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Abstract

High selectivities and exquisite control over reaction outcomes entice chemists to use biocatalysts 

in organic synthesis. However, many useful reactions are not accessible because they are not in 

nature’s known repertoire. We will use this review to outline an evolutionary approach to 

engineering enzymes to catalyze reactions not found in nature. We begin with examples of how 

nature has discovered new catalytic functions and how such evolutionary progressions have been 

recapitulated in the laboratory starting from extant enzymes. We then examine non-native enzyme 

activities that have been discovered and exploited for chemical synthesis, emphasizing reactions 

that do not have natural counterparts. The new functions have mechanistic parallels to the native 

reaction mechanisms that often manifest as catalytic promiscuity and the ability to convert from 

one function to the other with minimal mutation. We present examples of how non-natural 

activities have been improved by directed evolution, mimicking the process used by nature to 

create new catalysts. Examples of new enzyme functions include epoxide opening reactions with 

non-natural nucleophiles catalyzed by a laboratory-evolved halohydrin dehalogenase, 

cyclopropanation and other carbene transfer reactions catalyzed by cytochrome P450 variants, and 

non-natural modes of cyclization by a modified terpene synthase. Lastly, we describe discoveries 

of non-native catalytic functions that may provide future opportunities for expanding the enzyme 

universe.
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1. Introduction

Replete with nature’s solutions to catalyzing chemical transformations, our burgeoning 

genomic databases beautifully illustrate how evolution generates chemical innovation in the 

form of new enzymes. Today’s enormous biocatalytic diversity is the product of evolution 

from ancestral enzymes, the mechanisms of which are now being elucidated in 

unprecedented detail. Enzyme evolution is also alive and well and moving into the future: 
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new enzymes continue to appear in response to (often man-made) opportunities to survive 

challenges (e.g. antibiotic resistance) or occupy new niches (e.g. catabolize man-made 

compounds). Given nature’s ability to innovate, and our extremely limited ability to design 

new enzymes, we argue for using evolutionary strategies to create and tune enzymes fit for 

human applications.

Directed evolution is a powerful protein engineering approach that has been applied with 

great success for nearly two decades to fine-tune enzymes for chemical synthesis.1 A simple 

strategy of accumulating mutations via iterative mutagenesis and screening for desired 

functions can effectively optimize properties of interest—activity on non-native substrates, 

enantioselectivity, product selectivity, stability and more—and deftly circumvents our 

profound ignorance of how the enzyme sequence encodes these features. If chemists are to 

use enzymes in synthesis, these catalysts have to perform as well as or better than the 

alternatives. Often this is a high bar that no ‘rational design’ approach has been able to meet 

on a regular basis, but one where directed evolution performs well, given a good starting 

point.2 As a result, enzymes are increasingly used in chemical synthesis, where they offer 

significant advantages for ‘green’ processes3, production of chemicals from renewable 

resources,4 and synthesis of complex natural products.

Directed evolution can be used to diversify existing enzymes, creating variants that function 

in non-native environments, accept non-native substrates, or exhibit non-native selectivities. 

But how do we create whole new enzymes, including enzymes that catalyze reactions not 

known in nature? Nature’s catalyst reserve is vast and has not been fully mined; new 

enzymes will continue to be discovered. Chemists, however, are fond of a number of 

reactions for which there may well be no natural biocatalytic counterparts, either because 

nature has not discovered a need for them (our goals and requirements being different from 

those of a microbe or a tree) or because they require functional groups and reagents not 

normally found in the biological world. Our goal is to begin to address this gap between the 

enzymes we can find in nature and those we would like to have but may not exist. We 

believe we can use what we have learned of nature’s approach to inventing new catalysts in 

order to jumpstart the evolution of new enzyme families in the laboratory. We illustrate this 

evolutionary approach to catalyst discovery by starting with some examples from nature’s 

repertoire. In some cases, scientists have elucidated sequence and functional pathways that 

connect existing enzymes in order to demonstrate how natural evolution may have 

proceeded from one function to the other.

Can this knowledge help us step out into the unknown and create biocatalysts that have not 

yet been discovered in the natural world? That the answer is an emphatic “Yes!” is 

illustrated with several powerful examples of enzymes engineered to catalyze reactions with 

no known natural counterparts. We end by describing a few non-natural activities that might 

afford a peek into future enzyme families.

2. Nature’s Approach to Generating New Enzymes

Catalytic promiscuity refers to the ability of an enzyme to catalyze, in addition to its native 

function, reactions that target different functional groups on the substrate and proceed 
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through different transition states and/or reactive intermediates. In 1976, Jensen proposed 

that ancient enzymes were characterized by broad substrate and reaction scope and that 

natural selection picked up and fine-tuned these different activities to generate contemporary 

enzymes with specific catalytic functions (Figure 1A).5 But even today’s enzymes are not as 

specific as often thought—many can catalyze other transformations in their active sites and 

exhibit (usually low levels of) catalytic promiscuity.6 Much evidence now suggests that this 

often serendipitous catalytic promiscuity is in fact vital to the evolution of new enzymes, 

providing a platform for evolution of new functions by natural selection (Figure 1B).7

2.1. Evolution of atrazine chlorohydrolase (AtzA)

The evolution of atrazine chlorohydrolase (AtzA) is one of the best case studies of how 

nature exploits catalytic promiscuity to create new enzymes. A potent herbicide introduced 

in the late 1950s, atrazine was initially found to be minimally biodegradable. Since 1993, 

however, atrazine has been observed to be degraded rapidly by soil microbes in diverse 

locales, a phenomenon attributed to the presence of the enzyme AtzA.9 This enzyme 

catalyzes the hydrolysis of the C-Cl bond of atrazine (Figure 2A) through a nucleophilic 

aromatic substitution reaction with a Fe2+-activated water molecule.

The amino acid sequence of AtzA from Pseudomonas sp. ADP is 98% identical to that of 

melamine deaminase (TriA), an enzyme originally isolated from Pseudomonas sp. strain 

NRRL B-12227. TriA catalyzes the hydrolysis of the C-N bond of melamine, another non-

natural compound that was originally classified as non-biodegradable in the 1930s, but was 

slightly degradable by the time atrazine was first introduced.10 The two enzymes differ at 

only nine out of 475 amino acids.11 This extremely high level of identity and the fact that 

both enzymes can be found in at least one common bacterial species suggested that AtzA 

evolved from TriA or from a common ancestral enzyme similar to TriA (Figure 2B), 

enabling the bacteria to capitalize on a new opportunity to use these synthetic compounds as 

nitrogen sources.12

Progression from melamine to triazine degradation represents evolution of a new catalytic 

function, from C-N bond cleavage (aminohydrolase, EC 3.5.4) to C-Cl cleavage 

(chlorohydrolyase, EC 3.8). Although other chlorohydrolases exist in nature, they typically 

use a carboxylate nucleophile instead of water activated by a divalent metal, as found for 

AtzA. In contrast, enzymes in the aminohydrolase (e.g. TriA) family typically utilize a 

divalent metal such as Zn2+ cation to activate water for nucleophilic aromatic substitution. 

