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Abstract

Alpha-synuclein (α-syn) is central to the pathogenesis of Parkinson disease (PD). Gene 

duplications, triplications and point mutations in SNCA1, the gene encoding α-syn, cause 

autosomal dominant forms of PD. Aggregated and post-translationally modified forms of α-syn 

are present in Lewy bodies and Lewy neurites in both sporadic and familial PD, and recent work 

has emphasized the prion-like ability of aggregated α-syn to produce spreading pathology. 

Accumulation of abnormal forms of α-syn is a trigger for PD, but recent evidence suggests that 

much of the downstream neurodegeneration may result from inflammatory responses. 

Components of both the innate and adaptive immune systems are activated in PD, and influencing 

interactions between innate and adaptive immune components has been shown to modify the 

pathological process in animal models of PD. Understanding the relationship between α-syn and 

subsequent inflammation may reveal novel targets for neuroprotective interventions. In this 

review, we examine the role of α-syn and modified forms of this protein in the initiation of innate 

and adaptive immune responses.

Structure of α-synuclein

Alpha-synuclein (α-syn) is a small 14kDa (140 amino acid) highly charged, presynaptic 

protein with a propensity to aggregate into oligomers of varying morphology [1–4]. It has 

the ability to reversibly associate with lipid vesicles based on its conformation and is 

commonly thought to have a role in pre-synaptic vesicle trafficking, although the precise 

mechanism is unknown[5, 6]. Soluble monomeric α-syn is thought to have little tertiary 

structure, folding as a random coil [7–9], but work by Bartels, et al. has suggested that stably 

folded soluble tetramers may be a native conformation in cells [10].

α-Syn has three domains: the N-terminal domain (aa 1–65), the non-amyloid-β component 

of plaques (NAC) domain (aa 66–95), and the C terminal domain (aa 96–140) [11]. The 

highly conserved N-terminal domain is composed of two amphipathic α-helices that allow 
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for the reversible association with lipid membranes [12, 13]. The NAC domain is unique to 

α-syn, as it is not present in the two other members of the synuclein protein family, β-

synuclein and γ-synuclein [14]. This domain was first discovered as the non-amyloid 

component of amyloid-β plaques in Alzheimer disease, and allows for fibrillization of α-syn 

through its ability to adopt a β-sheet conformation [15]. The highly variable acidic C-

terminal domain differs in length and composition between species, contains many of the 

sites available for post-translational modifications of α-syn, and mediates many of α-syn’s 

protein:protein and SNARE complex chaperone interactions [16–22].

Genetics of α-synuclein in Parkinson Disease

Genetic variations in SNCA1, the gene encoding α-syn, cause familial Parkinson disease 

(PD) and are risk factors for sporadic PD. Rare missense point mutations in the N-terminal 

α-helices of α-syn, (A53T, A30P, E46K, but also the newly described H50Q, G51D and 

A53E) cause autosomal dominant familial PD and PD-like syndromes, presumably by 

directly altering the folding or clearance of the protein [23–28]. Additionally, gene 

multiplications of SNCA1 can be causative of familial PD in an α-syn dose-dependent 

manner. Patients with a gene dosage of ~1.5, or three copies of SNCA1, have a disease 

presentation similar to that of sporadic late-onset PD, while patients with a gene dosage of 

~2.0, or four copies of SNCA1, tend to develop severe early-onset PD with extensive 

dementia and non-motor features [29–32]. These increased gene dosages lead to increased 

abundance of α-syn that can be measured directly in blood and other tissues [33]. 

Furthermore, increased α-syn mRNA and protein expression associates with an increased 

risk of sporadic late-onset PD [34–37]. A well-characterized mechanism for increasing α-

syn mRNA and protein expression is increased length of the dinucleotide repeat 

polymorphism in the microsatellite Rep1 in the promoter region of SNCA1, which has been 

shown to be associated with an increased risk of PD [37, 38]. Together these data suggest 

that high levels of α-syn induce neurotoxicity sufficient to produce human PD.

α-Synuclein Pathology in Parkinson Disease

Accumulation of neuronal α-syn aggregates is thought to be a key process in PD 

pathogenesis and is promoted by the presence of high levels of α-syn [39, 40]. α-Syn 

aggregates are found throughout the substantia nigra pars compacta (SNpc) in PD, but can 

also be found in other neurons throughout the central nervous system (CNS) and peripheral 

nervous system (PNS). Regions affected in early PD include the spinal cord, medulla, 

olfactory bulbs, and autonomic nervous system; cortical involvement is seen in later-stage 

PD [41, 42]. While α-syn in is typically mostly soluble in normal brain, in PD the α-syn 

inclusions are detergent-insoluble [43, 44]. The largest and most highly organized forms of 

α-syn aggregate are Lewy bodies which can be either dense round bodies with a central core 

and peripheral halo, typically found inside the dopaminergic neurons of the substantia nigra, 

or a diffuse, less compact structures more typically found in the cortex [45]. These structures 

also involve the incorporation of ubiquitin as well as almost 300 other cellular proteins to 

the final structure [46]. Lewy bodies are most frequently found in the cell body, but can 

occasionally be found in the neurites [47]. Other neuritic pathology can be found including 

dystrophic Lewy neurites and smaller dot-like structures [45, 48]. These α-syn inclusions 
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contain post-translationally modified α-syn, including phosphorylated and ubiquitinated 

forms [49].

