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Injection of a Dopamine Type 2 Receptor Antagonist into the
Dorsal Striatum Disrupts Choices Driven by Previous
Outcomes, But Not Perceptual Inference
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Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892-4415

Decisions are often driven by a combination of immediate perception and previous experience. In this study, we investigated how these
two sources of information are integrated and the neural systems that mediate this process. Specifically, we injected a dopamine type 1
antagonist (D1A; SCH23390) or a dopamine type 2 antagonist (D2A; eticlopride) into the dorsal striatum while macaques performed a
task in which their choices were driven by perceptual inference and/or reinforcement of past choices. We found that the D2A affected
choices based on previous outcomes. However, there were no effects of the D2A on choices driven by perceptual inference. We found that
the D1A did not affect perceptual inference or reinforcement learning. Finally, a Bayesian model applied to the results suggested that the
D2A may be increasing noise in the striatal representation of value, perhaps by disrupting the striatal population that normally represents
value.
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Introduction
Decisions are often driven by a combination of immediate per-
ceptual evidence and previous experience. Several groups have
studied perceptual decision-making tasks, in which stochastic
perceptual information presented to subjects drives choices
among options (Shadlen and Newsome, 2001; Ratcliff et al., 2003;
Fetsch et al., 2013). In these experiments, all of the information
required to make a choice is presented within the current trial,
and past outcomes cannot be used to better predict the current
choice. Perceptual decision making has often been studied in
cortical networks (Newsome et al., 1989; Shadlen and Newsome,
2001; Gu et al., 2008; Rorie et al., 2010). However, subcortical
areas, including the colliculus and basal ganglia, have been impli-
cated in these tasks (Lovejoy and Krauzlis, 2010; Ding and Gold,
2013). The exact role of various areas is currently unclear,
however.

In another line of research, several groups have examined re-
inforcement learning (Barraclough et al., 2004; Samejima et al.,
2005; Pessiglione et al., 2006; Eisenegger et al., 2014) or learned
value tasks (Wallis, 2012; Rudebeck et al., 2013). In these tasks,
choices are driven by previously experienced associations be-
tween rewards and cues, and there is no explicit information

available in the current trial to drive the choice. Reinforcement
learning or learning from past outcomes has often been attrib-
uted to plasticity within the striatum (Graybiel, 2008; Cockburn
et al., 2014). Dopamine neurons show phasic responses to reward
prediction errors when animals are highly over-trained in pav-
lovian tasks (Schultz et al., 1997), and the dopamine neurons
send a large projection to the striatum (Haber and Fudge, 1997).
Recent studies have also implicated dopamine causally in rein-
forcement learning (RL) (Steinberg et al., 2013). Some studies,
however, suggest that learning can take place in the absence of
dopamine (Robinson et al., 2005).

In many situations, both immediate perception and past ex-
perience can be used to drive choices. Therefore, we wanted to
understand how these two sources of information are integrated
and the neural systems that mediate this process. In the current
study, animals performed a sequence of choices where individual
choices were driven by immediately available perceptual infor-
mation and/or reinforcement of past actions. We previously
found that the lateral prefrontal cortex represents choices before
the dorsal striatum (dStr) when choices are based on immediately
available perceptual information (Seo et al., 2012). The dStr, on
the other hand, represents the value of actions, whether value is
driven by the reinforcement of previous choices or immediately
available perceptual information. To examine the contribution of
dopamine and the dStr to the task, we injected dopamine antag-
onists into the dStr while animals performed the task. We found
that a dopamine type 2 receptor antagonist (D2A; eticlopride)
injected into the dorsal striatum specifically affected choices
based on previous outcomes. There were no effects of the D2A on
choices driven by perceptual inference, and there were no effects
of a dopamine type 1 receptor antagonist (D1A; SCH23390) on
perceptual inference or reinforcement learning. A model applied
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to the results suggested that the D2A may be increasing noise in
the striatal representation of value.

Materials and Methods
General
Three male rhesus macaques (B, C, and I) were used as subjects in this
study. Experimental procedures for monkey B were in accordance with
the United Kingdom Animals (Scientific Procedures) Act 1986, and the
procedures for monkeys C and I were in accordance with the National
Institutes of Health Guide for the Care and Use of Laboratory Animals.
Most procedures were equivalent except that the UK animal received
food pellet rewards whereas the U.S. animals received juice reward.