The active site similarity between TriA and AtzA, as suggested by homology modeling, 

further corroborates the conjecture that AtzA evolved from an ancestral aminohydrolase 

(Figure 2B).

TriA and AtzA differ at 9 positions, but Scott and co-workers recently showed that two 

mutations are sufficient to convert TriA to an enzyme with atrazine chlorohydrolase activity 

comparable to AtzA.13 Cys331Ser and Asp328Asn, mutations suggested by homology 

modeling to lie in the active site, improve the kcat/KM for atrazine hydrolysis dramatically, 

from 60 M−1s−1 to close to 10,000 M−1s−1, while completely abolishing melamine 

hydrolysis activity. Furthermore, Scott and co-workers showed that one can arrive at an 

atrazine chlorohydrolase by accumulating single beneficial mutations in a simple uphill 
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walk, starting from TriA. The Cys331Ser mutation alone improved the kcat/KM for atrazine 

hydrolysis by almost 30-fold. Introduction of Asp328Asn to the Cys331Ser mutant 

conferred a further six-fold improvement in catalytic efficiency.

These active site mutations effect a dramatic shift from aminohydrolase to chlorohydrolase 

activity that can be rationalized after the fact. Scott and coworkers reasoned that the Asn/Ser 

dyad (positions 328 and 331 in AtzA) assists in the expulsion of chloride anion through a 

hydrogen bonding network, whereas the Asp/Cys dyad in TriA enables the release of 

ammonia through a proton relay mechanism whereby the thiol moiety of Cys331 donates a 

proton to the leaving NH2
− group and is reprotonated by Asp328. Since NH2

− is a poor 

leaving group (pKa = 34), protonation by the more acidic Cys residue is necessary for the 

reaction to occur.

A number of functionally diverse enzyme superfamilies have been described.14 Superfamily 

members share a structural fold and are believed to have diverged functionally from a 

common ancestor through a series of catalytically promiscuous intermediates. Most known 

member enzymes that catalyze different reactions, however, have accumulated many more 

sequence changes than the AtzA/TriA pair; large sequence distances make it more 

challenging to demonstrate simple evolutionary pathways among them or to pinpoint the 

functions of the ancestral enzymes. But several research groups have taken on this 

challenge, using protein engineering and especially directed evolution to demonstrate how 

one function can become another in the context of extant enzymes.

2.2. Evolution of a phosphotriesterase (PTE)

Another enzyme believed to have emerged very recently is phosphotriesterase (PTE), first 

identified in soil bacteria that can grow on synthetic organophosphate pesticides such as 

parathion and paraoxon as its sole phosphorus source (Figure 3A).15 Given the recent 

introduction of parathion and paraoxon into the environment and the fact that PTE 

hydrolyzes them at near diffusion-controlled rates, it is thought that PTE evolved recently 

from an ancestral enzyme having promiscuous organophosphate hydrolysis activity. The 

ancestral enzyme is unknown, however, as no very close sequence homolog has been 

identified.

The PTE from P. diminuta has the (β/α)8-barrel fold and binuclear metal center common to 

many members of the amidohydrolase (AHS) superfamily that hydrolyze different classes of 

substrates.16 Afriat et al. proposed that this PTE’s promiscuous lactonase activity could be a 

vestige of its ancestral source, a clue to its ancestral function.17 They showed that three 

microbial enzymes that are the closest known homologs to P. diminuta PTE (~30% 

sequence identity) are in fact highly active lactonases and also possess varying levels of 

promiscuous organophosphate hydrolysis activity. These ‘phosphotriesterase-like 

lactonases’ (PLLs) are especially active towards N-acyl homoserine lactones, which play a 

vital role in bacterial quorum sensing.18 Afriat et al. argued that PTE may have evolved 

from the weak promiscuous activity of a bacterial PLL.

Raushel and co-workers recently conducted an experiment to try to recapitulate the 

conversion of a PLL with low-level organophosphate-degrading activity to a PTE.19 Using a 
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combination of rational and random mutagenesis, they were able to convert the PLL from 

Deinococcus radiodurans (DrPLL) to an enzyme exhibiting PTE activity that is five orders 

of magnitude higher than the wild-type DrPLL and just one order of magnitude lower than 

wild-type PTE. The most efficient enzyme contained only seven mutations from wild-type 

DrPLL, three of which were sufficient to increase the PTE activity by two orders of 

magnitude. Tawfik and co-workers showed that the converse is also possible when they 

engineered a recombinant variant of PTE from P. diminuta to be a bifunctional PTE/PLL by 

active-site loop remodeling.20

Similar to AtzA, PTE is believed to have arisen in response to the introduction of synthetic 

compounds that are potential new nutrient sources (Figure 3B). Unlike AtzA and TriA, 

however, PTE has low sequence identity to its closest known homolog, which is thought to 

be a lactonase. Despite the fact that the known PTE and PLL enzymes differ at hundreds of 

amino acid positions and in the structure and arrangement of the active site loops through 

deletions and/or insertions, their functions overlap and could be interconverted by directed 

evolution and rational design. That this could be done in the laboratory demonstrates the 

ease with which a promiscuous PLL could become a PTE in nature.19 This example also 

demonstrates how readily a residual ancestral activity can be enhanced by accumulating 

beneficial mutations.

