Effect of Oxygen and Temperature on the Efficiency of Photosynthetic Carbon Assimilation in Two Microscopic Algae¹

Received for publication September 4, 1979 and in revised form December 6, 1979

JOHN R. COLEMAN AND BRIAN COLMAN

Department of Biology, York University, Downsview (Toronto), Ontario M3J IP3 Canada

ABSTRACT

The CO₂ compensation points of *Coccochloris peniocystis*, a blue-green alga and *Chlamydomonas reinhardtii*, a green alga, were determined at pH 8.0 in a closed system by a gas chromatographic technique. The compensation point of *Chlamydomonas* increased markedly with temperature, rising from 0.79 microliter per liter CO₂ at 15 C to 2.5 microliters per liter CO₂ at 35 C. In contrast, the compensation point of *Coccochloris* at 20 C was 0.71 microliter per liter CO₂ and rose to only 0.95 microliter per liter CO₂ at 40 C.

The compensation point of the green alga was significantly reduced at low O_2 concentrations (1 to 2%) when measured over the temperature range of 15 to 35 C. The compensation point of the blue-green alga, over the temperature range of 20 to 40 C, was unaffected by lowering the O_2 concentration.

The whole cell CO₂ affinity of *Chlamydomonas* decreased substantially with increasing temperature at 21% O₂ whereas little change was observed over the same temperature regime when the CO₂ affinity was determined at O₂ concentrations of 1 to 2%. The CO₂ affinity of *Coccochloris* did not decrease significantly with either increasing temperature or O₂ concentration.

These results suggest that while photorespiration is undetectable in Coccochloris some photorespiratory CO_2 release occurs in *Chlamydomonas*.

The Γ^2 of freshwater algae, when measured by a variety of techniques, have been found to be uniformly low. Some unicellular green algae appear to have Γ values lower than 10 μ l l⁻¹ (3, 13, 14, 23) and a wider range of algae exhibit this phenomenon when the Γ is determined at an alkaline pH (3). Although the measured Γ for algae appear to be lower than those found in C₃ plants, this does not indicate the absence of photorespiration. A high rate of photorespiratory carbon efflux in equilibrium with a high rate of carbon influx would result in the alga having a low compensation point though photorespiration is present. Another indication of whether or not photorespiration occurs can be obtained by the examination of the effect of temperature on Γ . It has been shown that in leaves of C3 plants the rate of photorespiration and Γ increase with increasing temperature (12, 15, 18, 20). Laing et al. (22) have attributed these changes to a decrease in the soybean leaf affinity for CO₂ and an increased affinity for O₂ with increasing temperature. The purified enzyme, RuBP carboxylase (EC 4.1.1.39), when isolated from soybean leaf tissue showed a substantial increase in the $K_m CO_2$ whereas little change was noted in the affinity of the enzyme for O_2 .

An increase in the internal O_2/CO_2 solubility ratio has also been proposed as an explanation for the change in the rate of photorespiration at elevated temperatures (21). However, other studies indicate that the change in the photorespiratory rate could not be correlated with the increase in the O_2/CO_2 solubility ratio which occurs with an increase in temperature (15).

In this paper we report studies on the effect of temperature and O_2 concentration on Γ and CO_2 affinity of a unicellular green and a unicellular blue-green alga.

MATERIALS AND METHODS

Axenic cultures of Coccochloris peniocystis Kutz. (1548) and Chlamydomonas reinhardtii Dangeard (90) were obtained from the culture collection of algae at the University of Texas, Austin (culture collection numbers in parentheses). The algae were cultured axenically in medium continuously bubbled with air and harvested as described previously (7). The algal cells were resuspended in 50 mM K-phosphate (pH 8.0) which had been previously flushed with either CO₂-free N₂ or air as a means of obtaining low (1-2%), and air-saturated (21%) levels of dissolved O₂.