Innate Immune System in Parkinson Disease

Microglia are the resident immune cell of the brain, and as such, function as the primary 

contributor towards innate immunity in the CNS [50]. They have important roles in 

exploring the cellular environment, phagocytosis, antigen processing and presentation, and 

production of cytokines and chemokines [50]. Microglia, while morphologically and 

functionally similar to circulating monocytes and tissue macrophages, derive from a 

different lineage, originating from the yolk sac and migrating into the brain early in 

development [51, 52]. Additionally, microglia express a distinct, transforming growth 

factor-β (TGF-β) dependent, gene signature from monocytes and macrophages both at 

baseline and when activated [53]. Maintenance of the microglial population does not require 

hematopoiesis [54].

Recent studies have highlighted the invasion of circulating monocytes into the CNS in 

pathological conditions, where they make unique and important contributions to 

inflammation and neural injury [55–59]. It is important to note that until recently, the 

techniques used to study activation of CNS microglia could not distinguish between resident 

brain microglia and other monocytic invaders. The “microglia” described in many earlier 

reports may actually represent a mixed population of resident brain microglia and invading 

peripheral monocytes that have differential effects on disease state.

The earliest evidence for the involvement of the immune system in PD pathogenesis came 

from the observation of activated microglia surrounding degenerating dopaminergic neurons 

in the SNpc of PD post-mortem brains [60]. In PD, the degree of microglial activation as 

assessed by staining for CD68 and human leukocyte antigen-DR (HLA-DR) is directly 

correlated with α-syn load in post-mortem brains, suggesting that α-syn may activate the 

innate immune system directly [61]. The presence of neuromelanin inside of activated 

microglia indicates that diseased dopaminergic neurons in the nigra are likely being 

phagocytosed, thereby allowing pathogenic α-syn to undergo processing and potential 

antigen presentation [62]. Furthermore, activated microglia in the midbrain and striatum can 

be seen in PD patients undergoing positron emission tomography (PET) imaging with [11C]

(R)-PK11195, a ligand for the peripheral benzodiazepine receptor, which is upregulated in 

activated microglia [63]. An increase in midbrain [11C](R)-PK11195 binding is inversely 

correlated to these patients’ motor function and the presence of the dopamine transporter in 

the striatum; in other words, activation of microglia is directly correlated to PD severity both 

clinically and pathologically [64]. Additionally, evidence from multiple studies suggests that 

some non-steroidal anti-inflammatory drugs (NSAIDs), particularly ibuprofen, may reduce 

the risk of developing PD [65–67]; however, this result is inconsistent. For example, a 

population cohort study of Danish older adults with severe osteoarthritis that have typically 

very high use of NSAIDs did not show any reduction in PD incidence [68]. It is possible 

then that the use of NSAIDs besides ibuprofen altered the magnitude of the effect, or that the 

elder age in which anti-inflammatory therapy was initiated was not sufficient to prevent the 

development of PD.

Allen Reish and Standaert Page 3

J Parkinsons Dis. Author manuscript; available in PMC 2016 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Activation of innate immunity leads to production of soluble mediators of the immune 

system, including chemokines, cytokines and the complement system, and these are found in 

increased abundance in the PD post-mortem brain. Pro-inflammatory cytokines and 

chemokines, particularly tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-6 and 

interferon- γ (IFN-γ), are upregulated in both post-mortem brain and cerebrospinal fluid 

(CSF) from PD patients [69–72]. Cytokine and chemokine expression are also upregulated 

in peripheral blood mononuclear cells (PBMCs) in PD patients; monocyte chemoattractant 

protein (MCP-1), (chemokine CC-motif ligand 3) CCL3, CCL5, IFN-γ, IL-1β, IL-8 and 

TNF-α expression levels in PBMCs at baseline or stimulated with lipopolysaccharide (LPS) 

correlate with motor function as assessed by United Parkinson’s Disease Rating scale 

(UPDRS) III and Hoehn and Yahr (H&Y) stage [73]. Complement system components C3d, 

C4d, C7, and C9 have been found in association with degenerating neurons and α-syn 

inclusions in PD brain [74], and in the case of C1q, in association with activated microglia 

surrounding degenerating neurons [62]; some evidence also suggests that C1q, iC3b (an 

activated form of C3) and C9 are upregulated in PD patient brains [75, 76].

Genetic factors related to innate immunity predispose to PD. In 2010, the first noncoding 

single nucleotide polymorphism (SNP) in HLA-DR conferring risk for sporadic PD was 

found through a genome wide association study in late-onset idiopathic PD [77]. Other 

studies have confirmed that the HLA-DR region is associated with PD risk [78–86], and at 

least one study has suggested that there may be multiple risk alleles within the HLA-DR 

region [87]. Additional SNPs in other signaling pathways associated with immune system 

activation, including TNF-α, TNFR, IL-1α and β, IL-1RA, IL-2, IL-6, IL-8, IL-10, IL-17A, 

IL-18, IFN-γ, IFN-γR2, intercellular adhesion molecule-1 (ICAM-1), MCP-1, fractalkine 

(CX3CR1), CCR2, CCR3, CCR5, nuclear factor kappa light chain enhancer of B-cells 

(NFκB) and TGF-β, have been studied in PD patients with regards to both risk of developing 

disease and age of onset [88–115]. Many of these studies are small scale or show conflicting 

results between ethnic backgrounds; however, in Holmans 2013, pathway analysis in two 

independent genome wide association studies (GWAS) revealed a significant association 

between PD diagnosis and SNPs in pathways encoding cytokine-mediated signaling and 

regulation of leukocyte/lymphocyte activity [116].

