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	 Summary
		  The distribution of atherosclerotic plaque burden in the human coronary arteries is not uniform. 

Plaques are located mostly in the left anterior descending artery (LAD), then in the right coronary 
artery (RCA), circumflex branch (LCx) and the left main coronary artery (LM) in a decreasing order 
of frequency. In the LAD and LCx, plaques tend to cluster within the proximal segment, while in 
the RCA their distribution is more uniform. Several factors have been involved in this phenomenon, 
particularly flow patterns in the left and right coronary artery. Nevertheless, it does not explain 
the difference in lesion frequency between the LAD and the LCx as these are both parts of the 
left coronary artery. Branching points are considered to be the risk points of atherosclerosis. In 
the LCx, the number of side branches is lower than in the LAD or RCA and there are no septal 
perforators with intramuscular courses like in the proximal third of the LAD and the posterior 
descending artery (PDA). We hypothesized that septal branches generate disturbed flow in the LAD 
and PDA in a similar fashion to the myocardial bridge (myocardial bridging effect). This coronary 
architecture determines the non-uniform plaque distribution in coronary arteries and LAD 
predisposition to plaque formation.

	 MeSH Keywords: 	 Atherosclerosis • Haemodynamics • Myocardial Bridge • Septal Branch

	 PDF file:	 http://www.polradiol.com/abstract/index/idArt/893227

Received:	 2014.12.07 
Accepted:	 2014.12.19 
Published:	2015.04.16

Background

The distribution of atherosclerotic plaque burden in human 
coronary arteries is not uniform. For example, the sep-
tal branches are protected against atherosclerosis but the 
proximal segment of the left anterior descending artery 
(LAD) is predisposed to plaque formation. Several local 
hemodynamic factors have been involved in this phenome-
non. The purpose of this review was to discuss well-known 
risk factors involved in plaque formation and to introduce 
the new ones, in relation to the plaque distribution pattern 
which is not random.

Plaque Distribution

There is not much research relating to coronary artery 
atherosclerosis distribution. A high-volume study concern-
ing location of coronary atherosclerosis was published 
by Montenegro et al. in the year 1968 [1]. They examined 
2964 hearts at the autopsy. In his study, atherosclerosis 
was more prevalent in the left coronary artery (LCA), in 
particular in the LAD, in comparison to the right coronary 
artery (RCA). Another autopsy study on 600 male and 600 
female human hearts [2,3] and clinical studies on a few 
hundred patients also confirmed LAD predisposition to 
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plaque formation [4–6]. Giannoglou et al. assessed a cohort 
of 17,323 patients who underwent coronary angiography 
[7]. In his survey, 6.5% of patients had an RCA-only disease, 
while 34.7% had an LCA-only disease.

The amount of coronary artery calcium correlates with 
plaque burden and the calcium score roughly reflects the 
magnitude of coronary atherosclerosis [8]. According to 
tomographic studies, higher spatial distribution of calcal-
cifications and plaques is found in the LAD, then in RCA, 
circumflex branch (LCx) and the left main stem (LM) in a 
decreasing order of frequency [9–13].

Moreover, there was not only a difference in the frequency 
of plaque distribution in the right and left coronary artery 
but also the RCA plaques had more uniform distribution 
along the coronary artery. However, in the LAD or the LCx, 
they clustered within the proximal segments [14–16]. The 
present study tried to give a comprehensive explanation of 
uneven plaque distribution and proximal LAD susceptibil-
ity to plaque formation.

Endothelial Shear Stress

Traditional risk factors may influence the evolution and 
development of atherosclerosis. However, systemic in 
nature, they do not explain uneven plaque distribution 
in each coronary artery. Some factors may be involved in 
the local nature of atherosclerosis but endothelial shear 
stress (ESS) seems to be crucial. ESS is the tangential 
stress derived from the friction of the flowing blood on the 
endothelial surface and is expressed in units of force/unit 
area (N/m2 or Pascal [Pa] or dyne/cm2; 1 N/m2=1 Pa=10 
dyne/cm2). In definition, ESS is proportional to product 
of the blood viscosity (µ) and the spatial gradient of blood 
velocity (ESS=µ × dv/dy).

Mechanotransduction

Endothelial cells are equipped with numerous mecha-
noreceptors (membrane integrins, ion channels, platelet-
derived growth factor receptors and G proteins) capable of 
responding to ESS stimuli. The mechanical forces are con-
verted into biological signals. This phenomenon is termed 
mechanotransduction. Disturbed, low and low-oscillatory 
ESS results in intracellular pathways, such as the mitogen-
associated protein kinases (MAPKs) and the nuclear factor 
kappa-light-chain-enhancer of activated B cells pathway, 
which lead to the activation of several transcription factors 
and subsequent proatherogenic gene expression [17,18].