Behavior task
The monkeys were trained on an oculomotor sequential decision-
making task (Fig. 1). During the task, the monkeys performed perceptual
inference to determine whether a fixation point had more blue or more
red pixels, and they made a saccade to the peripheral target that matched
the majority color (Fig. 1A). After completing the saccade correctly, the
saccade target became the new fixation point, and the monkey had to
repeat the perceptual inference to select the next target in the sequence.
After selecting three targets correctly, the monkey was given a juice re-
ward. After an incorrect decision, the monkey was forced back to the
previous fixation point, not the beginning of the sequence, and was al-
lowed to repeat the decision. This operation was performed under two
conditions: random and fixed. In the random condition, the correct
spatial sequence of eye movements varied from trial to trial, and the
animal had to perform a difficult perceptual decision to determine where

to saccade (Fig. 1C). In the fixed condition, the spatial sequence re-
mained the same for blocks of eight correct trials. Thus, once the animal
learned the sequence, it could execute it from memory without using
information in the fixation stimulus. Since we used a fixed set of eight
sequences (Fig. 1B), all of the sequences were well learned. The fixation
stimulus was generated by randomly choosing the color of each pixel in
the stimulus (n � 518 pixels) to be blue (or red) with probability q (Fig.
1A, inset). On each screen refresh, the color of 10% of the pixels was
updated. The color bias, q, was selected randomly for each movement
and could be different for the different movements in a trial: in the fixed
condition, q {(0.50, 0.55, 0.60, 0.65); and in the random condition, q}
(0.50, 0.55, 0.60, 0.65).

Each day’s session was randomly started with either a fixed or a ran-
dom block. Then the two conditions were interleaved. Each random
block was 64 completed trials, where a trial was only counted as com-
pleted if the animal made it to the end of the sequence and received a
reward. We analyzed only completed trials. Each fixed block was 8 cor-
rect trials of each sequence (64 total correct trials, where a correct trial is
a completed trial without any incorrect choices).

Surgery and drug injection procedures
Stainless steel chambers (18 mm diameter: two bilaterally in monkeys C
and I; one unilaterally in monkey B) were placed over the lateral prefron-
tal cortex (lPFC) in a sterile surgery using stereotaxic coordinates derived
from a structural MRI. In each session, we inserted four injection cannu-
lae bilaterally (in monkey B, two injection cannulae unilaterally), along
with electrodes, into the dStr. The electrodes were used to map the depths
at which single neuron activity was recorded. This allowed us to deter-

Figure 1. Task. A, Events in a single trial. The beginning of a new trial was indicated by a green dot at the center of the initial fixation frame. A stimulus with blue and red pixels indicated the correct
decision to the peripheral target matching the dominant color of the stimulus. The inset shows an example of a single frame from the stimulus. B, A monkey was trained to execute eight possible
sequences of saccadic eye movements. Each movement occurred in at least two sequences. S1, S2, etc., indicate sequence 1, sequence 2, etc. C, In the fixed condition (top), the sequence of eye
movements was fixed for eight correct trials and then switched to a new sequence and remained fixed again. In the random condition (bottom), the sequence changed every trial. D, MRI of the
anterior portion of the macaque brain with approximate bilateral injection areas. The red squares indicate the location of the chambers. Blue, green, and red lines indicate injection cannulae,
electrodes in PFC, and electrodes in dStr, respectively. E, Locations of the injection sites for saline (green dots and circles), the D2R antagonist (red dots and circles), and the D1R antagonist (black dots
and circles). The dots show the center points of the four cannulae for each session. The shaded circles show approximate injected areas. Injection locations were symmetric in the two hemispheres,
so we only show them for one hemisphere. The coronal section is taken from�29 mm anteroposterior (AP) (center of the chamber was�28 AP, 17 medial-lateral). Four cannulae were used for each
hemisphere. For one of the sessions, the locations of the four individual cannulae are shown in blue to show the orientation. The cannulae were spaced by �2.5 mm dorsoventral and 2.7 mm
mediolateral.
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mine the depth for the injection cannulae. After the injection cannulae
were lowered, the animals performed two (for monkey I) or four (for
monkeys B and C) blocks of the task (one or two blocks of the random
condition and one or two blocks of the fixed condition). After complet-
ing the baseline blocks (subsequently referred to as the predrug period),
we injected a D1A (SCH23390, 2 �g/1 �l for bilateral injection, 10 �g/1
�l for unilateral injection), a D2A (eticlopride, 1.2 �g/1 �l), or saline. In
monkey I, we performed nine injections of the D2A and six injections of
saline. In monkey C, we performed 3 injections of the D1A, 12 injections
of the D2A, and 7 injections of saline. In monkey B, we performed four
injections of the D1A and four injections of saline. We never saw any
effects of the D1A in single sessions in either monkey. Therefore, we did
not continue bilateral injections in monkey I. It took about 11 min to
complete the injection at 3 nl/s. The injection volume at each site was �2
�l. Thus, the bilateral injections (four cannulae per hemisphere) were 8
�l per side, and the unilateral injection (two cannulae) was 4 �l. The
volume of 2 �l was selected based on its estimated diffusion area from a
previous report that specifically studied the relationship between injec-
tion volume and diffusion area (Myers, 1966). After the injection was
completed, we waited 9 min to allow for the drugs to diffuse and the brain
to recover from the mechanical effects of the injection. We then ran the
animals until they stopped working. We only analyzed data from sessions
in which the animals completed more than four blocks of the task (two
blocks of random condition and two blocks of the fixed condition) after
the injection.