Innate Immune System in Animal Models of Parkinson Disease

The innate immune system has a pathogenic role in both toxin-based and α-syn-based 

animal models of PD. Studies have shown extensive accumulation of activated microglia in 

the MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) [117, 118], 6-OHDA (6-

hydroxydopamine) [119], and rotenone toxin models of PD [120]. There is also significant 

microglial activation in α-syn-overexpression models of PD. In the mouse AAV-SYN 

model, which uses an adeno-associated virus (AAV) to overexpress α-syn via stereotaxic 

injection into the SNpc, there is prominent accumulation of ionized calcium-binding adaptor 

molecule 1(Iba1)+, CD11b+, CD68+ and major histocompatibility complex II (MHC-II)+ 

microglia in the SNpc starting as early as four weeks post-injection and extending to six 

months post-injection [121–123]. In the rat AAV-SYN model, there is microglial activation 

in the striatum along with cytokine expression, particularly TNF-α, IL-1β and IFN-γ [124]. 

In the Thy1-α-syn overexpressing mice which overexpresses α-syn under the thymocyte 
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antigen 1 (Thy1) promoter, there is Iba1+ microgliosis exhibited in the striatum starting as 

early as one month of age, and extending to 14 months of age. At 14 months of age, there 

were also prominent MHC-II+ microglia in the striatum. In the substantia nigra, activated 

Iba1+ microglia were present at 6 months of age; this activation receded by 14 months of 

age. In the cortex, activated Iba1+ microglia were only present at 14 months of age. There 

was no activation in the cerebellum [125]. These results show that microglial activation is 

triggered asynchronously in the Thy1-α-syn mice and therefore, may reflect differences 

between regions of the nigrostriatal system in both the events leading to immune system 

activation and the maintenance of an immunological reaction in response to α-syn 

overexpression [125].

Suppressing microglial activation can inhibit neurodegeneration. In both 6-OHDA and 

MPTP mouse models of PD, dopaminergic neurodegeneration is ameliorated by the 

administration of minocycline, a tetracycline derivative that inhibits microglial activation 

[126, 127]. Furthermore, in PD animal models, cytokines are instrumental in mediating 

dopaminergic neuron loss. In both LPS and 6-OHDA rat models of PD, inhibition of TNF-α 

signaling has been shown to ameliorate both neuroinflammation and dopaminergic cell loss 

[128–130]. In an LPS mouse model, IL-1 knockout mice were protected from 

neuroinflammation and loss of motor function as assessed by rotarod [131]. Interestingly, 

TNF knockouts did not show improved motor function; however, this study did not directly 

measure neuron loss [131]. In mice given a single intraperitoneal injection of a sub-

neurotoxic dose of MPTP, knocking out TNF-α led to a partial reduction of microglial 

activation, while knocking out IFN-γ was sufficient to completely ameliorate microglial 

activation [132]. No studies have been completed in α-syn models on the role of particular 

cytokines in neurodegeneration.

Activation of Innate Immunity by α-synuclein

Microglia are intimately involved with maintaining their microenvironment’s homeostasis 

[50]. When stimulated, microglia can alter their morphology, chemotactically move towards 

areas of inflammation, phagocytose pathogens or cellular debris, release pro-inflammatory 

or anti-inflammatory cytokines, release chemokines, and present antigen to T-lymphocytes 

[50].

Microglia have the ability to phagocytose extracellular aggregated α-syn from their 

environment and target it to the light chain 3B (LC3B)+ autophagosome for degradation 

[133]. Additionally, the Fc-γ Receptor (FcγR) is required for uptake of extracellular 

aggregated α-syn and engagement of downstream NFκB-dependent signaling cascades, 

including chemokine production [133]. FcγR−/− mice are protected from the 

neuroinflammation and neurodegeneration after AAV-mediated α-syn overexpression, 

suggesting that phagocytosis of aggregated α-syn into microglia is important for inducing an 

immune response that leads to neurodegeneration [122].

Although the evidence for phagocytosis of α-syn by microglia is clear, there is conflicting 

data as to whether α-syn itself can directly activate microglia and macrophages. Several 

studies suggest that α-syn can elicit the production of pro-inflammatory cytokines in 
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microglia or monocytes. Treatment of BV2 cells or primary microglia with aggregated α-

syn led to the production of the pro-inflammatory cytokines, TNF-α and IL-1β [134, 135]. 