For the determination of Γ , the algal suspension was placed in a temperature-controlled cylindrical glass incubation vessel (16 × 5 cm), the algae maintained in suspension with a magnetic stirrer and a layer of degassed mineral oil 3 cm deep placed on the surface to prevent gas exchange with the air. The suspension was then illuminated ($2.5 \times 10^4 \,\mu w \, \text{cm}^{-2}$) with a 150-w flood light and the depletion of DIC in the medium monitored by removing, at timed intervals, 3.0-ml samples of algal suspension through a septum-stoppered sampling port in the incubation vessel. The DIC concentration of suspension samples was determined, after separation from the algal cells, by the gas-chromatographic technique described previously (3). The free CO₂ concentration at pH 8.0 was calculated from the DIC concentration using the equations of Buch (5).

To determine the apparent $K_m CO_2$ of the algae, photosynthetic rates at varying HCO_3^- concentrations were measured at a light intensity of $2.5 \times 10^4 \ \mu w \ cm^{-2}$, with a thermostatted Clark-type O_2 electrode (Hansatech Ltd., Kings Lynn, Norfolk, U.K.) calibrated as previously described (3). Dark respiration rates were also determined with the O_2 electrode.

Chl was determined after extraction with methanol or 90% acetone (3).

RESULTS

Effect of Temperature on Γ . The unicellular algae, when incubated in a closed system, reached equilibrium with the external carbon concentration in 15–20 min after the onset of illumination. The inorganic carbon concentration at equilibrium ranged from 35 to 125 μ l l⁻¹ DIC depending upon the alga, temperature and

¹ This work was supported by grants from the National Science and Engineering Research Council of Canada.

² Abbreviations: Γ : CO₂ compensation point; RuBP: ribulose-1,5-bisphosphate; DIC: dissolved inorganic carbon; PEP: phosphoenolpyruvate.

 O_2 concentration. As all experiments were performed at pH 8.0, the "free" CO_2 concentration which represents Γ can be calculated for each DIC equilibrium concentration. Expressed in this manner Γ ranged from 0.75 to 2.5 μ l l⁻¹ CO₂, again depending upon the alga, the temperature and O₂ concentration.

Although the two algae appear to be similar, in that Γ values are very low, it is in the response of Γ to increasing temperature that significant differences between *Coccochloris* and *Chlamydomonas* become apparent (Fig. 1). Over the temperature range studied and at 21% O₂, the green alga Γ approximately doubles for every 10 C rise, increasing from 0.79 ± 0.07 µl 1⁻¹ CO₂ at 15 C to 2.51 ± 0.14 µl 1⁻¹ at 35 C. In comparison, Γ of *Coccochloris*, at the same dissolved O₂ concentration and over the temperature range of 20–40 C, increases less than 26%, rising from 0.71 ± 0.04 µl 1⁻¹ CO₂ at 20 C to 0.95 ± 0.07 µl 1⁻¹ CO₂ at 40 C.

The O_2 sensitivity of Γ for both algae at each experimental temperature was also examined. *Coccochloris*, which exhibited only a minor increase of Γ with increasing temperature, was not affected by the lowering of the O_2 concentration to 1-2% (Fig. 1). The results obtained for *Chlamydomonas*, however, indicated that Γ , particularly at the higher temperatures is significantly reduced by lowering the O_2 concentration to well below air levels (Fig. 1).

Dark respiration rates of these algae were also determined over the temperature range 15-40 C. The respiration rate of *Chlamydomonas* increased over the entire temperature range, however, the greatest rate of change occurred from 25 to 35 C (Table I). Over this temperature interval of 25-35 C, Γ , when determined under low O₂ concentrations, increased most rapidly. In contrast to the green alga, dark respiration rates of *Coccochloris* were lower

FIG. 1. Effect of temperature on the Γ of *Chlamydomonas* at 21% O₂ (\bigcirc — \bigcirc — \bigcirc) and 1–2% O₂ (\bigcirc — \bigcirc); and *Coccochloris* at 21% O₂ (\triangle — \triangle — \triangle) and 1–2% O₂ (\triangle — \triangle — \triangle). Vertical bars represent the sE of the mean.

