

The C2 Domain and Altered ATP-Binding Loop Phosphorylation at Ser³⁵⁹ Mediate the Redox-Dependent Increase in Protein Kinase C- δ Activity

Jianli Gong,^a Yongneng Yao,^a Pingbo Zhang,^b Barath Udayasuryan,^d Elena V. Komissarova,^a Ju Chen,^c Sivaraj Sivaramakrishnan,^d Jennifer E. Van Eyk,^b Susan F. Steinberg^a

Department of Pharmacology, Columbia University, New York, New York, USA^a; Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA^b; University of California, San Diego, School of Medicine, La Jolla, California, USA^c; Department of Cell and Developmental Biology and Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA^d

The diverse roles of protein kinase C- δ (PKC δ) in cellular growth, survival, and injury have been attributed to stimulus-specific differences in PKC δ signaling responses. PKC δ exerts membrane-delimited actions in cells activated by agonists that stimulate phosphoinositide hydrolysis. PKC δ is released from membranes as a Tyr³¹³-phosphorylated enzyme that displays a high level of lipid-independent activity and altered substrate specificity during oxidative stress. This study identifies an interaction between PKC δ 's Tyr³¹³-phosphorylated hinge region and its phosphotyrosine-binding C2 domain that controls PKC δ 's enzymology indirectly by decreasing phosphorylation in the kinase domain ATP-positioning loop at Ser³⁵⁹. We show that wild-type (WT) PKC δ displays a strong preference for substrates with serine as the phosphoacceptor residue at the active site when it harbors phosphormimetic or bulky substitutions at Ser³⁵⁹. In contrast, PKC δ -S359A displays lipid-independent activity toward substrates with either a serine or threonine as the phosphoacceptor residue. Additional studies in cardiomyocytes show that oxidative stress decreases Ser³⁵⁹ phosphorylation on native PKC δ and that PKC δ -S359A overexpression increases basal levels of phosphorylation on substrates with both phosphoacceptor site serine and threonine residues. Collectively, these studies identify a C2 domain-pTyr³¹³ docking interaction that controls ATP-positioning loop phosphorylation as a novel, dynamically regulated, and physiologically relevant structural determinant of PKC δ catalytic activity.

Protein kinase C- δ (PKC δ) is a serine/threonine kinase that plays a key role in signal transduction pathways that control a wide range of cellular responses. PKC δ contains a highly conserved C-terminal catalytic domain and N-terminal regulatory C1 and C2 domains. The C1 domain binds lipids and anchors fulllength PKC δ to membranes. The functional role of the C2 domain has remained more elusive. While C2 domains of conventional PKC (cPKC) isoforms function as calcium-regulated membranetargeting modules, the PKC δ C2 domain is a topological variant that does not coordinate calcium or bind lipids (1). Rather, it has been characterized as a protein-protein interaction motif (2, 3), with recent evidence that the PKC δ -C2 domain is a phosphotyrosine (pY) binding motif that binds the consensus sequence (Y/ F)-(S/A)-(V/I)-pY-(Q/R)-X-(Y/F) (4).

PKCδ is allosterically activated by lipids (diacylglycerol [DAG] or phorbol esters such as phorbol 12-myristate 13-acetate [PMA]) that bind to the C1 domain. PKCδ also is dynamically regulated as a result of tyrosine phosphorylation by Src (5, 6). We previously showed that oxidative stress releases PKCδ from membranes, activates Src, and induces a global increase in PKCδ phosphorylation at Tyr³¹³ and Tyr³³⁴ in both soluble and particulate subcellular compartments (7). These residues in the V3 hinge region of human PKCδ correspond to Tyr³¹¹ and Tyr³³² in rodent PKCδ. The nomenclature for human PKCδ is used below. While PMA does not increase Src activity, it delivers PKCδ in an active conformation to Src-enriched caveolar membranes where a low level of basal Src activity is sufficient to promote PKCδ phosphorylation at Tyr³¹³ but not Tyr³³⁴ (8). Since PKCδ is phosphorylated by Src *in vitro* at both Tyr³¹³ and Tyr³³⁴ (9), a mechanism that might

account for the selective PMA-dependent PKC δ phosphorylation at Tyr³¹³ but not Tyr³³⁴ has never been obvious.

Stimulus-induced increases in PKC δ -Tyr³¹³ phosphorylation have been implicated in several PKC δ -dependent cellular responses (10, 11). We previously showed that Tyr³¹³ phosphorylation influences PKC δ activity toward cardiac troponin I (cTnI, the inhibitory subunit of the troponin complex and a physiologically important PKC δ substrate in cardiomyocytes) (9). cTnI contains several phosphorylation clusters that exert distinct effects on cardiac contraction. PKC δ phosphorylates cTnI at Ser²³/Ser²⁴ when allosterically activated by phosphatidylserine (PS)/PMA; studies in detergent-extracted single cardiomyocytes link cTnI-Ser²³/ Ser²⁴ phosphorylation to a decrease in tension at submaximum, but not maximum, calcium concentrations. When PKC δ is tyrosine phosphorylated by Src, PKC δ acquires cTnI-Thr¹⁴⁴ kinase activity: it phosphorylates cTnI at both Ser²³/Ser²⁴ and Thr¹⁴⁴,

Received 4 February 2015 Accepted 24 February 2015 Accepted manuscript posted online 9 March 2015

Citation Gong J, Yao Y, Zhang P, Udayasuryan B, Komissarova EV, Chen J, Sivaramakrishnan S, Van Eyk JE, Steinberg SF. 2015. The C2 domain and altered ATP-binding loop phosphorylation at Ser³⁵⁹ mediate the redox-dependent increase in protein kinase C- δ activity. Mol Cell Biol 35:1727–1740. doi:10.1128/MCB.01436-14.