Treatment of primary microglia with aggregated nitrated α-syn also increased production of 

TNF-α, IL-1β, and additionally, MCP-1, and IFN-γ [136]. Treatment of THP-1 cells, a 

human monocytic cell line, with monomeric wild-type α-syn led to the secretion of IL-1β; 

additionally, monomeric A53T mutant α-syn led to the secretion of both TNF-α and IL-1β 

[137]. Furthermore, treating THP-1s with IFN-γ in addition to monomeric α-syn potentiated 

pro-inflammatory cytokine secretion [137]. In Codolo et al (2013), human monocytes were 

found to transcribe pro-IL-1β and produce increased reactive oxygen species (ROS) 

production in response to both monomeric and fibrillar α-syn; however, only aggregated α-

syn treatment allowed for the release of mature IL-1β [138]. Taken together, these studies 

suggest that modified α-syn leads to microglial or monocytic activation, with the production 

of the corresponding pro-inflammatory cytokines.

On the other hand, several studies have failed to report cytokine upregulation in microglia in 

response to α-syn despite other α-syn-mediated effects. For example, upregulation of 

superoxide and ROS was observed in response to phagocytosis of aggregated α-syn in rat 

primary microglia without a change in TNF-α production [139]. Similarly, Cao 2012 

showed that treating murine primary microglia with aggregated α-syn led to a limited NF-

κB-dependent chemokine response with detectable increases of IL-1α, IP-10, CCL-3, 

CCL-4, chemokine CXC motif ligand 2 (CXCL2), and MCP-1, but not TNF-α or IL-6 

[133]. Furthermore, FcγR−/− microglia did not exhibit this cytokine and chemokine 

response to aggregated α-syn, supporting this idea that phagocytosis of α-syn is required 

[133]. Although microglia treated with aggregated α-syn increased antigen processing and 

MHC-II expression, a robust MHC-II-dependent cytokine response to aggregated α-syn was 

only induced in primary microglia by co-culturing them with T-cells [123].

Several different receptor systems have been implicated in the uptake of α-syn into 

microglia and macrophages. In addition to FcR-mediated phagocytosis, toll-like receptor 

(TLR) distribution is modulated in response to α-syn treatment [140]. In murine primary 

microglia pretreated with wild-type oligomeric α-syn, TLR-2 is upregulated, while TLR-3 

and 7 are downregulated [140]. Furthermore, TLR2 deficient (−/−) microglia do not express 

TNF-α or IL-1β in response to treatment with conditioned media from SH-SY5Y cells 

overexpressing α-syn [141]. Complement and its receptors, particularly C3 and CR3, could 

be involved in the uptake of α-syn into microglia. C3 and CR3 are involved in the 

phagocytosis and lysosomal targeting of fibrillar amyloid-β, which facilitates its clearance 

[142]. No similar studies have been conducted with α-syn. Finally, exosomal transport of α-

syn is known to occur in SH-SY5Y cells in a calcium-dependent manner, and can be 

upregulated in states of lysosomal dysfunction [143, 144]. Furthermore, α-syn oligomers 

have been found on both the inside and outside of the exosome [145], and there is an 

increased amount of α-syn in plasma exosomes in PD patients [146]. Exosomal transport 

and reuptake is hypothesized to be a mechanism of transferring toxic species of α-syn 

between neurons in synucleinopathies like PD [147]. It is likely that oligomeric α-syn from 

neurons could be transmitted to microglia in the same manner.
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Several biological factors may contribute to the observed experimental variability in the 

response of isolated microglia and macrophages to α-syn. The activation state of microglia 

is regulated differently from their monocytic counterparts due in part to their contact with 

neurons via the CD200/CD200R and CX3CL1/CX3CR1 ligand/receptor interactions, and 

this may contribute to some of the difference between microglia and monocytes, and 

between in vitro and in vivo settings [148]. Microglia and macrophages also have different 

programs for activation, depending on the stimulus to which they are responding [149]. 

Typically associated with infectious pathogens, “classical” M1 activation is characterized by 

the expression of pro-inflammatory cytokines, TNF-α, IL-1, and IL-6, and expression of 

iNOS [149]. “Alternative” M2 activation is characterized by expression of IL-10 and 

arginase 1 and is typically associated with a tissue repair response [149]. While these two 

cellular programs illustrate how polarized microglia can be in response to particular stimuli, 

in reality, microglia can express phenotypes along this spectrum, and may only be partially 

activated in response to α-syn [149].

An additional source of variability in these studies likely comes from the conformation of α-

syn used for treatment of microglia and monocytes. Aggregated α-syn can exist in a wide 

variety of shapes, each with potentially different toxicity to neurons and potentially different 

effects on microglia [4, 150–154]. Most experiments are conducted with α-syn aggregates 

formed in vitro, and depending on the details of the method used to prepare them may 

contain a variety of structures in varying concentrations with varying molecular properties. 

Further, the relationship between these artificially produced conformers of α-syn and the 

aggregated forms present in human PD is still uncertain.