 Table I. Effect of Temperature on Rate of Dark Respiration of Coccochloris and Chlamydomonas

Coccochloris		Chlamydomonas	
Tempera- ture	O2 Uptake	Tempera- ture	O ₂ Uptake
С	µmol mg Chl ⁻¹ h ⁻¹	С	μ mol mg Chl ⁻¹ h ⁻¹
20	15.2 ± 2.6	15	17.3 ± 2.9
30	24.4 ± 3.7	25	26.7 ± 3.5
40	32.3 ± 4.4	35	54.9 ± 3.9

and increased linearly with increasing temperature (Table I).

Effect of Temperature on Apparent CO₂ Affinity. The increase in Γ with temperature could be partially accounted for by an increased rate of O₂-sensitive photorespiration in *Chlamydomonas*. The affinity of these cells for CO₂ was, therefore, measured and compared to the CO₂ affinity of *Coccochloris*.

In Coccochloris the apparent $K_m \text{ CO}_2$ remained constant at 0.14 μ M with increasing temperature at both O₂ concentrations (Fig. 2). A marked change, however, was observed in the affinity of Chlamydomonas for CO₂ (Fig. 3), the apparent $K_m \text{ CO}_2$ rising from 0.55 μ M at 15 C to 1.10 μ M at 35 C. This change in affinity

FIG. 2. Double reciprocal plots of the rate of photosynthetic O_2 evolution in *Coccochloris* as a function of NaHCO₃ concentration under 21% O_2 ($\square - \square - \square$) and 1-2% O_2 ($\bigcirc - \bigcirc - \bigcirc$) at three different temperatures.

for the substrate is O_2 dependent as the apparent $K_m CO_2$ of this alga (0.44 μ M) was unaffected by increased temperature when the cells were incubated under low O_2 concentration (Fig. 3). The increase in the apparent $K_m CO_2$ with increasing temperature in *Chlamydomonas* when incubated at 21% O_2 could result in an increase in the rate of photorespiration with a concomitant increase in Γ .

DISCUSSION

The presence of photorespiration in algae has not been demonstrated unequivocally although these organisms produce glycolate in photosynthesis and some green algae have been shown to possess a functional glycolate pathway (25). Various rates of CO_2 release in light have been demonstrated in a range of algae which suggested that photorespiration occurred in some species (7). Other workers, however, have failed to detect photorespiration in a similar range of species (23). The present study provides evidence that some photorespiratory CO_2 release occurs in the green alga *Chlamydomonas* although it is undetectable in the bluegreen alga *Coccochloris*.

The response of Γ of the green alga to both O_2 and temperature indicates that photorespiration occurs in Chlamydomonas and that the rate of photorespiration increases with temperature and with increasing O₂ concentration (Fig. 1). Similar relationships between temperature and Γ , and O₂ concentration and Γ have been shown in a wide range of C₃ higher plants (6, 17, 18, 20). Other work has shown that photorespiratory rate increases with an increase in temperature which would result in higher values of Γ (15, 19, 22). The absolute values of Γ for *Chlamydomonas* are very much lower than those of C_3 plants, but the degree of change in Γ with increasing temperature at 21% O₂ is very similar to that observed in higher C_3 plants. The rise in Γ with an increase in temperature in Chlamydomonas at low O₂ concentration may be accounted for by an increase in the rate of dark respiration in the light (Table I). It has been suggested that dark respiration may be a second component of Γ and one that is O₂-insensitive (26, 27).

An increase in the rate of photorespiration with rising temperature in *Chlamydomonas* is reflected in the decreased affinity of the cell for CO₂. At 21% O₂ the apparent K_m CO₂ increases with temperature whereas at low O₂ concentration it remains constant. Such a result is consistent with the findings that the ratio of the apparent K_m oxygenase/ K_m carboxylase of the leaves of C₃ plants and of isolated RuBP carboxylase increases with temperature (1, 22). Such a stimulation of RuBP oxygenase activity would cause the formation of additional photorespiratory substrate and the subsequent increase in the rate of release of CO₂ would result in an elevation of Γ .