In arterial segments (usually straight) with laminar flow, 
where ESS varies within a physiological range, the endothe-
lial cells (ECs) express atheroprotective genes [17,19–22].

Low and low-oscillatory shear stress causes suppression of 
atheroprotective genes, whereas the pro-atherogenic genes 
are upregulated, thereby promoting plaque formation [19,20]. 
In addition to this, disturbed flow enhances DNA synthesis in 
ECs, which results in intensified ECs proliferation [23].

Although the process of arterial calcification is not com-
pletely understood, the mechanism resembles the process 

of osteogenesis, involving various cells like calcifying 
vascular cells (CVCs), proteins like osteopontin (OPN), 
osteonectin (ON), osteoprotegerin (OPG) and inflamma-
tory cytokines that lead to tissue mineralization [24,25]. 
Mechanotransduction is also observed in bones where 
extracellular fluid shear stress, generated in lacunar or 
canalicular spaces, generates a mechanical stimulus which 
enhances proliferation of osteocytes and their differentia-
tion into osteoblasts [26].

Moreover, oscillatory ESS induces the formation of bone 
morphogenic protein 4 (BMP4) in ECs. BMP4 is a critical 
mechanosensitive, proinflammatory, autocrine cytokine. It 
increases reactive oxygen species (ROS) production from 
nicotinamide adenine dinucleotide phosphate (NADPH) oxi-
dases, which then initates the inflammatory cascades, sub-
sequently leading to monocyte adhesion and further ather-
osclerotic plaque formation. Laminar flow and ESS within 
physiological range inhibit the expression of BMP4 [27].

ESS-modulating factors

The different factors influencing hemodynamics generate 
low shear stress (approx. 5 dyn/cm2) and low-oscillatory 
shear stress (±5 dyn/cm2):

1.	�In regions such as branching points, the outer wall of 
bifurcations, and the inner walls of curvatures, where 
its occurs disturbed flows, generating low and low-oscil-
latory ESS, which was shown both in coronary and non-
coronary arteries in ex vivo and in vivo investigations 
[20,28] (Figure 1).

This phenomenon occurs not only in the coronary arter-
ies but also in the entire arterial system, for example in 
carotid bifurcations, aortic arch and femoral arteries [23].

2.	�Coronary blood flow pattern varies between the LCA 
and the RCA. In the LCA it is biphasic, low during sys-
tole, showing an abrupt increase of velocity in the early 
stages of diastole, and gradually declining after that. As 
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Figure 1. �Numerical calculation of the oscillatory shear index (OSI) in 
the LAD. Increased OSI values are observed at the origin of 
the septal perforator branch and co-exist with decreasing 
wall shear stress.
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much as 85% of the anterograde flow in the LCA occurs 
during diastole [29]. On the other hand, blood flow in the 
RCA shows less variation and is almost consistent dur-
ing the cardiac cycle with a small systolic predominance 
[29,30].

Differences between the RCA and the LCA flow and shear 
stress fluctuations follow the same patterns [29,30].

Myocardial Bridge

Myocardial bridge (MB) is a congenital anomaly in which 
a segment of a coronary artery is surrounded by the myo-
cardium (the artery covered by the myocardium is called a 
tunneled artery). MB is most commonly found in the mid-
dle segment of the LAD [31,32].

Prevalence of MB varies between different analyses and 
imaging methods used. In autopsy studies it ranges from 
5% to 86% of the general population [32]. In conventional 
contrast-enhanced, coronary angiography it occurs in <5% 
of patients [32] and in computed tomography angiography 
more frequently (from 5.7% to 58%) [33,34].

Numerous studies have shown that the myocardial bridge 
is associated with the development of atherosclerosis 
proximal to the tunneled artery [20,35,36], wherein the 
intramyocardial segments is spared which has been shown 
repeatedly by autopsy studies [37] as well as by several 
series using cardiac catheterization and intravascular 
ultrasound (IVUS) [38].

Nakaura et al. recognized MB in the mid-LAD segment as 
an independent risk factor for coronary atherosclerosis in 
the proximal LAD [39].

There are two mechanisms related to this phenomenon:

1.	�Tensile stress (TS) is a force exerted circumferentially 
(perpendicular both to the axis and to the radius of the 
object) in both directions on every particle in the cyl-
inder (artery) wall. It can be approximated by an equa-
tion related to Laplace’s law (T=P[r/t]), where P is the 
blood pressure, r is the lumen radius and t is the wall 
thickness. As it was described before, coronary flow 
occurs in the LCA in diastole mainly, whereas systol-
ic blood is stored in dilated arterial walls. However, in 
the case of myocardial bridging, dilatation of the arte-
rial wall is impossible. In fact, tunneled segments at the 
systole undergo compression and lumen radius reduc-
tion. However, the blood pressure exhibits a significant 
increase within the bridged segments compared with the 
adjacent proximal regions [40]. Reduction of the lumen 
artery radius and subsequent decrease of TS [41] protect 
coronary arteries from atherosclerosis (high ESS) [42]. At 
the same time, high TS occurs in the segment proximal 
to the bridge and a proatherogenic environment is gener-
ated [43].