Adaptive Immune System in Parkinson Disease

The adaptive immune system is characterized by specific responses to foreign proteins 

acting as antigens, and requires the recognition of antigens by T-cells and the subsequent 

activation of B-cells to differentiate and produce antibodies [155]. In PD patient post-

mortem brain, there is a 10-fold greater infiltration of CD4+ and CD8+ T-lymphocytes into 

the SNpc of PD patients compared to age-matched controls [156]. In peripheral blood, 

abnormalities in the lymphocytes of PD patients are found as well. In addition to peripheral 

innate immune dysfunction, as evidenced by increased neutrophils and natural killer (NK) 

cells, there are decreased numbers of both T and B-lymphocytes. CD4+ T-cells are 

particularly reduced in the blood when compared to CD8+ T-cells, which are unchanged 

[157–159]. The CD4+ reduction is correlated with UPDRS III performance in PD patients 

[158]. Characterization of CD4+ peripheral T-cells from PD patients shows that they are 

likely Th1 cells, as the ratio of IFN-γ:IL-4-producing cells is increased [157]. Furthermore, 

various surface markers are altered and correlate with disease state as assessed by UPDRS 

III [160]. The CD45RO+ subset is increased and positively correlated with UPDRS III, 

while the CD45RA+ subset is decreased; FasL is increased; CD31 is decreased and 

negatively correlated with UPDRS III; α4β7 integrin is decreased and negatively correlated 

with UPDRS III [160]. These results suggest that peripheral T-lymphocytes in PD are 

activated, effector/memory cells with a Th1 phenotype. Furthermore, these T-cells are likely 

undergoing activation-induced Fas-mediated apoptosis, leading to their decrease in number 

[160]. Decreases in α4β7 integrin on CD4+ T-cells could signal a relative increase in brain-
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homing function or an active immune response in the gut sequestering CD4+ α4β7+ T-cells 

from peripheral blood [160]. Indeed, T-cell protein expression may be used as a biomarker 

for PD in the future; a panel of 13 proteins expressed in T-lymphocytes was quantified by 

multiple reaction monitoring and validated as PD-specific in a small blinded cohort [161].

An interesting subset of T-cells, the γδ T-cell, is found upregulated in PD CSF [162]. These 

T-lymphocytes have both innate and adaptive functions and a different antigen repertoire 

than their CD4+ and CD8+ counterparts, as their immunological memory is independent of 

MHC-I or MHC-II [163]. Rather, they are activated by a variety of proteins, including ones 

expressing pathogen and damage associated molecular patterns and non-peptide phospho-

antigens typically upregulated under cellular stress [163].

B-cells have not yet been observed in PD patient brain; however, immunoglobulins (Ig) are 

plentiful. IgG, but not IgM, is deposited in the SNpc on dopaminergic neurons in PD patient 

post-mortem brain, and it colocalizes with α-syn aggregates [164]. IgG staining is 

predominantly IgG1, though there is some IgG3 and less IgG2 [164]. IgG staining is 

positively correlated to the number of activated monocytes and extent of neurodegeneration, 

suggesting a possible role in pathogenesis [164]. Additionally, FcγRI and FcγRIII, receptors 

for the IgG, were found on activated monocytes and lymphocytes, respectively, in the SNpc 

of PD patient brain, but not in visual cortex of PD patients or in age-matched control SNpc 

[164]. Indeed, the IgG seen in PD brain is likely neurotoxic; IgG isolated from PD patient 

brain stereotaxically injected into rat brain is sufficient to induce specific neurodegeneration 

of 35% of SN neurons only 4 weeks post-injection [165]

Adaptive Immune System in Models of Parkinson Disease

Increased numbers of T-cells are found in both toxin models and α-syn models of PD and 

appear to play specific roles in neurodegeneration [121, 125, 166]. Indeed, in an MPTP 

mouse model of PD, CD4−/− animals showed attenuation of neurodegeneration, whereas 

CD8a−/− animals had no effect on neurodegeneration [156]. In passive transfer studies into 

Rag1−/− mice, it was further discovered that CD4+ T-cells acted in a FasL-dependent, IFN-

γ-independent manner to mediate MPTP toxicity to dopaminergic neurons [156]. These 

results conflict with a study in IFN-γ −/− mice that show reduced dopaminergic toxicity in 

an MPTP model [167]. In vitro work suggests that dopaminergic toxicity may depend on the 

effects of IFN-γ on microglia in neurodegeneration. When microglia lacked an IFN-γ 

receptor, neurons did not die in response to rotenone and exogenous IFN-γ; however, when 

neurons lacked an IFN-γ receptor, they were still vulnerable, suggesting that microglia 

necessarily mediates their dopaminergic neurotoxicity via IFN-γ, as suggested previously 

[167]. T-cells are not the only source of IFN-γ in the CNS; IFN-γ is made in response to 

TNF-α in astrocytes [168], and microglia themselves can produce IFN-γ in response to 

infection, LPS or particular cytokines [169]. Recent work by Cebrian et al. shows that 

treatment of primary microglia with neuromelanin, α-syn, nitrated α-syn, and mutated α-syn 

led to increased microglial expression of IFN-γ [170]. In this study, IFN-γ expression was 

able to induce surface MHC-I expression and antigen processing in catecholaminergic 

neurons, allowing them to be selectively targeted for degeneration in vitro by CD8+ T-cells 