2.3. Catalytic promiscuity in the MBL superfamily

In a comprehensive study of how catalytic functions overlap in the metallo-β-lactamase 

(MBL) superfamily of αβ/βα proteins, Tokuriki and co-workers examined the activities of 

24 enzymes from 15 distinct subfamilies.21 They found that many MBL superfamily 

members, despite their low sequence identities (ca. 5–35%), catalyze at low levels the 

distinct reactions of distant family members in addition to their own (Figure 4). Echoing a 

common theme in enzyme evolution that active site architecture within a superfamily is 

often at least partially conserved,22 most members of this superfamily retain the binuclear 

active-site center for divalent metal activation of a water molecule. Thus, observed 

promiscuous activities are likely to arise from the shared active site features of the 

superfamily members. The MBL superfamily also includes a PTE family that likely evolved 

from lactonases, in parallel with the PTEs in the AHS superfamily and in what appears to be 

an example of convergent evolution of a new function.23

Figure 4 illustrates the highly interconnected network of overlapping functions that Tokuriki 

and co-workers sampled in this superfamily. These enzymes presumably evolved from a 

common ancestor through a series of promiscuous intermediates. Promiscuity is still 

prevalent in the family, and given the level of functional overlap that still exists it is 

reasonable to assume that one could move within this network from one catalytic function to 

others by directed evolution. In fact, Park et al. showed the feasibility of converting a 

glyoxalase II from this family to an enzyme with high β-lactamase activity using directed 

evolution.24
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2.4. Evolution of a hydroxylase from a desaturase

Oleate desaturases and hydroxylases are integral membrane di-iron enzymes (Figure 5A) 

that catalyze the modification of oleic acid (1) to make the corresponding dehydrogenated 

and oxygenated products, linoleic acid (2) and ricinoleic acid (3). They typically exist in 

higher plants and are closely related members of a functionally diverse non-heme di-iron 

enzyme family. The two reactions are also mechanistically related in that they are both 

initiated by a hydrogen abstraction step.25 They diverge in the subsequent step, where 

desaturation occurs via another hydrogen abstraction and hydroxylation proceeds through a 

radical rebound/oxygen transfer event.

When expressed in yeast, the hydroxylase from L. fendleri, LFAH12, was found to have 

appreciable desaturase activity in addition to its native hydroxylase activity (producing ca. 

1:1 di-unsaturated fatty acids:hydroxylated fatty acid).26,27 In contrast, the desaturase from 

A. thaliana, FAD2, was shown to catalyze desaturation almost exclusively, with only very 

minor hydroxylation products detected (hydroxylation:desaturation product ratio of 0.006). 

These two enzymes are close relatives, with ~81% sequence identity, and a sequence 

comparison of the two with a few other hydroxylases and desaturases led to the 

identification of several residues that are highly conserved in the desaturases but diverged in 

the hydroxylases.26 Based on this, seven residues from FAD2 were introduced into the 

corresponding positions in LFAH12. The resulting variant showed predominantly desaturase 

activity, and further mutation analysis demonstrated that as few as six mutations could 

transform LFAH12 into a desaturase (Figure 5B). Conversely, four mutations were found 

sufficient to convert FAD2 into a hydroxylase. Further studies by Broadwater et al.27 

showed that a single mutation was sufficient to achieve a comparable boost in hydroxylase 

activity in FAD2.

This desaturase-hydroxylase example demonstrates how easily related enzymes with 

overlapping activities can be interconverted, similar to what was observed for the atrazine 

chlorohydrolase and phosphotriesterase examples. It was not necessary to identify and enlist 

the ancestral enzyme for evolution of the new functions—the new enzymes were obtained in 

the laboratory starting from the extant relative. And, as these examples suggest, a few 

mutations can be sufficient to convert an existing enzyme to a new one with distinct, but 

mechanistically-related activity. 22

We have chosen just a few examples to illustrate how enzymes catalyzing different reactions 

can diverge from a common ancestor, especially when the activities overlap at least a little. 

Nature does it, and the laboratory experiments demonstrate just how easily it can happen. 

Although nature may not have taken the same routes or starting points, the laboratory 

experiments show how a new enzyme can appear and evolve as opportunities for a selective 

advantage arise. Now let us discuss using this strategy to make enzymes that catalyze 

reactions not already discovered in nature.
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3. Using Mechanistic Similarities and Directed Evolution to Expand the 

Enzyme Universe

Many contemporary enzymes have versatile active sites and exhibit promiscuous activities 

at some level as a property of their mechanisms.28 Thus, as the above examples show, 

related enzymes that diverged by natural evolution for different functions can be 

interconverted and optimized, often with just a few mutations in an uphill evolutionary walk. 

Because catalytic promiscuity is common, today’s plethora of biocatalysts provides equal or 

perhaps even greater opportunities for innovation than in early evolution. Just as nature uses 

that rich source of starting materials to create new catalysts, so could we.

Let us suppose for a moment that an atrazine chlorohydrolase had not yet been discovered in 

nature. Could its appearance have been anticipated, and could such an enzyme have been 

created in the laboratory before it was found in nature? Given the similarity in substrate 

structure (s-triazine heterocyclic core) and reaction type (hydrolysis), one might logically 

test an aminohydrolase such as TriA as a starting point for directed evolution. As atrazine 

contains a better leaving group (Cl− versus NH2
−), its hydrolysis could be expected to be 

more facile than melamine. Indeed, TriA possesses a low level of atrazine chlorohydrolase 

activity (kcat/KM = 60 s−1M−1). From there, one could couple random or site-saturation 

mutagenesis with a high-throughput spectrometric assay29 for the hydrolysis product to 

identify variants with increasing levels of activity. As Scott and co-workers showed, 

accumulating just two mutations improved the chlorohydrolase activity of TriA almost 200-

fold.13

Given that a new, mechanistically-related catalytic function can be imparted with just a few 

mutations to an enzyme that already possesses a low level of that function, an evolution-

inspired approach to new catalyst discovery relies on being able to identify an appropriate 

starting point, that is, an existing enzyme able to take on a new function. To find that 

enzyme, we can look for mechanistic similarities between an existing activity and a desired 

transformation for which no enzyme is known. And, because low levels of catalytic activity 

exhibited by a promiscuous enzyme can be improved in many cases by engineering the 

protein sequence, there is the reasonable expectation that a non-natural, but mechanistically-

related promiscuous activity can similarly improve.

In fact, several laboratories have used this approach and capitalized on the catalytic 

promiscuity of enzymes and the similarity between the native and desired reaction 

mechanisms in order to create new enzymes. In some cases, however, the starting enzyme 

did not exhibit the desired promiscuous activity, and researchers had to rely on their 

chemical intuition that the desired function should be possible and could be obtained with 

one or a few mutations. In this section, we will present some examples of novel non-natural 

functions that have been discovered using this mechanism-based approach and then 

improved to useful levels by protein engineering and especially directed evolution.
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3.1. Epoxide ring opening with a halohydrin dehalogenase

Wild-type halohydrin dehalogenases (HHDH) catalyze the formation of epoxides from the 

corresponding chloro- and bromohydrins.30 X-ray structures of halohydrin dehalogenase 

from Agrobacterium radiobacter AD1 suggested the presence of a binding site for both the 

epoxide and halide anion,31 thus raising the possibility of using pseudohalides of varying 

sizes in the reverse epoxide opening reaction. Indeed, Janssen and coworkers found that this 

enzyme accepts a wide range of non-natural nucleophiles such as azide, nitrite, cyanate and 

thiocyanate32 and used it for kinetic resolution of various epoxides to give the ring-opened 

products with high enantioselectivity (Figure 6A). In addition, high selectivity for opening at 

the terminal position was observed. In the case of aryl epoxide substrates, this finding stood 

in stark contrast to the non-catalyzed ring opening reaction, where nucleophilic attack 

usually occurs at the benzylic position.