Bayesian model of choice. To characterize the effects of the injections,
we developed a Bayesian model that integrated information in the fixa-
tion stimulus with learned value information to predict choices. We
estimated the information available from the fixation stimulus by fitting
a model to data from the random condition. We then used a reinforce-
ment learning algorithm to estimate the information available to the
animal from previous outcomes in the fixed condition. This model esti-
mated the information available from past reinforcement while control-
ling for information in the fixation stimulus. We then used Bayes rule to
combine information from these two sources, taking into account reac-
tion times, to predict behavior.

Value-related information derived from previous reinforcement. We fit a
reinforcement learning model to the data from the fixed blocks to gen-
erate value estimates (Seo et al., 2012). The model was fit separately to
data from the preinjection and postinjection periods of each session.
The value, vi, of each action, i, was updated after it was selected by the
following:

vi�t� � vi�t�1� � � f�r�t� � vi�t�1��. (1)

Rewards, r(t), for correct actions were 1 and for incorrect actions were 0.
This was the case for each movement, not just the movement that led to
the juice reward. The variable �f is the learning rate parameter. We used
one value of �f for positive feedback (i.e., correct actions) and one value
for negative feedback (incorrect actions). When sequences switched
across blocks, the action values were reset to 0. To estimate the log-
likelihood, we first calculated choice probabilities using the following:

di�t� �
e�vi�t���CB

�i�1

2
e�vi�t���CB

. (2)

The sum is over the two actions possible at each point in the sequence.
Additionally, the animal’s choice accuracy depended not only on past
outcomes, but also on the color bias in the fixation stimulus (Seo et al.,
2012). Therefore, to estimate the partial effect of the value of past out-
comes on choice accuracy, we controlled for the information in the fix-
ation stimulus by subtracting off a term related to the color bias (CB)
times a free parameter, �, which characterized the weight of the fixation
stimulus in the choice process, in fixed trials. The inverse temperature, �,
was also modeled as a free parameter. If � is small, then the animal is less
likely to pick the higher-value target, whereas if � is large, the animal is
more likely to pick the higher-value target for a fixed difference in target
values. We calculated the log-likelihood (ll ) of the animal’s decision
sequence as follows:

ll � ��t�1

T
log�d1�t�c1�t� � �1�d1�t���1�c1�t���. (3)

The sum is over all decisions in a period, T. The variable c1(t) indicates
the chosen action and has a value of 1 for action 1 and 0 for action 2. The
two learning rate parameters �f, the inverse temperature parameter �,
and the color bias weight � were optimized to minimize the log-
likelihood using fminsearch in matlab. The minimization was done sep-
arately for each period (i.e., before and after injection) of each session.
Most importantly for the overall model development, these value esti-
mates do not characterize how performance develops over time. They
only characterize the overall fraction correct in each condition.

The reinforcement learning model gave a fixed value estimate for each
trial in each condition. However, it does not characterize how this infor-
mation develops over time, and therefore it does not allow us to take into
account the reaction time effects. To estimate the temporal evolution, we
assumed the subjects were integrating a noisy internal representation of
value. The value was given by a Gaussian distribution with a mean equal
to the mean action value, estimated by the RL algorithm fit to the choice
data, as outlined above. The variance, 	 2, of the Gaussian was a free
parameter. The mean integrated value estimate at time t is given by
V(t) � tV0, where V0 is estimated by the reinforcement learning model
(Eq. 1). The variable V(t) is the average sum of t draws from a distri-
bution with a mean of V0. The variance at time t is given by 	 2. Belief
in one of the choices, for a particular value estimate, V(t), is given by

P�Choice � V�t�� �
P�V�t� � Choice�P�Choice�

P�V�t��
, where choice is one of

the two options at each point in the sequence (e.g., left vs right or up vs
down). The variances of the two choice distributions were matched,
and the mean of the incorrect choice was set to the negative of the
mean of the correct choice, i.e., V(t) � �tV0 for the incorrect choice
distribution. This value could also be taken as zero without substan-
tially affecting the model results. We estimated the mean and variance
of belief by sampling from the distribution of values (10,000 samples
from P(V(t) � Choice)) rather than computing them numerically di-
rectly off the distribution.

Immediately available perceptual information. The pixelating fixation
stimulus can be characterized as draws from a binomial distribution. The
distribution of the number of blue pixels for a given color bias, q, is given
by the following:

P�Nblue � k � q� � �Npixel

k �qk�1�q�Npixel�k. (4)

By conditioning on Nblue instead of q, the same equation gives a distri-
bution over q. These distributions evolve over time because a fraction of
the pixels, m, is updated on each frame. Thus, the subject’s total number
of pixels over j frames is Npixel� j� � N pixel

frame

�1 � � j � 1�m�. The belief that

the stimulus is predominantly blue is then as follows:

P�blue � Nblue�t�� � �
0.5

1

P�Nblue � k � q�dq. (5)