[170].
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Work by Sanchez-Guajardo et al shows that microglial phenotype and T-cell infiltration in 

the rat AAV-SYN model of PD are dependent on whether the α-syn transgene injected is 

sufficient to cause cell loss by 4 weeks post-injection, or whether the transgene only leads to 

a decrease in striatal TH+ fiber density without a corresponding cell loss up to 15 weeks 

post-injection. Rats injected with the AAV-SYN that leads to a decrease in striatal TH+ fiber 

density show an increase in MHCII+ microglia in both the substantia nigra and striatum, 

whereas rats injected with the AAV-SYN that leads to cell loss show an increase in CD68+ 

and MHCII+ microglia that they describe as being similar in appearance to peripherally-

derived macrophages [171]. Additionally, rats injected with the AAV-SYN that leads to cell 

loss show increased infiltration of both CD4+ and CD8+ T-cells into the substantia nigra 8 

weeks post-injection, whereas rats injected with the AAV-SYN that leads to striatal fiber 

loss do not [171]. They hypothesize that the differences between these two AAV-SYN 

viruses is the expression level of α-syn per cell [171]. Thus, it is interesting to note that the 

type and degree of both the innate and adaptive immune responses change in vivo depending 

on the degree of expression of α-syn, thereby suggesting that α-syn itself drives the 

inflammatory response.

Role of α-synuclein in Activation of Adaptive Immunity

The evidence for activation of adaptive immunity in PD is clear, but a critical question is the 

nature of the antigens responsible. This raises an obvious and important question: is α-syn 

the source of the antigens that trigger adaptive immune responses in PD?

There is certainly evidence for the ability of modified forms of α-syn to modulate adaptive 

responses in animal model systems. In the MPTP model of PD, adoptive transfer of T-cells 

from mice immunized to the nitrated C-terminus of α-syn to mice administered MPTP leads 

to increased neurodegeneration [172]. Additionally, when T-cells responsive to the nitrated 

C-terminus of α-syn were polarized to the Th1, Th2 and Th17 subtypes prior to adoptive 

transfer, both pro-inflammatory Th1 and Th17 subtypes were found to enhance 

neurodegeneration in response to MPTP, with Th17 cells having a greater effect than Th1 

cells[173]. Cells of the Th2 subtype had no effect. Furthermore, adoptive transfer of a Treg-

enriched population protected the mice from neurodegeneration in response to MPTP [173]. 

These results show that changing which T-cell subsets exhibit an α-syn-induced immune 

response can also dramatically change the extent of dopaminergic neurodegeneration.

α-Synuclein as a Potential Self-antigen in Parkinson Disease

If a peptide from α-syn is indeed a self-antigen triggering T-cell activation via MHC-II, the 

degree of the subsequent immune response is likely controlled by the precise conformation 

of α-syn undergoing antigen processing. The conformation of α-syn in PD is dependent on 

both aggregation and on post-translational modifications, including phosphorylation at S129 

and other residues, ubiquitination of lysines, nitration of tyrosines, and various truncations at 

the C-terminus [49, 174–176]. Not only are these post-translational modifications of α-syn 

more frequently found in PD brain and models of PD than in control brain, but they also 

affect α-syn’s toxicity, oligomerization, and immunogenicity [177–185]. For example, S129 

phosphorylation is a post-translational modification of α-syn that affects its toxicity in 
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animal models [186]. Less than 4% of total α-syn is phosphorylated at S129 in normal 

human brain, but around 90% of α-syn in Lewy bodies is phosphorylated at S129 [49, 187]. 

Dephosphorylating S129 by increasing the activity of phosphoprotein phosphatase 2A led to 

fewer α-syn aggregates, reduced inflammation and improved motor behavior in the Thy1-α-

syn overexpressing mouse model of PD [188]. It has been shown previously that T-cells in 

the CNS have the ability to distinguish between de-phosphorylated and phosphorylated self-

antigens [189, 190]. Particularly in the case of αB-crystallin, a putative self-antigen in 

multiple sclerosis, stress-induced phosphorylation at S45 is included within the dominant 

peptide expressed in the MHC-I cleft, and the phosphate group within the antigen comes 

into direct contact with the T-cell receptor [189]. Similar to the phosphorylation of S45 in 

αB-crystallin, the phosphorylation of α-syn at S129 is relatively rare and induced in disease 

[49, 187]. Thus, these epitopes may not exist in the thymus when negative selection occurs, 

and therefore may be erroneously recognized as foreign antigens [191].

Another way to change the antigenicity of a protein is by changing how it is degraded in the 

lysosome and processed for antigen presentation [191]. For example, in Rasmussen’s 

encephalitis, the glutamate receptor subunit 3 (GluR3) is presented as an antigen only when 

not glycosylated [192]. Glycosylation of GluR3 occurs at a Granzyme B cleavage site, and 

when glycosylated, the protease is unable to access its cleavage site during antigen 

processing [192]. Similarly, it is known that aggregated forms of α-syn are resistant to 

chaperone-mediated autophagy [193]. This would thereby significantly alter the repertoire of 

peptides produced that could be presented as antigen [191]. C-terminally truncated forms of 

α-syn and the C-terminal fragments are some of the conformations produced due to 

incomplete α-syn degradation [177, 194–204]. Furthermore, C-terminal truncation mutants 

of α-syn have been identified in Lewy bodies and whole PD brain [202, 205, 206] and are 

known to increase α-syn aggregation and neuropathology in both cell culture systems and 

animal models [207–215]. In order to directly address whether modifying C-terminal 

truncation leads to improved outcomes in vivo, Games, et al. passively immunized mice to 

α-syn using antibodies designed to bind C-terminal fragments and prevent C-terminal 

cleavage [178]. Administration of these antibodies ameliorated aggregation, cell loss, and 

loss of motor function in the Thy1-α-syn model of PD [178]. It is therefore possible that 

these toxic C-terminal fragments and the truncated α-syn itself are some of the newly 

exposed antigens induced by altered α-syn processing in the lysosome.