In 2007, scientists at Codexis reported the use of HHDH in the asymmetric synthesis of 

ethyl (R)-4-cyano-3-hydroxybutyrate (6),33 a valuable intermediate in the production of 

atorvastatin, a cholesterol-lowering drug. They were able to enhance the low activity of the 

wild-type enzyme for the cyanation of 5 by directed evolution to obtain enzyme variants that 

increased the volumetric productivity of the process by ~4000-fold (Figure 6B).34 This 

catalyst enables production of 6 at >99.9%ee with a substrate loading of 130 g/L.

The promiscuous cyanation activity of HHDH was discovered through a combination of 

enzyme structure analysis and analogy to related chemistry of epoxide ring-opening with 

non-natural pseudohalide nucleophiles. The low cyanation activity of wild-type HHDH 

could then be improved tremendously by directed evolution, accumulating beneficial 

mutations in an uphill walk to the new function.

3.2. Synthesis of S-oligosaccharides with an engineered glycosidase

A good strategy for introducing a new activity can be to divert a reactive intermediate to an 

alternative reaction pathway, as nature did with the hydroxylase and desaturase enzymes. A 

nice example comes from early work of Withers. By examining the catalytic strategy of 

retaining β-glycosidases and rationally modifying the key catalytic residue(s), Withers and 

co-workers were able to divert a reactive intermediate in the hydrolysis of glycosidic bonds 

and redirect it to synthesis of S-oligosaccharides.35

S-oligosaccharides are of interest as carbohydrate mimics that possess a more stable and 

hydrolysis-resistant glycosidic bond.36 These compounds are challenging to synthesize, 

because their preparation typically involves manipulation of protecting groups and requires a 

high degree of stereocontrol at the anomeric position. A few enzymes are known that 

catalyze the formation of the C-S bond of naturally-occurring thioglycosides, but there are 

only very few reports of their use in the preparation of S-oligosaccharides.37

Glycosidases catalyze the hydrolytic cleavage of glycosidic bonds and are mainly 

responsible for the degradation of carbohydrate-based biomass. In low water concentration, 

these enzymes are also capable of catalyzing glycoside exchange. For retaining β-

glycosidases, the enzymatic hydrolysis and glycoside exchange reaction occurs through a 

double substitution mechanism where a catalytic nucleophile residue first displaces the 
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departing aglycon group and a catalytic acid/base residue activates the incoming water or 

glycoside nucleophile to form the new anomeric bond (Figure 7A).38

To create a new activity, it is helpful if the starting enzyme already exhibits it at some level 

as a promiscuous activity, but this is not necessarily required. In such a case, however, the 

catalytic mechanism must allow acquisition of the new activity without too much fine-

tuning. By substituting the catalytic acid/base glutamine residue with an inert alanine 

(Figure 7B), Withers and co-workers re-designed the active site of β-glucosidase from 

Agrobacterium sp. (Abg) and β-mannosidase (Man2A) from Cellulomonas fimi such that 

they would only catalyze the glycosylation of activated dinitrophenyl (DNP) glycoside 

donors and deoxythio sugars as acceptors. The former does not require acid activation since 

it is a good enough leaving group to be displaced by the catalytic nucleophile residue, and 

the latter contains a highly nucleophilic thiol moiety that does not require base catalysis for 

the formation of the glycosidic linkage.

Both glycosidase mutants were shown to catalyze the reaction of DNP glucose and DNP 

mannose with glycoside acceptors 7 and 8 in good to excellent yields (Figure 8). Notably, no 

protecting groups were required on the free hydroxyl groups of the glycoside donors and 

acceptors. In further work, Withers and co-workers showed that mutations at the catalytic 

acid/base residue could boost the thioglycoligase activities of these retaining β-

glycosidases.39

3.3. Carbene and nitrene transfer reactions with cytochrome P450s

Metalloporphyrin complexes, long used as synthetic models for cytochrome P450 enzymes, 

also catalyze chemical reactions that have no natural counterparts. For example, the reaction 

of metalloporphyrins, including iron porphyrins, and diazo compounds to generate 

metallocarbenoid reactive intermediates for cyclopropanation reactions is well-documented 

in the synthetic literature (Figure 9A).40 Whereas carbenes are generally too reactive for 

characterization, some of these metallocarbenoid species proved to be stable enough for 

isolation and X-ray crystallography analysis.41 These isolated metallocarbenoids participate 

in cyclopropanation reactions, providing evidence that metalloporphyrin-catalyzed 

cyclopropanations proceed through the metallocarbenoid intermediates.

Metalloporphyrins are also known to form reactive nitrenoids in the presence of activated 

species such as azides and iminoiodinanes. Breslow and Gellman first showed that meso-

tetraphenylporphyrin iron(III) chloride could catalyze intra- and intermolecular nitrene 

transfer when reacted with iminoiodinanes,42 presumably via a metallonitrenoid species. A 

follow-up report by Dawson and co-workers further established that a rabbit liver 

cytochrome P450 could catalyze the same nitrene transfer reaction, albeit in very low 

turnover.43 Given the similarity between carbene/nitrene and oxene–the reactive species in 

P450 monooxygenation reactions–in electronic configuration and thus reactivity (Figure 

9B), our laboratory hypothesized that cytochrome P450s may exhibit promiscuous activity 

for carbene and nitrene transfer reactions and that such activities could be improved by 

protein engineering. Addition of ethyl diazoacetate to styrene in the presence of wild-type 

P450-BM3 from B. megaterium led to trace amounts of the corresponding cyclopropane 

product.44 Further work established that various hemeproteins, and even free hemin, 
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catalyze olefin cyclopropanation in water.45 Of particular interest, however, several wild-

type P450s exhibited diastereoselectivity different from free hemin and showed some 

enantioinduction as well.44,45 The unusual selectivity of the P450s suggested that 

cyclopropanation was taking place in the enzyme active site and that the active site 

geometry exercised control over the stereochemical outcome of the reaction. We thus felt 

that the P450s were suitable starting points for engineering and evolution of a new family of 

enzymes that can activate diazo compounds for carbenoid transfers to organic 

molecules.44,46–50

Mutations dramatically increase the non-natural cyclopropanation activity of P450-BM3. 

