arguably most well-known
study to demonstrate the biological importance of this process on
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pneumococcal virulence [36]. Griffiths demonstrated that genetic
recombination through a transforming factor, now known to be DNA
[74] from heat inactivated virulent (encapsulated) pneumococci
induced virulence in mice that were infected with avirulent
(unencapsulated) pneumococcal strains. In addition to demonstrating
the biological importance of recombination in virulence and disease,
this discovery marked the beginning of the new era of molecular
genetics [36].

Genetic recombination plays an important role in the development
of antibiotic resistance in the pneumococcus. Antibiotic induced stress
is known to induce competence in the pneumococcus; during the
competence phase, the pneumococcus acquires exogenous DNA,
which may include genes that confer resistance to antibiotics [75]. It
has been reported that recombination replacements are responsible
for themosaic structure typically observed in penicillin binding proteins
(PBP) genes in S. pneumoniae [76]. Mutations in PBP genes confer resis-
tance to β-lactam antibiotics including penicillin, amoxicillin and cefo-
taxime [77]. β-lactams kill bacteria by inhibiting cell wall biosynthesis
and are still by far the most widely used class of antibiotics, as such
the increasing rates of resistance in pneumococci are a major global
health concern. Recombinationwith other oral streptococci, particularly
themitis and viridans group played amajor role in the initial acquisition
of β-lactam resistance in the pneumococcus [79,80]. Recombination
involving PBP genes has also been extensively documented to occur be-
tween pneumococcal serotypes such as serotypes 9V↔23F, 9N↔14,
7B↔9N, 35C↔17F and 12F↔7F [68,78]. Recombination in
S. pneumoniae isolates has also been associated with increased levels of
resistance to multiple other classes of antibiotics [30]. Recombination
mediates the dissemination of transposon and integrative conjugative el-
ements (ICEs) that carry an array of antibiotic resistance determinants,
throughout the pneumococcal population [81,82]. Such mobile genetic
elements include the Tn916-like mobile genetic elements (MGEs),
Tn5251 (a Tn916-like element) [83], Tn5252 [84], Tn5253 (a composite
of Tn5251 and Tn5252 transposons) [84] and many others. The Tn916,
Tn5251, Tn5252, Tn5253 and Tn1545 transposons carry tetM gene,
which confers resistance to tetracycline [83–86]. In addition to the tetM
gene, Tn5251 transposons (the Omega element) also carry the catQ
gene that confers resistance to chloramphenicol. Another Tn916 family
transposon, Tn1545, facilitates resistance to macrolide antibiotics (e.g.
erythromycin and azithromycin), mediated by the ribosomal protection
gene (ermB) and through efflux mechanism (mefE) gene that it carries
[87]. Several epidemiological studies have reported associations between
levels of antibiotic resistance in pneumococcal isolates and the presence
of mobile genetic elements, which suggests that genetic recombination
involving such MGEs has significant clinical impact [88].

Specific loci accumulate recombination events at a higher rate com-
pared to others. Such regions are known as hotspots of recombination. A
recent study of the largest collection of sequenced S. pneumoniae ge-
nomes to date (n=3085) found an association between genetic recom-
bination hotspots and antibiotic resistance [51]. S. pneumoniae isolates
that had undergone a recombination in the genes targeted by co-
trimoxazole (folA) and β-lactam antibiotics (pbp1a, pbp2a and pbp2x)
had higher likelihood to exhibit antibiotic resistance to the aforemen-
tioned antibiotics [51,89]. In contrast to tetM and catQ genes, acquired
accessory genes, which confer resistance to tetracycline and chloram-
phenicol respectively, the folA and PBP genes are core housekeeping
that are not disseminated by MGEs. Recombination encompassing the
core genome encoded topoisomerase type II genes has been implicated
in fluoroquinolones in both viridans streptococci [90] and salmonella
[91], however its contribution to resistance in pneumococci has been re-
ported to be minimal [92,93]. In PMEN1, recombination events and
point mutations in the rpoB gene were also associated with rifampicin
resistance [24]. In addition to folA and PBPs, other genes reported to be
pneumococcal recombination hotspots, are the virulence factors and
protein vaccine candidates, pspA and pspC (cbpA) [51]. pspA is a cell
wall surface protein and a candidate for protein based vaccines and
has been shown to increase virulence in mice [94]. pspC (cbpA or spsA)
is a choline-binding cell surface protein that plays a role in establish-
ment of colonisation [95]. Thus, the occurrence of genetic recombina-
tion in these vaccine candidate and antibiotic resistance genes could
result in successful evasion of both the humoral and cell mediated
hosts' immune responses and increased levels of resistance to the
targeted antibiotics.