This ideal observer model deviated from monkey behavior in two ways.
First, the model significantly outperformed the monkeys, likely because
the animals cannot precisely count the number of blue and red pixels in
each frame. Therefore, we assumed that the animals were effectively us-
ing only a subset of the pixels. We parameterized the number used by the
animal, Npixel/frame

beh , to predict the actual behavior of the animals in each
color bias condition over time. This optimization was done for the be-
havioral performance in the random condition only. Data from the fixed
condition were not used to determine Npixel/frame

beh . The model was fit by
minimizing the squared deviation between the model-estimated poste-
rior probability, P(blue � Nblue(t)), and the animal’s choice accuracy ver-
sus time in each color bias condition. Note that the animal’s performance
was at chance before �200 ms, so we assumed a 200 ms lag time before
information accumulation began. The model provided an estimate of the
animal’s performance based on information in the fixation stimulus ver-
sus time for each color bias condition. The behavior was consistent with
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the animals extracting information from �100 pixels per screen refresh.
Thus, we used m � 1 and N pixel

frame

� 100 for the model estimates that are

presented in Results. The model also tended to overpredict performance
on the easy conditions and underpredict in the hard conditions. There-
fore, we additionally assumed a sublinear function that mapped actual q
into an effective q. It turned out that using q � [0.5 0.55 � (0:0.025:
0.075)] gave a good match to data. In other words, the effective q was
approximately half the actual q for values above 0.55. Note that this
fitting was done in the random condition but the final model was used to
predict performance in the fixed condition. Therefore, this fitting was
done to an independent data set.

Integration of value and perceptual information. In the fixed condition,
information was available from both the fixation stimulus and reinforce-
ment from previous trials. The information from each modality was
independent. We assumed they were combined by the animal using
Bayes rule, such that:

P�Choice � V�t�, Nblue�t��

�
P�V�t� � Choice� P�Nblue�t� � Choice� P�Choice�

P�V�t�, Nblue�t��
. (6)

P(Nblue(t) � Choice) is given by Equation 5, because the prior is flat. The
value of Nblue(t) we used was given by the reaction time of the animal in
the corresponding condition. Specifically, the animals usually were faster
as they learned the sequence. However, after injection of the D2 receptor
(D2R) antagonist, the animals did not speed up. Therefore, the model
took this into account by assuming they were extracting more informa-
tion from the fixation stimulus. We also optimized 	 2 for the RL model
to minimize the squared error between the actual behavioral perfor-
mance over trials after a new sequence was introduced for each color bias
condition and the performance predicted by Equation 6. Thus, the pa-
rameters for information extraction versus time in each color bias con-
dition were optimized in the random condition. This information was
then combined with the model of value accumulation in the fixed con-
dition, and 	 2 was separately optimized to predict behavioral perfor-
mance before and after injection of the D2R in the fixed condition. This
single parameter was used to characterize the decrease in choice accuracy
before and after injection of the D2R in the fixed condition. We used an
F test to compare the residual variance of a model that fit separate vari-
ances to preinjection and postinjection data with a model that fit a single
variance to preinjection and postinjection data. These models differ by 1
df (i.e., two variances or one).

ANOVA analyses. The effects of pharmacological manipulations were
analyzed using mixed-effects ANOVAs. The dependent variable was ei-
ther reaction time or fraction correct. Independent variables included
session, drug condition (D2 vs saline or D1 vs saline) nested under ses-
sion, preinjection versus postinjection (period), color bias, and trial after
switch (fixed condition only). Session was modeled as a random effect.
All other factors were modeled as fixed effects. Except where indicated
explicitly, reported results examined an interaction of preinjection versus
postinjection and drug condition. This examines whether behavior
changed from preinjection to postinjection in a drug-dependent way
(i.e., differently for antagonists vs saline). Because preinjection data were
included in the ANOVA, main effects of drug do not test for the effect of
the drug.

Results
We trained three monkeys on a sequential decision-making task
(Fig. 1). In the task, the animals had to acquire fixation and hold
it for 500 ms. We then presented a stimulus at fixation that was
composed of blue and red pixels. The probability of each pixel in
the stimulus being either blue or red, the color bias, was fixed
within a given trial and could be between 0.5 and 0.65. The color
of a subset of pixels was updated on each screen refresh, accord-
ing to the current color bias. The animal’s task was to determine
whether there were more blue or more red pixels and make a
saccade to the peripheral target that matched the majority pixel

color (Fig. 1A). After making three correct decisions in one of
eight possible spatial sequences (Fig. 1B), the animals received a
juice reward. The task was performed under two conditions,
which we refer to as the random and fixed conditions (Fig. 1C). In
the random condition, the spatial sequence of saccades varied
from trial to trial. Therefore, the animals had to infer the majority
pixel color to make the correct choice at each point in the se-
quence. In the fixed condition, the spatial sequence remained
fixed until the animals executed the sequence without errors eight
times. After eight correct trials, we switched to one of the other
sequences (Fig. 1B). Therefore, in the fixed condition, in addition
to the information available in the fixation stimulus, the animals
could use outcomes from previous trials to determine which se-
quence was correct. In each session, the animals performed either
one or two blocks of each condition at baseline (before injection).
We then paused the task and injected saline, a D2A (eticlopride),
or a D1A (SCH23390) into the dorsal caudate nucleus (Fig. 1D).
After the injection, the animals completed at least two additional
blocks of each condition.