Substitution of the distal threonine (Thr268), a key residue in the native catalytic cycle for 

monooxygenation, with alanine improved the turnover number more than 60-fold. Further 

tailoring of the active site led to variant P450BM3-CIS-T438S that catalyzed the 

cyclopropanation of styrene in excellent yield, diastereoselectivity, and enantioselectivity 

(Figure 10A). Mutation at the cysteine axial ligand led to the greatest improvement in 

cyclopropanation activity. Mutating the cysteine at position 400 to serine (Cys400Ser) in 

P450-BM3 shifted the characteristic 450 nm peak in CO-difference spectrum to 411 nm, 

hence the “P411” name for the Ser-ligated catalysts. The Ser mutation also allowed the iron 

heme to be reduced under cellular conditions to the Fe2+ active catalyst, thereby enabling 

cyclopropanation with whole cells expressing these proteins. Styrene cyclopropanation was 

catalyzed on gram scale to 67,000 turnovers in 72% yield by a P411, which is competitive 

with some of the most active reported rhodium catalysts. 46

Enzyme-catalyzed cyclopropanation has been applied to the formal synthesis of 

levomilnacipran, a serotonin and norepinephrine reuptake inhibitor approved for the 

treatment of clinical depression.47 A variant of P450-BM3 containing only five amino acid 

mutations, including mutation of the proximal cysteine residue to histidine, catalyzed the 

cyclopropanation of N,N-diethyl-2-phenylacrylamide (13) to 86% yield and 92% 

enantioselectivity on preparative scale (Figure 10B). The laboratory-evolved catalyst BM3-

Hstar performed cyclopropanation in the presence of oxygen and exhibited an initial rate of 

reaction close to what has been reported for monooxygenation by wild-type P450-BM3 

(>1000 turnovers per minute). Examination of a panel of 2-phenylacrylamide derivatives 

revealed that BM3-Hstar was quite a general cyclopropanation catalyst and could be used on 

substrates with varied steric and electronic properties.48

Carbene insertion into aryl N-H bonds, another reaction catalyzed by iron porphyrins, can 

also be catalyzed by variants of P450-BM3. 49 P411 variant H2-5-F10 performed the 

insertion into aryl N-H bonds in up to 83% yield and 354 turnovers in vitro (Figure 10C). 

Free Fe-protoporphyrin IX can catalyze aniline N-H insertion reactions, producing a mixture 

of single and double insertion products. In contrast, the enzyme provided the single insertion 

product selectively, highlighting the important role that the protein binding pocket plays in 

controlling selectivity.

Following up on the early observation of Dawson and coworkers,43 McIntosh et al. greatly 

improved the catalytic performance of P450-BM3 for intramolecular C-H amination with 

sulfonyl azides as the nitrene precursor.50a For azide 15, mutations at key residues such as 
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Thr268 on the I helix (Thr268Ala) and the cysteine proximal ligand for the heme prosthetic 

group (Cys400Ser) were found to be crucial for improving the total turnover number for 

amination (Figure 10D). In particular, variant P411BM3-CIS catalyzed the amination 

reaction in up to 87% enantioselectivity and 430 turnovers. The same variant was also found 

to catalyze nitrene transfer from p-toluenesulfonyl azide to a series of thioethers to generate 

the corresponding sulfimides in 30–300 turnovers (Figure 10E).50b Since free hemin does 

not catalyze this sulfimidation reaction at all, the ligation state of the heme cofactor in the 

protein and/or the protein itself play a key role in modulating the reactivity of the nitrenoid 

species.

An independent report by Fasan and co-workers revealed that intramolecular C-H amination 

of sulfonyl azide 16 could be effected by a different variant of P450-BM3 (FL#62) that does 

not contain the Thr268Ala and Cys400Ser mutations.51a Their investigation of the substrate 

scope of intramolecular C-H amination with FL#62 showed that the biocatalyst tolerates a 

range of substituents on the aryl ring. A follow-up report51b further showed that C-H 

amination on azide 16 could be catalyzed in good turnovers using either myoglobin (Mb) or 

horseradish peroxidase (HRP). Whereas wild-type Mb showed no detectable 

enantioselectivity in amination with 16, introduction of mutations His64Val and Val68Ala 

led to appreciable enantioinduction (60% ee with 16). These results suggest that other 

hemoproteins are also viable platforms for discovering new catalysts for non-natural 

reactions.

Hyster et al. very recently showed that the regioselectivity of this enzyme-catalyzed C-H 

amination can be tuned by mutations (Figure 10F).50c Variant P411BM3-CIS-T438S-I263F 

catalyzed C-H amination of substrates 17a–c at the homo-benzylic position with excellent 

regio- and enantioselectivity. The P411BM3-T268A-F87A variant, in contrast, showed strong 

preference for C-H amination at the benzylic position, also with great regio- and 

enantioselectivity. Thus tailoring the active site can alter the conformation of the reactive 

intermediates to the extent that the catalyst can override the thermodynamic bias towards 

reaction at the benzylic position (the bond dissociation energy for the benzylic C-H is 

weaker by more than 10 kcal/mol relative to non-benzylic C-H).

3.4. Redirecting cyclization with terpene synthases

Squalene-hopene cyclase (SHC) catalyzes the cationic polycyclization of squalene to the 

pentacyclic products hopene and hopanol (Figure 11), a reaction that Hauer and co-workers 

noted is highly reminiscent of chiral Brønsted acid-catalyzed polycyclizations.52 The crystal 

structure of SHC from Alicyclobacillus acidocaldarius (AacSHC) was disclosed in 1997,53 

but its promiscuity was known as early as 1986, when Neuman et al. showed that 

homofarnesol could be cyclized by SHC to ambroxan, a valuable fragrance compound.54 

This reaction can be regarded as both a substrate and catalytic promiscuity feature of the 

enzyme, because attack by an internal nucleophile terminates the cyclization reaction.