Finally, conformation of α-syn could modify antigen presentation by changing the affinity 

of α-syn peptides for binding MHC-II [191]. In mice containing the HLA-DRB1*0401 

MHC-II molecule associated with rheumatoid arthritis, citrullinated peptides have an 

increased affinity for binding MHC-II compared to their wild-type counterparts; this 

increased affinity is sufficient to produce activated CD4+ T-cells sensitized to citrullinated 

proteins [216]. Similarly, sensitization of CD4+ T-cells to nitro-tyrosine residues has been 

observed directly in mice in a residue-specific and MHC-II haplotype-specific manner 

[217]. Nitration of tyrosine residues occurs during both mitochondrial dysfunction and 

inflammation [218, 219]. α-Syn can be nitrated at its tyrosine residues[179], and is present 

in its nitrated form in disease models and human PD[220, 221]; presumably nitration of α-

syn arises from activation of inducible nitric oxide synthase and production of reactive 
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nitrogen species [222]. Direct administration of nitrated α-syn to the substantia nigra of rats 

leads to dose-dependent nigral degeneration and behavioral deficits, suggesting that the 

effect of nitrated α-syn is sufficient alone to induce degeneration [180]. Work reviewed 

above shows that immunization to nitrated α-syn modifies disease course in a T-cell subset 

specific manner in an MPTP model of PD [172, 173]. However, whether similar immunity 

can be induced to other modified forms of α-syn is yet unknown.

Alpha-synuclein-driven Inflammation in the Peripheral Nervous System

Although usually considered to be a brain disease, increasing evidence suggests that PD 

involves extracranial neurons as well, and may even begin in non-CNS neurons. Based on 

pathological studies of sporadic PD, Braak et al have proposed that α-syn aggregation and 

Lewy pathology initiates in the enteric nervous system [41, 42]. In this hypothesis, 

oligomeric α-syn propagates in a prion-like manner upwards via the vagus nerve to the 

brainstem, into the nigra and beyond to the cortex [223]. Indeed, α-syn aggregation can be 

found in the myenteric and submucosal plexuses throughout the entire enteric nervous 

system from the esophagus to the rectum in PD patients [223–227]. There is increased 

intestinal permeability to sucralose in PD patients, and this correlates with increased E. coli, 

3-nitro-tyrosine and α-syn staining in the intestinal mucosa [228]. Given the intensity of the 

α-syn pathology, it is not surprising that inflammation is active in the gut as well. In 

ascending colon biopsies from PD patients, TNF-α, IL-1β, IL-6, IFN-γ and Sox10 mRNA 

were upregulated in PD patients and correlated with disease duration [229].

Although defining macrophage activation status, particularly in relation to enteric neurons 

with α-syn accumulation, in human intestinal biopsies in PD has not been done, two classes 

of macrophages surround α-syn+ enteric neurons in aged rats, CD163+ phagocytic 

macrophages laden with α-syn, and other classically activated MHC-II+ macrophages, also 

capable of phagocytizing α-syn, but not in the same quantities [230]. Although neither set of 

macrophages was preferentially found around α-syn accumulations in aged rats, there were 

classically activated MHC-II+ macrophages surrounding and invading ganglions with 

neurons expressing large amounts of α-syn, and circulating monocytes were also seen 

entering the area [230]. Together these results suggest the possibility that the macrophages 

of the gut initiate the adaptive immune response to α-syn.

These observations lead to the question of whether α-syn pathology in the PNS may precede 

and even trigger the pathological and inflammatory changes in the brain which are 

characteristic of PD. Is it possible that abnormal forms of α-syn in the periphery trigger a 

systemic adaptive immune response which in turn promotes CNS innate and adaptive 

responses? Viewed this way, abnormal forms of α-syn in the PNS could induce a specific, 

systemic, immunological memory that enhances CNS inflammation. This memory could 

then be engaged everywhere that abnormal forms of α-syn are present (Figure 1). A self-

perpetuating cycle of α-syn aggregation, nitration and oxidation of α-syn, inflammation and 

neurodegeneration may then occur.
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Immune system function in mice lacking α-synuclein

A few roles for native α-syn have been discovered within immune cells themselves by 

examining α-syn knockout mice. α-Syn null microglia have a ramified structure with 

increased vacuoles compared to wildtype [231]. They have increased production of TNF and 

IL-6 in response to LPS stimulation, but demonstrate a decreased capacity for phagocytosis 

[231]. Additionally, α-syn has recently been shown to be involved in B-cell lymphopoiesis 

[232]. In α-syn knockout mice, B-cells were decreased about four fold in bone marrow 

[232]. Spleen and lymph node architecture was compromised; with reduced follicle size in 

the spleen, and reduced number of follicles in lymph nodes [232]. Furthermore, the quantity 

of circulating IgG was reduced in α-syn knockout mice compared to wildtype, whereas the 

amount of circulating IgM remained the same [232]. In response to a T-cell dependent 

antigen, antigen-specific IgG1 and IgG2b was not produced; only IgM was, suggesting a 

deficit in class-switching in the absence of α-syn [232]. While these results show a potential 

role for native α-syn in antigen presenting cells, it is unclear to what extent these activities 

are active in α-syn-based PD models or PD itself. They may be relevant to some proposed 

treatment strategies that would seek to reduce α-syn expression in PD patients.