The animal’s choice accuracy in the random and fixed condi-
tions was driven by the information provided in each condition.
When we analyzed performance in the saline sessions combining
preinjection and postinjection data, we found that in the random
condition, the animal’s performance improved with increasing
color bias (Fig. 2A; F(3,115) � 374.9, p � 0.001). Thus, as it became
easier for the animals to infer the majority pixel color, they more
often made the correct choice. In the fixed condition, as they
learned from previous trials, their performance improved (Fig.
2C; F(9,1144) � 116.3, p � 0.001), and they often made the correct
choice even when there was no information in the fixation stim-
ulus (Fig. 2A; CB50, fixed condition). In the fixed condition,
there was also an effect of color bias on accuracy (F(3,1144) �
179.8, p � 0.001) and an interaction between color bias and trials
after switch (F(27,1144) � 4.94, p � 0.002). The effect of color bias
was driven primarily by the first few trials after switching se-
quences. We examine this in more detail below. The animals also
made choices more quickly as they learned in the fixed condition
(Fig. 2D; F(9,1144) � 17.3, p � 0.001), but this effect did not
depend on color bias (F(3,1144) � 0.2, p � 0.895). Thus, the ani-
mals were able to use reinforcement from previous trials in the
fixed condition and the information in the fixation stimulus in
the random condition to make the correct decision.

Next, we examined performance before and after injection of
a D1 or D2 antagonist and compared these drug sessions with
saline sessions. The saline sessions controlled for time on task,
satiation, mechanical displacement of the tissue, and other con-
founding factors. We found that when we injected the D2A into
the dorsal striatum, the animals made more errors in the fixed
condition, compared with saline sessions (Fig. 2E,G; period (pre-
injection vs postinjection) 	 drug; F(1,41) � 4.94, p � 0.032). The
difference was larger later in the block after switching to a new
sequence (Fig. 2G; trials after switch 	 period 	 drug; F(9,2467) �
2.26, p � 0.016). There was, however, no difference in the effect
of drug across color bias levels (Fig. 2E; color bias 	 period 	
drug; F(3,2467) � 1.77; p � 0.151).

We also found effects of the D2 antagonist on reaction times in
the fixed condition. Before injection, when the animals selected
sequences in the fixed condition, their reaction times decreased
with learning (Fig. 2H). However, after injection of the D2 antag-
onist, this decrease in reaction time was smaller (Fig. 2H; pe-
riod 	 drug; F(1,34.9) � 5.97, p � 0.020). This effect also depended
on trials after switch (trials after switch 	 period 	 drug; F(9,2467)
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� 2.35, p � 0.012) but not color bias (color bias 	 period 	 drug;
F(3,2467) � 0.65, p � 0.583).

In contrast to the fixed condition, there were no effects on
choice accuracy in the random condition when we compared
preinjection and postinjection data with saline sessions (Fig. 2E;
period 	 drug; F(1,230) � 0.015, p � 0.903). There was, however,
an overall increase in the reaction time after injection (Fig. 2F;
period 	 drug; F(1,230) � 12.8, p � 0.001), but this effect did not
interact with color bias (color bias 	 period 	 drug; F(3,230) �
0.12, p � 0.946). The animals were also slower overall in the
random condition than the fixed condition (Fig. 2, compare F,
H). Therefore, the fact that animals did not decrease their reac-
tion times with learning after injection of the D2A in the fixed
condition, and the fact that there were no effects on choice accu-
racy in the random condition, suggests that they may have been
relying more on information in the fixation stimulus after injec-
tion of the D2A in the fixed condition.

We next compared D1A sessions with saline sessions (Fig.
2I–L). When compared with saline sessions, there were no statis-
tically significant effects in the fixed condition on choice accuracy
or reaction time (period 	 drug; fraction correct: F(1,1144) � 0.00,
p � 0.948; reaction time: F(1,1144) � 0.00, p � 0.963). There were
also no significant interactions (p 
 0.234). Similarly, in the
random condition, there was no effect on choice accuracy after
injecting the D1 antagonist compared with injecting saline (Fig.

2I; period 	 drug; F(1,118) � 0.41, p � 0.521). There was also no
significant interaction with color bias (color bias 	 period 	
drug; F(3,118) � 0.21, p � 0.892). There were also no effects of the
D1 antagonist on reaction times in the random condition (Fig. 2J;
period 	 drug; F(1,118) � 0.02, p � 0.895).