Hauer and co-workers further investigated the inherent promiscuity of this enzyme with a 

range of terpene-like substrates to construct novel carbocyclic skeletons (Figure 12A). By 

varying the terminator groups for the cyclization reactions, they were able to perform SHC-

catalyzed cyclization of various non-natural substrates in low to moderate yield.54,55 The 
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substrate scope for SHC-catalyzed cyclization reaction has also been studied by Hoshino 

and co-workers.56

SHC also possesses some weak activity for Prins cyclization of citronellal to form 

isopulegol.57 Siedenburg et al. conducted site-saturation mutagenesis on three residues in 

the active site of SHC from Z. mobilis (ZMO1548) to improve production of isomers of 

isopulegol starting from racemic citronellal (Figure 12B).58 Two amino acid positions were 

identified as important for increased isopulegol formation. The Trp555Tyr mutant gave 

more than 70% total conversion to isomeric mixtures of isopulegol, versus ca. 30% observed 

with the wild-type enzyme. The Phe486Cys variant provided more than 50% total 

conversion, with slightly improved product diastereoselectivity.

In a very recent study,59 Hauer and co-workers engineered an SHC from A. acidocaldarius 

(AacSHC) to improve the catalytic activity for several different modes of Brønsted acid-

catalyzed cyclizations, including the Prins cyclization of (S)-citronellal (Figure 13). 

Screening a library of enzyme variants made by mutating several amino acids in proximity 

to the catalytic Asp376 residue, they discovered variants with greatly improved activities for 

various cyclization reactions. The Tyr420Trp-Gly600Phe mutant catalyzed the cyclization 

of 6,7-epoxygeraniol to cyclohexanoid 22 in 78% conversion, an approximately 140-fold 

improvement over the wild-type enzyme. Similarly, the Ile261Ala mutant catalyzed the 

Prins cyclization of (S)-citronellal to iso-isopulegol in 11% conversion, an approximately 

20-fold improvement over the wild-type enzyme. It will be interesting to see if this non-

natural cyclization activity of SHC or other terpene synthases can be expanded further to 

include other electrophiles as initiators.60

4. New Opportunities on the Horizon?

At present, biocatalytic transformations constitute a small but growing subset of industrially 

relevant chemical processes. In order to fully realize the potential of biocatalysis for 

sustainable chemistry, it will be important to expand the range of enzyme-catalyzed 

transformations to include ones not yet discovered in nature. The examples we have 

presented illustrate an evolutionary approach that mimics some features of how nature 

creates new catalysts. Our feeling is that we have barely scratched the surface of 

possibilities, as promiscuous activity among enzymes is widespread and can be improved by 

protein engineering and especially directed evolution. Chemical intuition will help us know 

where to look for new opportunities.

Several recent discoveries of novel, promiscuous, and non-natural enzyme activities 

highlight the potential for future biocatalyst development. Still in their infancy, these next 

examples are important proofs-of-concept with potential for future applications. Where 

wild-type enzymes catalyze non-natural reactions, it is entirely possible that protein 

engineering and directed evolution could boost activity, fine-tune selectivity, and make them 

more synthetically useful.

Renata et al. Page 12

Angew Chem Int Ed Engl. Author manuscript; available in PMC 2016 March 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



4.1. C-H functionalization chemistry of SyrB2 halogenase

Reminiscent of the hydroxylase/desaturase example, nature utilized a similar bifurcation of 

reaction pathways for halogenation and hydroxylation with Fe(II)- and α-ketoglutarate-

dependent (Fe/αKG) enzymes. An Fe/αKG enzyme from the syringomycin biosynthetic 

pathway of Pseudomonas syringae B301D, SyrB2 catalyzes the halogenation of the terminal 

methyl group of L-threonine appended to the carrier protein SyrB1.61 This enzyme is related 

to Fe/αKG hydroxylases which employ an almost identical reaction mechanism. Both 

reactions proceed via an initial hydrogen atom abstraction from the substrate by an Fe(IV)-

oxo intermediate to form a carbon-centered radical (Figure 14).62 The subsequent step 

determines the product outcome: homolytic coupling with a hydroxyl ligand results in the 

hydroxylated product (path a) whereas coupling with a halogen ligand results in chlorinated 

or brominated product (path b). One fundamental difference between the two enzymes lies 

in the presence of a coordinating Asp/Glu residue in Fe/αKG hydroxylases whereas a non-

coordinating Ala occupies this position in SyrB2 halogenase. As a result, the Fe center in the 

latter has an additional coordination site, which is occupied by a halide anion that is 

eventually incorporated in the product. Given such similarities in structure and mechanism, 

Walsh and coworkers proposed that Fe/αKG halogenase evolved from Fe/αKG 

hydroxylase.63

Using threonine as substrate, SyrB2 is remarkably selective for the production of 4-chloro-

L-threonine, suggesting that hydroxyl radical rebound from intermediate A (Figure 14A) is 

not competitive with halogen radical rebound. Substitution of the non-coordinating Ala with 

Glu in SyrB2 led to the formation of a hydroxylase-like metal center, but this mutant was 

shown to be an inefficient hydroxylase.64 Furthermore, the use of norvaline, a five-carbon 

amino acid, as a substrate for wild-type SyrB2 led almost exclusively to the hydroxylation 

product (Figure 14B). These results suggest that a complex interplay between substrate and 

protein active site determines the selectivity between hydroxylation and halogenation. To 

further reinforce this notion, simple substitution of coordinating Asp to Ala on prolyl 4-

hydroxylase, an Fe/αKG enzyme, led to an inactive enzyme.65 Thus, despite the presumed 

evolutionary relationship between the two enzymes, the simplistic notion of creating a 

vacant coordination site for halide binding to convert a hydroxylase to halogenase only 

works in very special cases.

Many Fe/αKG hydroxylases have been discovered that act on different types of substrates, 

and some of them do not require the substrates to be appended to a carrier protein. Fe/αKG 

halogenases, however, are relatively rare in nature. Conversion of hydroxylases to 

halogenases would allow rapid diversification of secondary metabolites produced by 

Fe/αKG enzymes. These metabolites include valuable β-lactam antibiotics and modified 

amino acids and nucleobases.66

The chemistry of SyrB2 can also be diversified to include non-natural functions. Matthews 

et al. recently demonstrated that in the presence of N3
− or NO2

− wild-type SyrB2 could 

catalyze radical azidation and nitration of substrates (L-2-aminobutyrate, L-threonine, and 

L-norvaline) bound to SyrB1 with modest yields under single turnover conditions.67 Such 

reactivity is reminiscent of radical-based C-N coupling in synthetic chemistry, where 
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literature precedents suggest that many nitrogen-containing species such as azides and nitrite 

salts are viable partners in radical coupling reactions.68 At this point, however, the enzyme-

catalyzed reaction requires that the substrates be appended to the carrier protein and gives 

modest yields even under single turnover conditions. In addition, given the apparent 

complexity of substrate positioning in the active site in determining the outcome of Fe/αKG-

catalyzed reactions, optimization of these new nitration and azidation reactions may be 

challenging.