Antigen Presentation in PD

Antigen presentation of α-syn in PD would involve antigen processing and presentation by 

MHC-II complexes to receptive T-cell populations. A model for how α-syn induces both an 

innate and adaptive immune response in PD is presented in Figure 1. All of the components 

required for this model are present in the PD brain: monocytes phagocytose α-syn 

aggregates, express MHC-II, and can interact with CD4+ T-cells [123, 133, 138]. It is 

possible that antigen presentation also occurs in the enteric nervous system; intestinal 

macrophages can and do phagocytose α-syn aggregates, express MHC-II and can also 

interact with CD4+ T-cells [230]. In either case, aggregated or modified α-syn is likely the 

antigen responsible, but proof that this is the case in human PD is still lacking. Determining 

which peptides from α-syn can be loaded into MHC-II, and whether this process is modified 

by fibrillization or post-translational modifications typically seen in human PD is an 

important question. Detailed studies of the adaptive immune response and the use of new 

sequence-based techniques to explore the nature of the T-cell repertoire in PD will be 

necessary to shed light on the precise mechanism of an α-syn-specific adaptive immune 

response.

Conclusion

Multiple lines of evidence implicate activation of both innate and adaptive immune systems 

in PD. This inflammatory response plays an essential role in neurodegeneration. The 

evidence reviewed here implicates α-syn itself as the primary trigger of the immune 

response in PD. While modification of α-syn by nitration elicits a stronger immune response 

than aggregation alone, it is likely that aggregation is sufficient to induce the inflammation 

seen in PD. This concept has implications for both the prevention and treatment of PD. In 

the prodromal phase, thought to exist for at least a decade before motor symptoms appear, 

therapies that prevent the formation of altered α-syn may delay or even prevent the onset of 
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symptoms. Clinical trials using antibodies targeting α-syn are already in development to test 

this hypothesis. A particularly interesting approach is the two AFFITOPE vaccines already 

at stage one clinical trials that attempt to halt α-syn aggregation by using six-amino-acid 

peptides in the α-syn sequence to direct an immune response towards eliminating α-syn 

itself in the PD brain. It will be interesting to see how this active vaccination therapeutic 

strategy interacts with both the neuroinflammation and neurodegeneration seen in PD. As 

seen with Alzheimer’s disease trials targeting amyloid-β, one difficulty with this strategy 

will be detecting PD early enough to prevent disease progression. After the onset of motor 

symptoms and the spread of α-syn pathology, the inflammatory response to α-syn continues 

to be a driver of neurodegeneration. In this phase, strategies to reduce α-syn aggregation 

may not be as useful since propagation of pathogenic α-syn has already occurred, but 

therapies directly targeting neuroinflammation may continue to be useful in halting 

progression of disease. The realization that abnormal forms of α-syn leads to robust 

neuroinflammatory responses that involve both CNS and peripheral immune cells and 

potentiate neurodegeneration offers a novel set of drug targets in PD, some of which may 

exist in the periphery in addition to the brain.
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Figure 1. Model for α-synuclein-induced immune system activation in PD
α-Synuclein (α-syn) aggregates and other pathological conformations of α-syn form in the 

dopaminergic neurons of the substantia nigra during PD. Neighboring microglia take up this 

α-syn by either phagocytosis or fusion of α-syn-containing exosomes. Once inside the 

microglia, aggregated α-syn is targeted to the autophagolysosome, where it can be processed 

into peptides and loaded onto the MHC-II complex. The α-syn-loaded MHC-II traffics to 

the cell membrane, allowing for antigen presentation to CD4+ T-cells. Additionally, when 

α-syn enters the microglia, it induces NFκB-dependent expression of chemokines, which 

allows for migration of white blood cells, including T-cells, towards the site of injury. Once 
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CD4+ T-cells enter the CNS, they are able to bind MHC-II via their T-cell receptor and thus, 

begin to release IFN-γ. IFN-γ then binds to its receptor on microglia, thereby inducing 

STAT-1-mediated pro-inflammatory cytokine expression. These cytokines then injure 

dopaminergic neurons and induce cell death.

A similar process may occur in the enteric nervous system. Enteric neurons develop α-syn 

aggregates, and can release them to resident macrophages in one of three ways. First, α-syn 

is regularly phagocytosed by resident gut macrophages. Secondly, α-syn can be exocytosed, 

and finally, α-syn can be exosomally released. When primed M1-polarized macrophages 

take up aggregated α-syn, it is also targeted to the autophagolysosome, where it can be 

processed into peptides and loaded onto MHCII. In addition, α-syn then induces expression 

of both pro-inflammatory cytokines and chemokines. The CD4+ T-cell that binds to α-syn-

loaded MHC-II will then activate and clonally expand. These T-cells would then be 

directing a body-wide specific immune response to α-syn and will respond quickly 

throughout the CNS as α-syn pathology spreads.
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