7. Recombination Drives Vaccine Escape

Since the introduction of PCV7 in developed countries, followed by
PCV10 and PCV13, a significant reduction in invasive pneumococcal
disease has been reported [96]. PCVs directlywork against a set of pneu-
mococcal serotypeswhose capsular polysaccharides have been targeted
in the vaccine formulation. The introduction of PCVs has led to the
emergence of the capsule-switch variants arising due to the vaccine-
derived selective pressures [97]. Capsule switching is a natural process
that occurs when different pneumococcal serotypes ‘swap’ their capsu-
lar polysaccharide locus through alteration of the capsule biosynthesis
locus via mutations (single base changes, insertions or deletions) or ge-
netic recombination. When a vaccine-type (VT) strain ‘swaps’ its cap-
sule with a non-vaccine type (NVT) strain, it is able to escape the
vaccine since PCVs only confer protection against the VT. An increase
in the prevalence of these capsule-switched variants can result in sero-
type replacement, which is the increase of NVT associated pneumococ-
cal clones, that follows the decrease in VT associated clones [68]. Such
replacement of VTs by NVTs has the potential to reduce the impact of
vaccination on the overall IPD burden in the long term. Various reports
have documented the emergence and circulation of vaccine escape
recombinants between serotype VT serotype 19F and NVT serotype
19A following the introduction of PCV7 in the United States [97].
Similar capsule switch variants were also reported in study cohorts
from Massachusetts and Thailand [24,32,51]. Apart from capsule-
switch, serotype replacement that occurs after introduction of PCVs is
mainly caused by ‘serotype unmasking’ [98]. Unmasking is the process
where less prevalent or ‘masked’ NVT serotypes rise in prevalence to
occupy the ecological niche vacated by the ‘more’ competitive VT
serotypes after vaccination [98]. Several reports have shown that
serotype replacement is predominantly caused by the unmasking of
less prevalent NVT serotypes. Analysis of the genetic background of
the replacement serotypes is used to rule out whether such increase
of NVT serotypes post-vaccination was caused by capsule switching.
For example, comparing antibiotic susceptibility patterns and MLST se-
quence types (ST) of the replacement serotypes could determine
whether or not the same genotypes were present in before the vaccine
rollout [99]. Presence of the STs in the replacement serotypes that are
associated with different serotypes could suggest that serotype
switchinghas takenplace through either pointmutations or recombina-
tion [99].

8. Conclusions

The impact of genetic recombination to the adaptation and evolution
of S. pneumoniae has been demonstrated by several studies. This has
been largely due to parallel advancements in both analysis methods
and high throughput sequencing technology. Such advances allow the
analyses of whole genome sequences from diverse collections of
pneumococcal isolates. Despite these successes, there are still several
questions regarding the nature and biological impacts of recombination
in pneumococci and other bacterial species. Further studies are required
to uncover the exact functional roles of certain recombination events.
Most of the genomic studies on pneumococcal recombination have
been from a macroevolution standpoint whereby recombination
replacements have been analysed at a population level and over large
time scales. To better understand the biological roles of these recombi-
nation events, future genomic studies should aim to identify the
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functional roles of certain recombination events in order to provide fur-
ther insights into pneumococcal pathogenesis, nasopharyngeal carriage
dynamics and strain transmission. This knowledge would be invaluable
to the development of preventative and control strategies against this
important pathogen.
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