4.2. Unnatural amino acid synthesis with O-acetylserine sulfhydrylase and tryptophan 
synthase

Natural and unnatural amino acids are important constituents of many active pharmaceutical 

ingredients (APIs); it has been estimated that they comprise 18% of the building blocks used 

in the pharmaceutical and agrochemical industries.69 Natural L-amino acids are produced 

mainly via fermentation and extraction from raw feedstocks. Unnatural amino acids 

(UAAs), however, are commonly produced by chemical synthesis, as there exists no 

biosynthetic pathway for the introduction of unnatural side chains. Numerous synthetic 

methods have been developed for the synthesis of UAAs, but commercial production 

typically relies on asymmetric hydrogenation or resolution of racemic mixtures.70 These 

processes often require manipulation of protecting groups (that have to be removed) and 

catalysts that have to be designed de novo for new targets. Development of biosynthetic 

pathways for UAAs could potentially streamline their production.

O-acetylserine sulfhydrylase (OASS, this term is used interchangeably with cysteine 

synthase) is a pyridoxal phosphate (PLP)-dependent enzyme that catalyzes the final step of 

cysteine biosynthesis.71 After aldimine formation between O-acetylserine and PLP, the 

acetate group of O-acetylserine is extruded to give an amino acrylate intermediate which 

then reacts with H2S to form L-cysteine (Figure 15). In the late sixties, Mudd and Thompson 

independently established72 that this class of enzymes also catalyzed the synthesis of S-

substituted cysteine derivatives, hinting at relaxed substrate specificity of these enzymes. 

Although rare, heterocyclic β-substituted alanines do occur naturally in plants.73 Elucidation 

of the biosynthetic pathways of these non-proteinogenic amino acids showed that they arose 

from the condensation of O-acetyl-L-serine with the appropriate nucleophiles.

Hypothesizing that this pathway shares a common reactive intermediate and reaction 

mechanism with OASS, Ikegami and co-workers in a series of publications showed that the 

OASS from higher plants could indeed catalyze the syntheses of β-(pyrazol-1-yl)-L-alanine, 

L-quisqualic acid, L-mimosine and several other non-proteinogenic amino acids in low 

yields.74 As Maier showed in a follow-up work,75 the overall metabolic pathway could be 

engineered to improve the low titers. However, no report has disclosed improving the 

production yield of UAAs by engineering the OASS enzyme. X-ray structures of CysK1 and 

CysM, both cysteine synthases, indicated the presence of a substrate tunnel that likely acts 

as a passageway for incoming nucleophiles.76 Engineering this substrate tunnel to 

accommodate nucleophiles of different size could provide an alternative avenue to improve 

the production of UAAs.
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Tryptophan synthase catalyzes the formation of tryptophan through a mechanism that bears 

a strong resemblance to that of OASS. In the β subunit of the enzyme, condensation of 

serine with PLP is followed by a dehydration to afford an aminoacrylate intermediate which 

then undergoes a conjugate addition with indole.77 Just like OASS, tryptophan synthase 

possesses a hydrophobic tunnel for the passage of indole. The wild-type enzyme has been 

shown to catalyze the production of various tryptophan analogs through the use of the 

corresponding heterocyclic nucleophiles such as thienopyrroles, azaindoles and indazole 

(Figure 16).78 At present, however, optimization of this enzyme is still required to make the 

process practical. As with OASS, directed evolution and protein engineering efforts could 

render this enzyme more useful for the production of UAAs.

5. Conclusions

Over the last fifty years, chemists have invented creative synthetic disconnections that are 

not found in nature. We believe that at least some of these reactions could be imported into 

biological systems. The challenge for engineering enzymes to catalyze non-natural 

chemistry is that there is not another enzyme to provide the inspiration or guide the 

engineering—that leap has to come from luck (accidental discovery of an interesting 

promiscuous activity), laborious screening of enzymes for non-natural functions, or, better, 

from chemical intuition/design based on known synthetic transformations. The carbenoid 

and nitrenoid transfer reactions catalyzed by engineered cytochrome P450s are a good 

example of how new enzymes can be generated using an approach that mimics nature and is 

based on chemical knowledge: work with transition metal catalysts and mechanistic 

similarities provided the inspiration, the promiscuity of the natural P450 enzymes provided a 

starting point, and protein engineering/evolution provided the means to tune reactivity and 

selectivity. Similarly, the various synthetic methods developed for C-N coupling (for which 

there is no natural counterpart) served as a motivation to investigate an enzymatic equivalent 

in SyrB2 halogenase.

But can every poorly active enzyme be engineered or evolved for high activity? This is 

clearly not the case. If it were, all weakly active computationally designed enzymes,79 

catalytic antibodies, or bovine serum albumin for that matter could be evolved in the 

laboratory to be highly efficient. Because we do not yet fully understand the features of an 

effective scaffold or starting point for the design or evolution of catalysis,80 we find it 

prudent to start with enzyme scaffolds that have proven ability to evolve (i.e. have diverged 

naturally to catalyze different reactions). Experience shows that enzymes like the 

cytochrome P450s or members of other functionally diverse superfamilies which have 

already diverged to catalyze many different reactions are also readily evolved in the 

laboratory, at least when the reactions share mechanistic features.81 This includes evolution 

of catalytic activities that have no natural counterpart, such as olefin cyclopropanation with 

diazo compounds or cyanation via epoxide opening. If one particular enzyme does not 

exhibit a desired promiscuous activity, other family members or even close variants may, as 

was shown for the MBL family21 and for the P450s.45

We can now begin to sketch out some general guidelines for engineering enzymes to 

catalyze reactions not known in nature: (1) For a given function, look for the most important 
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feature(s) that enables the transformation, e.g. iron-carbenoid for cyclopropanation, acid-

catalyzed formation of oxonium ion in the Prins reaction, or something as simple as the 

presence of a Michael acceptor for UAA synthesis; (2) Establish this feature or key 

intermediate in an enzyme based on known reactivity or mechanistic analogy, e.g. carbene is 

isoelectronic to oxene, a key intermediate in monooxygenation, or Brønsted acid activation 

is a key step in many terpene synthase cyclizations; (3) Evaluate variants of the enzyme or 

closely-related enzymes for the desired promiscuous activity; (4) Use directed evolution to 