D2 antagonist effect on integration of perceptual and
value information
To characterize the effects of the D2 antagonist injections in more
detail, we developed a time-dependent Bayesian model of choice
behavior in the fixed condition. The Bayesian model assumed
that the animals combined or integrated immediately available
information from the fixation stimulus with value estimates
driven by the outcomes of previous trials to make their choice.
This integration is consistent with previous analyses of behavior
and neural data (Seo et al., 2012). Therefore, we had to estimate
the information available to the animals in each condition from
the perceptual stimulus and from past outcomes. More specifi-
cally, when the animals could only use the perceptual stimulus in
the random condition, how accurate would they be at each color
bias level? This can be modeled directly from the choice data in
the random condition. Also, if the animals could only use rein-
forcement of past outcomes, how accurate would they be? This
can be modeled using the data from the fixed condition, taking
into account how much information is available in the fixation

Figure 2. Effect of bilateral injection of saline, D2R antagonist eticlopride, and D1R antagonist SCH23390 in dStr. Heavy lines are means. Each shaded region is 1 SEM with n given by the number
of sessions from all animals for each condition (see Materials and Methods). A, Fraction of correct decisions as a function color bias for fixed and random conditions for the presaline injection (blue,
red) and postsaline injection (green, pink) conditions. B, Reaction times as a function of color bias for the random condition for the presaline injection (red) and postsaline injection (pink) conditions.
C, Fraction of correct decisions as a function of trials after switch for fixed conditions. D, Reaction time as a function of trials after switch for fixed conditions. Data shown here are averaged across color
bias conditions. E–H, Same as A–D for the D2 antagonist. I–L, Same as A–D for performance in the D1 antagonist condition.
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stimulus and how much information is available from past out-
comes. Once these were estimated, we could use Bayes rule to
integrate them and generate an estimate of choice accuracy as a
function of time.

We first estimated the information available to the animals
from the stimulus as a function of time. In the random condition,
performance improved with time after �200 ms (Fig. 3A) and it
also improved with increasing color bias. When the animals
made their choice before �200 ms, they were at chance. After 200
ms, there was a rapid increase in performance that peaked at
�400 ms. After 400 ms, performance began to decrease, probably
because of lapses in attention (Drugowitsch et al., 2012). These
accuracy versus reaction time curves were similar before and after
injection in the D2A sessions for reaction times �500 ms (data
not shown). The differences in reaction time in Figure 2B were
driven by an increase in relatively long reaction times (
500 ms).
We fit a model to this reaction time data from the random con-
dition. This characterized the amount of information that the
animals extracted in each color bias condition, as a function of
time (Fig. 3A).

Next, we characterized the information available to the ani-
mals from the outcomes of previous trials using a RL model fit to
the choice data in the fixed condition. Although the task in the
fixed condition is, in principle, deterministic, the animal’s choice
behavior was not. Therefore, their choice accuracy can be mod-
eled using a 
 learning rule RL algorithm. Interpreted another
way, the algorithm fits a lag-1 autoregressive logistic regression
model to the behavioral data that predicts choice accuracy, and it
is this prediction that we used in the Bayesian model. The model
was fit separately to each session and separately within each ses-
sion to the preinjection and postinjection data. We examined the

parameters of the RL model fits to see if they varied with injection
of the D2 antagonist. We first examined the inverse temperature,
which characterizes how consistently the animals chose the cor-
rect option after learning. We found that the inverse temperature
was larger before than after the injection of the D2A (Fig. 3C;
Mann–Whitney U test, p � 0.011). We also examined the weight
given to the color bias in the fixed condition (Fig. 3D), before and
after drug, and found no significant effect (p 
 0.05). When we
examined the changes in the learning rate parameters, there were
no differences before and after injection of the D2A (Fig. 3E,F;
p 
 0.05). Because the learning rates were consistent before and
after injection, the value estimates were also consistent before and
after injection (Fig. 3B; p 
 0.05). Therefore, the change in choice
accuracy could be characterized as increased noise in the choice
mechanism that converted value estimates into choices. We used
the Bayesian model to further characterize this, while also taking
into account the reaction times, which differed before and after
injection, and performance in the random condition. This was
necessary because the animals slowed down in the fixed condi-
tion after injection of the D2A, and this slowing may have re-
flected an increased reliance on the fixation stimulus. Thus, their
choice accuracy, on average, dropped less than expected because
they were able to compensate with perceptual information, when
it was available.

In the fixed condition, we assumed the animals integrated a
noisy representation of the static value estimate, using a drift
diffusion-like mechanism (Ratcliff, 1978). A drift diffusion
mechanism computes the sum of random samples from a distri-
bution with a fixed mean and SD. In each time step, a sample is
drawn from the distribution and added to the sum from the
previous time step. Normally in choice tasks, there are two pos-