In contrast to Chlamydomonas, the blue-green alga Coccochloris does not demonstrate any effect of O_2 concentration and temperature on Γ and the apparent K_m CO₂ remains constant with changes both in temperature and O₂ concentration. The physiological responses of the alga to increased temperature and to O₂ concentration are identical to those observed in higher plants which possess the C₄ pathway of CO₂ fixation and consequently display a restricted rate of photorespiration (4, 8, 16). These results suggest that RuBP carboxylase in the blue-green alga is protected from the effects of O₂ or that CO₂ produced in photorespiration is efficiently refixed. It has been reported that blue-green algae have some metabolic similarities to C₄ plants in that they have high levels of PEP carboxylase (10) and that photosynthetic CO₂

FIG. 3. Double reciprocal plots of the rate of photosynthetic O_2 evolution in *Chlamydomonas* as a function of NaHCO₃ concentration under 21% O_2 (\square — \square) and 1–2% O_2 (\bigcirc — \bigcirc — \bigcirc) at three different temperatures.

fixation is inhibited by malonate, an inhibitor of PEP carboxylase (11).

Alternatively, photorespiration in the blue-green alga might be precluded and severely limited in Chlamydomonas by the protection of RuBP carboxylase as a result of a build up of a high concentration of inorganic carbon in the cell by an active transport of bicarbonate. Evidence that HCO₃⁻ is taken up during photosynthesis by Coccochloris has been provided by Miller and Colman (24) and interesting studies by Badger et al. (2) have demonstrated an accumulation of inorganic carbon during photosynthesis in the blue-green alga Anabaena variablis and in C. reinhardtii which is attributable to bicarbonate transport. Some indication of an active accumulation of inorganic carbon by algal cells is also provided in the present study, since the apparent K_m CO₂ of both algae studied (Figs. 2 and 3) are both considerably lower than the K_m CO2 of 71 and 17.5 µM reported, respectively, for RuBP carboxylase isolated from a blue-green alga (9) and a higher plant (1). The results of Badger et al. (2) also indicate that the inorganic carbon pool accumulated in Anabaena was much greater than that in Chlamydomonas suggesting that there is a disparity in the efficiency of bicarbonate transport between the two algae. The difference in the physiological response to O₂ between Coccochloris and Chlamydomonas reported in this study may, therefore, reflect a difference in the efficiency of the bicarbonate transport systems of the two algae.

LITERATURE CITED

- BADGER MR, TJ ANDREWS 1974 Effects of CO₂, O₂ and temperature on a high affinity form of ribulose diphosphate carboxylase-oxygenase from spinach. Biochem Biophys Res Commun 60: 204-210
- BADGER MR, A KAPLAN, JA BERRY 1978 A mechanism for concentrating CO₂ in Chlamydomonas reinhardtii and Anabaena variabilis and its role in photosynthetic CO₂ fixation. Carnegie Inst Year Book 78: 251-261
- BIRMINGHAM, BC, B COLMAN 1979 Measurement of CO₂ compensation points of freshwater algae. Plant Physiol 64: 892-895
- BLACK CC 1973 Photosynthetic carbon fixation in relation to net CO₂ uptake. Annu Rev Plant Physiol 24: 253–286
- BUCH K 1960 Dissoziation der Kohlensaure, Gleichgewichte und Puffersysteme. In W Ruhland, ed, Handbuch der Pflanzenphysiologie. Springer-Verlag, Berlin, pp 1-11
- 6. BULLEY NR, EB TREGUNNA 1970 Photosynthesis and photorespiration rates at