improve the non-natural activity or tune selectivity. Computational approaches may be able 

to assist this discovery process, possibly in evaluating suitable enzyme starting points in 

silico.82

Of course, evolution and engineering of existing enzymes is not the only possible approach 

to creating new enzymes. There has been good progress with artificial metalloenzymes and 

de novo enzyme design, but significant challenges remain, especially for creating 

synthetically useful catalysts and ones that function inside of cells. This, we believe, is a key 

advantage of the evolutionary approach we review here: the starting point for creating a new 

enzyme is an existing enzyme that is functionally expressed in a microbial host and that can 

be improved by directed evolution, or at least by genetic modification. The ability to evolve 

the new function in the laboratory, starting from an already evolvable scaffold (an existing 

active site), greatly increases the chance that synthetically useful catalysts will emerge. The 

evolutionary approach we have described is limited to systems for which suitable starting 

enzymes exist. But where that is the case, progress to synthetically useful catalysts can be 

very rapid.33,47 For advances in the fields of artificial metalloenzymes and de novo enzyme 

design, we direct the readers to excellent reviews in refs 83 and 84.

Advances in mechanistic enzymology have allowed us to develop a greater understanding of 

the chemical basis of enzyme catalysis. This knowledge will help us select mechanisms and 

intermediates to ‘hijack’ for non-natural catalysis. Protein engineering and enzyme 

evolution, too, are progressing rapidly. Armed with these tools, we believe that exciting 

times are ahead for bridging the gap between nature’s chemical repertoire and the synthetic 

world.
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Figure 1. 
(A) Divergence of an ancestral enzyme having broad catalytic capabilities (denoted a, b, c, 

d, e) to more specialized enzymes (denoted A, B, C, D, E) that catalyze primarily one 

reaction; (B) Relationship between catalytic promiscuity and evolution of new function. A 

given protein sequence might catalyze multiple reactions. In the right circumstances, a 

catalyst with a low level of a promiscuous activity can be improved by mutation and natural 

(or artificial) selection so that it becomes specialized for a new function. For more 

discussion, see ref. 8.
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Figure 2. 
(A) Chlorohydrolase activity of AtzA and aminohydrolase activity of TriA; (B) TriA and 

AtzA (98% AA identity) are believed to be related through a common ancestor similar to 

TriA. These catalytic functions can be interconverted with a few amino acid mutations.13

Renata et al. Page 23

Angew Chem Int Ed Engl. Author manuscript; available in PMC 2016 March 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
(A) Hydrolysis reactions catalyzed by PTE and lactonase; (B) Putative evolutionary 

relationship between lactonase and PTE and their interconversion in the laboratory.19,20
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Figure 4. 
Members of MBL superfamily are functionally highly interconnected, as illustrated by 

Tokuriki and co-workers.21 The different reactions catalyzed by members of the superfamily 

are connected to one another via promiscuous enzymes (gray circles) that catalyze two or 

more reactions. Figure is reproduced from reference 21.
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Figure 5. 
(A) Desaturation and hydroxylation reactions of oleic acid catalyzed by FAD2 (a desaturase) 

and LFAH12 (a hydroxylase); (B) Four mutations significantly increase hydroxylase activity 

of A. thaliana FAD2 desaturase, and a single mutation significantly increases desaturase 

activity of L. fendleri oleate hydroxylas\\e LFAH12.26,27
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Figure 6. 
(A) Promiscuous epoxide ring-opening activity of wild-type HHDH;32 (B) Application of 

HHDH in the synthesis of the atorvastatin side-chain and improvement of volumetric 

productivity using directed evolution.33
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Figure 7. 
(A) Mechanism of wild-type retaining β-glycosidase featuring catalytic acid/base and 

catalytic nucleophile residues where R′ = H or other sugar in low water concentration;38 (B) 

Engineered thioglycoligase via removal of catalytic acid/base residue, DNP = dinitrophenyl, 

Nuc = deoxythio sugar nucleophile as acceptor.35
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Figure 8. 
Use of engineered thioglycoligase for the synthesis of thiodisaccharides.35 Reported yields 

were after peracetylation of the thiodisaccharides. Wild-type enzymes do not catalyze this 

reaction.
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Figure 9. 
(A) Precedents of carbene and nitrene reactivity with iron porphyrins.40b,43 (B) Comparison 

of monooxygenation activity and non-natural carbene/nitrene transfer reactivity of P450-

BM3. Top box, reaction of Fe(III) of P450-BM3 with O2 and NAD(P)H generates 

compound I, the active species in monooxygenation. Bottom box, reaction of reduced Fe(II) 

with an activated species, followed by extrusion of N2 generates a putative carbenoid/

nitrenoid species.
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Figure 10. 
P450-catalyzed non-natural carbene and nitrene transfer reactions: (A) styrene 

cyclopropanation;44,46 (B) cyclopropanation of N,N-diethyl-2-phenylacrylamide en route to 

levomilnacipran;47 (C) N-H insertion reaction;49 (D) intramolecular C-H amination;50a,51 

(E) intermolecular sulfimidation;50b (F) regioselective C-H amination by different P450 

variants.50c
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Figure 11. 
Cyclization of squalene catalyzed by SHC and promiscuous activity of SHC on 

homofarnesol.54
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Figure 12. 
(A) SHC-catalyzed cyclization of terpene-like substrates, red color indicates bond(s) formed 

during the reaction;54–56 (B) SHC-catalyzed Prins cyclization of citronellal for production of 

isopulegol, a precursor to menthol, and activity improvement via mutation.57,58
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Figure 13. 
Cyclization reactions of various substrates utilizing functional group initiators such as 

epoxide and aldehyde with AacSHC and identification of enzyme variants with improved 

cyclization activities.59
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Figure 14. 
(A) Mechanisms of Fe/αKG hydroxylase (path a, in red) and Fe/αKG halogenase (path b, in 

blue) where a common reactive intermediate, A, is diverted into two reaction pathways 

depending on the ligand environment around the Fe center;62 (B) Divergent outcome of 

SyrB2-catalyzed reactions of threonine-SyrB1 and norvaline-SyrB1, indicating the complex 

interplay between the protein fold and substrate positioning in determining the outcome of 

SyrB2-catalyzed reaction.
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Figure 15. 
Use of O-acetylserine sulfhydrylase in the synthesis of unnatural β-substituted alanine 

derivatives and fermentation yields with E. coli strain W3110/pACcysEfbr.75
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Figure 16. 
Mechanism of tryptophan synthase and some representative UAAs prepared with wild-type 

tryptophan synthase.77,78
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