2.	�Within the bridged artery, there is no anterograde blood 
flow in systole followed by accelerated forward flow in 
diastole. Proximally to the bridge a retrograde flow is 
generated, similarly followed by accelerated forward 

flow in diastole [40,42]. Therefore, in the proximal seg-
ments, bidirectional flow occurs and generates low and 
low-oscillatory ESS, whereas in the bridged segments, 
normal or even high ESS is preserved [44]. In addition 
to low ESS, increased residence time of proatherogenic 
blood particles above the tunneled coronary segments 
promotes their subendothelial accumulation [45].

The morphology of ECs proves the importance of the local 
hemodynamic milieu in the processes of atherosclerosis 
development and progression. In scanning electron micros-
copy of the human LAD, ECs proximal to the MB are polyg-
onal and flat in shape, whereas those beneath MB become 
spindle-shaped, engorged and aligned along the blood flow 
direction. Spindle-shaped ECs are found in the areas of high 
ESS, and polygonal-shaped cells are characteristic for low 
ESS regions. Moreover, under the physiological ESS, actin 
fibers of ECs are elongated, well organized, situated in the 
central region of the cell and the distribution of intercellu-
lar junctional proteins is continuous. In contrast, in points 
of disturbed flow, actin fibers are short, randomly oriented 
and located mainly at the periphery of ECs with disconti-
nuity of junctional proteins. As a consequence, lipoprotein 
accumulation is increased [23].

Vertebral arteries might be another example of the athero-
protective role of surrounding tissue. In this case, the 
intraosseal portions of the vertebral arteries are free from 
atherosclerosis, which then localizes in segments between 
bone canals [46]. The same mechanism can explain why 
septal perforators with intramyocardial courses are pro-
tected against plaque formation.

Septal Perforators

Anatomy of septal perforators

Interventricular septum is the most densely vascularized 
portion of the heart and receives blood both from the left 
and the right coronary artery [47].

a.	�Anterior septal perforator arteries originate from the 
proximal part of the LAD and irrigate 2/3 of the upper 
part of the interventricular septum. They vary in num-
ber (usually from 4 to 13) with an average of eight 
branches [48]. The length of these vessels ranges from 40 
to 80 mm and tends to become shorter as they reach the 
apex [49].

The first septal artery is usually the largest and the longest 
one (4 to 6 cm). Its external diameter at the origin ranges 
from 1.0 mm to 2.35 mm [50]. Most commonly it originates 
close to the takeoff of the first diagonal branch. Less fre-
quently the first septal perforator might be a short artery 
or there are two or three major septal arteries comparable 
in size [48]. This pattern seems to protect the LAD against 
atherosclerosis.

Infrequently septal perforators arise from the diagonal 
branch, the RCA or the LM [51–54].

b.	�Posterior septal perforator arteries originate from the 
posterior descending artery (PDA) and irrigate 1/3 of the 
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lower part of the interventricular septum. The PDA usu-
ally arises as a branch or continuation of the RCA, at the 
level of the crux cordis on the posterior surface of the 
heart. It gives rise to small inferior septal branches (var-
ying in number from 6 to 20, length up to 15 mm, diam-
eter of 1 mm on average) which interconnect with ante-
rior septal branches from the LAD and create a network 
of potential collateral channels [48].

Pro-atherogenic role of the septal perforators

The prevalence of atherosclerosis in the LCA in compari-
son to the RCA can be attributed to different flow pat-
terns, which was mentioned previously. However it 
does not explain the disparity between the LAD and the 
LCx, as these are both parts of the LCA. In the LAD and 
the LCx, plaques are located in the proximal segments. 
Nevertheless, in the LCx they occur significantly less fre-
quently than in the LAD or even in the RCA [1–7,14–16] 
(Figures 2–7).

Studies that evaluated plaque distribution in the LAD by 
ultrasound revealed that in the LAD segments adjacent to 
the first septal branch, the mean atheroma area and the 
mean intimal thickness were substantially greater on the 
septal side than on the antiseptal side [55].