Figure 3. Model fits for perceptual inference and reinforcement learning. A, Fraction correct in the random condition, for each color bias (CB), as a function of time after stimulus presentation
(time 0). Bin size, 50 ms. Dotted lines are data, and solid lines are model fits. B, Before (Etic Pre) and after (Etic Post) action values in the fixed condition as a function of trials after switch. C, Inverse
temperature (� parameter) before and after injection for the D2 antagonist. One point was excluded for plotting (before, 2.21; after, 175.33). D, Gamma parameter representing weight of color bias
in the fixed condition. E, Learning rate parameter for positive feedback. F, Learning rate parameter for negative feedback.
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sible distributions with means that are
symmetric around zero, and the goal is to
figure out which distribution is being
sampled from. Over time, the sums will
diverge, and the rate at which they diverge
depends on the means (i.e., how far each
distribution is from zero) and the SD. In-
terpreted in neural terms, the idea is that
one is integrating (i.e., summing) the out-
put of an upstream population code that
is a noisy representation. In our example,
this would be a noisy representation of the
value of the two saccades, at each point in
time. Therefore, in our model, the mean
value that was integrated (i.e., the mean of
the distribution from which samples were
drawn) came from the reinforcement
learning algorithm (Fig. 3B). The variance
of this value estimate in the drift diffusion
process (i.e., the variance of the distribu-
tion from which samples were drawn) was
the single free parameter used to fit the
model to the choice data in the fixed con-
dition. The variance of the value estimate
was parameterized, and the model was fit
to the choice behavior separately before
and after injection of the D2R antagonist.
We found that the choice behavior was
characterized effectively by the model
(Fig. 4; Spearman correlation, p � 0.001
for both preinjection and postinjection
fits). Furthermore, we found before injec-
tion, the estimated variance of the noise on value integration was
1.81, whereas after injection, it was 5.48 (Fig. 4A, inset). There-
fore, the value integration process was noisier after injection of a
D2A. To test this statistically, we compared a model that fit sep-
arate noise estimates to predata and postdata with a model that
had a single noise term (single noise term of 3.12) and found that
the model with separate noise terms for predata and postdata
fit significantly better (F(1,80) � 56.1, p � 0.001). Thus, the
model suggests that injection of the D2A into the dStr in-
creased noise in the value representation that was integrated
by choice mechanisms.

Discussion
We found that neither D1 nor D2 antagonists injected into the
dorsal striatum affected choice accuracy in the random condi-
tion. However, injection of the D2 antagonist decreased choice
accuracy in the fixed condition. In addition, animals normally
responded more quickly in the fixed condition as they learned the
correct sequence. However, after injection of the D2 antagonist,
there was less decrease in reaction time, consistent with hypoth-
eses that the basal ganglia are important for response vigor
(Turner and Desmurget, 2010). These results suggest that the
animals were able to use the information in the fixation stimulus
to drive their decisions in the fixed block, but they were less able
to use past reinforcement. We examined this by fitting a Bayesian
model, which characterized the integration of immediately avail-
able perceptual information and value-related information.
When we fit the model to the data in the D2 sessions, we found
that after injection of the D2 antagonist, there was more noise in
the value representation. This suggests that the D2 antagonist

injections are affecting the population code for value in the dorsal
striatum.

Our data are consistent with previous studies that have shown
a role for D2 receptors in choices driven by past reinforcement.
Studies in healthy human subjects have shown that systemic in-
jections of D2 receptor antagonists (Pessiglione et al., 2006;
Eisenegger et al., 2014) can affect choice accuracy. The study by
Pessiglione et al. (2006) found that subjects who received L-dopa
earned more money than subjects that received haloperidol.
There were no effects, however, in a loss condition and no effects
on learning. Using a similar task, Eisenegger et al., 2014 found
that subjects receiving sulpiride, a selective D2/D3 antagonist,
who also had a genetically characterized decreased density of D2

receptors, had decreased choice accuracy when choices were
driven by rewards. Again, there were no effects on choices driven
by loss and no effects on learning. Rather, the manipulation af-
fected the consistency with which subjects chose the option that
had been rewarded more often, after learning had plateaued. Fur-
thermore, studies in macaques have shown that the availability of
dopamine D2 receptors in the dorsal striatum affects the consis-
tency with which subjects choose an option after it has just been
rewarded, without affecting choices after negative feedback (Gro-
man et al., 2011). Studies in mice lacking either D1 or D2 recep-
tors have also shown effects of D2 but not D1 receptors on
learning (Kwak et al., 2014). Thus, these studies consistently
found that lower D2 receptor function decreases the consistency
with which subjects choose the correct option, when correct
choices were driven by previous rewards.

Our study extends these results in several ways. First, we found
effects with local, causal manipulations of D2 receptor function in
the caudate. Pessiglione et al. (2006) and Eisenegger et al. (2014)