the CO₂ compensation point. Can J Bot 48: 1271-1276

- CHENG K-H, B COLMAN 1974 Measurements of photorespiration in some microscopic algae. Planta 115: 207-212
- CHOLLET Ř, WL OGREN 1975 Regulation of photorespiration in C₃ and C₄ species. Bot Rev 41: 137-179
- CODD GA, WDP STEWART 1977 D-Ribulose 1,5-diphosphate carboxylase from the blue-green alga Aphanocapsa 6308. Arch Microbiol 113: 105-110
- COLMAN B, K-H CHENG, RK INGLE 1976 The relative activities of PEP carboxylase and RuDP carboxylase in the blue-green algae. Plant Sci Lett 6: 123–127
 COLMAN B, JR COLEMAN 1978 Inhibition of photosynthetic CO₂ fixation in blue-
- green algae by malonate. Plant Sci Lett 12: 101–105
- 12. DOWNTON WJŚ, RO SLATYER 1972 Temperature dependence of photosynthesis in cotton. Plant Physiol 50: 518-522
- EGLE K, W SCHENK 1952 Untersuchunger über die Reassimilation der Atmungskohlensäure bei der Photosynthese der Pflanzen. Beitr Biol Pflanz 29: 75-105
 FOCK H, DT CANVIN, BR GRANT 1971 Effects of oxygen and carbon dioxide on
- FOCK H, DT CANVIN, BR GRANT 1971 Effects of oxygen and carbon dioxide on photosynthetic O₂ evolution and CO₂ uptake in sunflower and *Chlorella*. Photosynthetica 5: 389-394
- FOCK H, K KLUG, DT CANVIN 1978 Effect of carbon dioxide and temperature on photosynthetic CO₂ uptake and photorespiratory CO₂ evolution in sunflower leaves. Planta 145: 219-223
- 16. HATCH MD 1975 The C₄ Pathway of Photosynthesis: Mechanism and Function. In RH Burris, CC Black, eds, CO₂ Metabolism and Plant Productivity. University Park Press, Baltimore, pp 59–82
- 17. HEATH OVS, B ORCHARD 1968 CO₂ assimilation at low CO₂ levels. II. The process of apparent assimilation. J Exp Bot 19: 176–192
- HEW CS, G KROTKOV, DT CANVIN 1969 Effects of temperature on photosynthesis and CO₂ evolution in light and darkness by green leaves. Plant Physiol 44: 671-677
- KEYS AJ, EVSB SAMPAIO, MJ CORNELIUS, IF BIRD 1977 Effect of temperature on photosynthesis and photorespiration of wheat leaves. J Exp Bot 28: 525–533
- KRENZER EG, DN MOSS, RK CROOKSTON 1975 CO₂ compensation points of flowering plants. Plant Physiol 56: 194-206
- 21. KU S-B, GE EDWARDS 1977 Oxygen inhibition of photosynthesis. II. Kinetic characteristics as affected by temperature. Plant Physiol 59: 991-999
- LAING WA, WL OGREN, RH HAGEMAN 1974 Regulation of soybean net photosynthetic CO₂ fixation by the interaction of CO₂, O₂ and ribulose 1,5-diphosphate carboxylase. Plant Physiol. 54: 678-685
- LLOYD NDH, DT CANVIN, DA CULVER 1977 Photosynthesis and photorespiration in algae. Plant Physiol 59: 936-940
- MILLER AG, B COLMAN 1980 Evidence of HCO₃⁻ transport in the blue-green alga (cyanobacterium) Coccochloris peniocystis. Plant Physiol 65: 397–402
- TOLBERT NE 1974 Photorespiration In WDP Steward, ed, Algal Physiology and Biochemistry. Blackwell, Oxford, pp. 474-505
- 6. VOSKRESENSKAYA NP, GS GRISHINA, SN CHMORA, NM POYARKOVA 1970 The influence of red and blue light on the rate of photosynthesis and the CO₂ compensation point at various O₂ concentrations. Can J Bot 48: 200-211
- ZELITCH I 1971 Photosynthesis Photorespiration and Plant Productivity. Academic Press, New York, pp 127-172