Among patients with myocardial hypertrophy, systolic retro-
grade flow was observed in septal perforators and adjacent 
LAD segments. Watanabe et al. with the use of echocardio-
graphic examinations, showed in patients with hypertrophic 
cardiomyopathy systolic flow reversal in septal perforators 
as well as in the LAD, caused by systolic compression of the 
intramyocardial coronary arteries [56], which was previous-
ly shown in angiographic studies as well [57].

The compression of SB at systole and reversed or dis-
turbed flow occur as well in patients with isolated aortic 

Figure 2. �Multi-slice computed tomography examination. 
Calcifications are visible proximally to the origin of the first 
septal branch and on the outer wall of the LM bifurcation.

Figure 3. �Multi-slice computed tomography examination. 
Atherosclerotic plaques are located at the origin of the first 
septal branch.

Figure 4. �Multi-slice computed tomography examination. 
Calcifications are located on the septal side of the LAD, 
proximally and distally to the first septal branch origin.

Figure 5. �Multi-slice computed tomography examination. The septal 
branch emerging from the distal portion of the RCA. The 
calcified plaques are present at the RCA in the proximity to 
the septal branch take-off.
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stenosis [58,59] and with left ventricular hypertrophy in 
association with aortic stenosis [60]. It might be an impor-
tant issue, considering the fact that left ventricular hyper-
trophy was observed as an important risk factor for sub-
clinical atherosclerosis and calcifications [61] and that left 
ventricular mass, and septal and posterior wall thickness-
es of the left ventricle were associated with an increased 
extent of calcium coronary calcifications [62].

Anatomy of coronary branching. An additional risk factor for non-
uniform plaque distribution

In 50–78% of cases the first RCA branch is the conus artery, 
usually arising from the first 2 cm of that artery [63,64]. 
The atrial branches of the RCA vary considerably in num-
ber, size, and location. Nevertheless, in about 63% of cases 
the first atrial branch is the sinoatrial node artery. It is 
also the biggest atrial branch with an external diameter of 
about 1.7 mm [65]. Additionally, the right superior septal 
perforator artery might be present, originating from the 
proximal segment of the RCA. It was detected in 3.2–3.9% 
of the cases in angiography [52] and computed angiography 
[54], and in 27% in autopsy studies [53].

The right ventricular branches arise from the middle seg-
ment of the RCA. The number of these branches varies 
greatly and is inversely proportional to the diameter of 
such vessels [66].

Acute marginal branches are further arteries arising from 
the RCA [66]. Additionally, in 14–15.1% of cases, usually 
after the acute marginal branch, there follows the posterior 
right diagonal artery [67,68].

The atrioventricular node artery originates in 90% of cases 
from the RCA at the level of the crux and is considered as 
the first inferior septal perforating branch [65].

At the level of the crux, the RCA divides into two terminal 
branches: the PDA and the posterolateral artery. The PDA 
gives rise to posterior septal branches [66].

In the case of a right-dominant pattern of heart circulation 
which occurs in approximately 85% of patients, the left cir-
cumflex artery has two or three obtuse marginal branch-
es [66]. Additionally, in 25% of cases, the sinoatrial node 
artery derives from the LCx [66]. At the end of the proximal 
segment, there arises the left atrial branch [66].

From the LAD, except for septal branches described before, 
usually three diagonal branches arise [66]. Moreover, short 
right ventricular branches might be present.

This description of the coronary tree shows that the LCx 
has fewer branches compared with the RCA, and no septal 
perforators like LAD or PDA. As it was mentioned before, 
branching points and intramyocardial septal perforators 
are known to generate a number of risk points with a com-
plex disturbed flow. The frequency of branching and SB 
distribution determines the plaque pattern and explains 
why the most prevalent location of atherosclerosis is the 
proximal LAD and why in the RCA the plaques are distrib-
uted more evenly. Finally, it also explains why the LCx is 
relatively protected against atherosclerosis with a predomi-
nance for plaque formation in close proximity to the first 
side branches (obtuse margin).

Conclusions

Plaque distribution is not uniform. Atherosclerosis occurs 
more commonly in the LCA than in the RCA but the LCx 
is less frequently affected. Septal perforators arising from 
the LAD and RCA cause higher prevalence of atherosclero-
sis in those two arteries. This effect is intensified by mul-
tiple branching points of the RCA and LAD in comparison 
to the LCx. The architecture of coronary anatomy branch-
ing explains the non-uniform distribution of atherosclerotic 
plaques and prevalence of atherosclerosis in the LAD and 
RCA in comparison to the LCx.
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Figure 6. �Multi-slice computed tomography examination. 
Calcifiations are visible on the septal side of the LAD 
between the origin of first and the second septal branch.

Figure 7. �Multi-slice computed tomography examination. 
Atherosclerotic plaque is located at the origin of the first 
septal branch and in the close proximity to the origin of the 
first diagonal branch.
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