Figure 4. Behavioral performance and model prediction. Data plotted are observed and predicted fraction corrected across
trials after switch. Color indicates the color bias level, as in C. All data are from D2A sessions. Pre–post injections are indicated on the
corresponding plots. A, Scatter plot of choice accuracy before injection for the model and data. The inset shows the estimated
variance of the noise on value integration. B, Scatter plot of choice accuracy after injection for the model and data. C, D, Same data
as plotted in A and B, plotted as a function of trials after switch, broken out by the color bias level.
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manipulated dopamine systemically, and Groman et al. (2011)
used PET imaging, which is correlative and cannot dissociate
receptor availability from dopamine concentration. Second, we
found no effects of D1 or D2 antagonists on selecting actions on
the basis of perceptual inference, and therefore the effects of the
D2 antagonist were specific to learning from past reinforcement.
This suggests a limited role for striatal dopamine in perceptual
inference tasks. Correlates of perceptual inference tasks have
been found in the caudate, and micro-stimulation in the caudate
can affect choice performance (Ding and Gold, 2013). However,
micro-stimulation in the striatum has complex effects on the
circuitry, leading, for example, to substantial dopamine release
(Schluter et al., 2014). Another hypothesis suggests that the basal
ganglia/colliculus circuit may be important for setting a thresh-
old on evidence integration, with threshold crossing implying
choice commitment (Lo and Wang, 2006). Correlates of a deci-
sion to commit to a choice have also been seen in cortical net-
works, studied with fMRI (Furl and Averbeck, 2011; Costa and
Averbeck, 2015), which suggests that the basal ganglia/colliculus
circuit may play a specific role in only eye-movement tasks with
fast reaction times, if it plays a role at all. In addition, the striatum
does not appear to reflect a fixed bound in perceptual decision-
making tasks (Ding and Gold, 2010, 2013), and we have found
that choice information is coded in lPFC before it is coded in the
dStr in our task (Seo et al., 2012). Therefore, these studies have
not identified a clear role for the striatum in perceptual inference.

Our study also extends previous results by implicating the D2

system in the dorsal striatum in associating rewards with actions,
whereas previous studies have examined the association of re-
wards and visual cues. The ventral striatum may be more impor-
tant for associating objects with rewards, whereas the dorsal
striatum may be more important for associating actions with
rewards. This hypothesis is consistent with the finding that when
images cue go or no-go actions, the dorsal striatum is more in-
volved (Guitart-Masip et al., 2012, 2014). One the other hand,
reward prediction errors correlate with activation in the ventral
striatum (Pessiglione et al., 2006) when rewards are being associ-
ated with objects. Also consistent with this, the dorsal striatum
receives a strong anatomical input from the frontal eye field
(FEF) and caudal area 46 (Haber et al., 2006; Averbeck et al.,
2014), both of which are rich in eye movements signals, whereas
the ventral striatum receives more inputs from areas that process
visual information, including orbital frontal cortex (Haber and
Knutson, 2010). Our current results are also consistent with our
previous finding that the dorsal striatum represented the value of
actions earlier and more strongly than the lPFC (Seo et al., 2012).
If one assumes that this representation is integrated or read out in
some way to generate a choice, then degrading this value repre-
sentation should affect choice accuracy because the population
code for value will be noisier (Averbeck et al., 2006). There are
other possible interpretations for our results, however. It is pos-
sible that the animals have intact value representations but that
they fail to convert these representations to correct choices. The
D2 antagonists may make the animals more distractible, or they
may be less motivated and therefore more prone to errors.

Theories of the basal ganglia (Frank, 2005) have predicted a
more important role for D1 receptors than D2 receptors in learn-
ing to associate actions with rewards, because D1 receptors are
more common in the direct pathway and because the direct path-
way is thought to be more important for action and the indirect
pathway for withholding action. Our data and the other studies
cited above do not appear to directly support this. However, we
do not see any effects on learning, only on making choices that are

consistent with learned values. Additionally, most of the learning
in our task is driven by negative outcomes, and the model de-
scribed by Frank (2005) suggests that learning from negative
feedback should be driven by the D2 system if one is learning to
not make an action (Piray, 2011). In this sense, our results are
consistent with the prediction of the model of Frank (2005). Fur-
thermore, the components of the striatal microcircuit that are
affected by our D2 antagonist injections are not yet clear. D2

receptors in the striatum are located preferentially on medium
spiny neurons in the indirect pathway and also on cholinergic
interneurons (Yan et al., 1997; Alcantara et al., 2003). Thus, the
effects of the D2 antagonists may be mediated directly by effects
on medium spiny neurons, indirectly by effects on cholinergic
interneurons, or by a combination of these. Finally, although we
did not find effects of D1 antagonists in our study, previous stud-
ies have shown that activating D1-containing medium spiny neu-
rons in the striatum when a lever is pressed can lead to preference
for that lever, whereas activating D2-containing medium spiny
neurons when a lever is pressed leads to avoidance of that lever
(Kravitz et al., 2012). However, it should be noted that in this
study, systemic D1 and D2 antagonists had no effect on the results,
whereas we find results of local injections of D2 antagonists.
Therefore, the behavior studied by Kravitz et al. (2012) appears to
be interacting differently with the striatal system.

Conclusion
We have found that blocking D2 receptors locally in the dorsal
striatum affects choices driven by past reinforcement, without
affecting learning. There were no effects of the D2 antagonist on
choice accuracy in the random condition and no effects of D1

receptor antagonists in either condition. Furthermore, when we
fit a model to behavioral performance before and after injection
of the D2 antagonist in the fixed condition, the model suggested
that the decreased performance is driven by increased noise in the
population representation of value that is being integrated by the
choice mechanism. Therefore, we believe that manipulation of
the D2 system affects the population code for value in the dorsal
striatum.
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