Address correspondence to Susan F. Steinberg, sfs1@columbia.edu.

Supplemental material for this article may be found at http://dx.doi.org/10.1128 /MCB.01436-14.

Copyright © 2015, American Society for Microbiology. All Rights Reserved. doi:10.1128/MCB.01436-14

leading to a decrease in maximum tension and cross-bridge kinetics (i.e., a different functional response). Additional studies showing that the Src-dependent acquisition of cTnI-Thr¹⁴⁴ kinase activity is completely abrogated by a Y313F substitution implicates Tyr³¹³ phosphorylation as the mechanisms underlying the Srcdependent increase in PKCδ activity (9).

The structural basis for Tyr^{313} phosphorylation-dependent changes in PKCô's enzymology is not obvious. This study builds upon the intriguing observation that Tyr^{313} resides in a PKCô-C2 domain consensus-binding motif (VGI-Y³¹³-QGF) (4) to show that the C2 domain interacts with the Tyr^{313} -phosphorylated V3 region and that this interaction controls PKCô catalytic activity indirectly by regulating phosphorylation at Ser³⁵⁹, a novel phosphorylation site in the Gly-rich ATP-positioning loop (G loop, also known as the phosphate binding P loop) of the kinase domain.

MATERIALS AND METHODS

Materials. PKC δ and PKC δ -pTyr³³⁴ antibodies were from Santa Cruz Biotechnology. Mouse monoclonal anti-green fluorescent protein (anti-GFP) 3E6 was from Invitrogen. Anti-Flag was from Sigma. All other antibodies were from Cell Signaling Technology. The specificity of all anti-PKC δ antibodies (including phosphorylation site-specific antibodies that specifically recognize phosphorylation at Thr⁵⁰⁷, Tyr³¹³, and Tyr³³⁴) has been validated previously (9). Src was from Invitrogen-Life Technologies. CREBtide and other peptide substrates were from Anaspec. PMA was from Sigma. Other chemicals were reagent grade.

Plasmids and cell lines. Mutant constructs of the PKCδ-enhanced GFP (EGFP) expression plasmid (human sequence with EGFP fused to its C terminus) (9) were generated by PCR and validated by sequencing. N-terminal Flag-tagged versions of PKCδ, PKCδ- Δ C2 (where Δ C2 represents a C2 deletion of amino acids [aa] 1 to 123 [Δ 1-123]), and PKCδ-S359A also were generated and inserted into pcDNA3.1. All results shown in Fig. 2 and 3 with EGFP-tagged enzymes were replicated with Flag-tagged enzymes. Expression vectors were introduced into HEK293 cells (maintained in Dulbecco's modified Eagle's medium [DMEM] with 10% fetal bovine serum [FBS]) using Effectene transfection reagent (Qiagen) according to the manufacturer's instructions. Cells were lysed after 24 h in homogenization buffer containing 20 mM Tris-Cl (pH 7.5), 0.05 mM EDTA, 0.5 mM dithiothreitol (DTT), 0.2% Triton X-100, 5 µg/ml aprotinin, 5 µg/ml leupeptin, 5 µg/ml benzamidine, 1 mM phenylmethylsulfonyl fluoride, and 5 µM pepstatin A.

Cardiomyocytes were isolated from the hearts of 2-day-old Wistar rats and infected with adenoviral vectors that drive expression of wild-type PKC- δ (WT-PKC δ) or PKC δ -S359A according to methods published previously (12). Total cell lysates and fractions enriched in myofibrillar proteins were prepared according standard methods described in previous publications (7, 13). The study was approved by Columbia University's Institutional Animal Care and Use Committee.

Preparation of caveolar membranes. Caveolar membrane proteins were isolated according to a detergent-free purification scheme that was described previously (14).

IVKAs and Western blotting. *In Vitro* kinase assays (IVKAs) were performed with PKCδ immunoprecipitated with anti-GFP or anti-Flag from 150 μg of starting cell extract according to methods described previously (9). Incubations were performed for 30 min at 30°C in 110 μl of reaction buffer containing 30 mM Tris-Cl, pH 7.5, 5.45 mM MgCl₂, 0.65 mM EDTA, 0.65 mM EGTA, 0.1 mM DTT, 1.09 mM sodium orthovanadate, 0.1 μM calyculin, 0.55 μM protein kinase inhibitor (PKI), 217 mM NaCl, 3.6% glycerol, 89 μg/ml phosphatidylserine plus 175 nM PMA, and [γ -³²P]ATP (10 μCi, 66 μM) with 4 μg of Tn complex (consisting of equimolar cTnI, cTnT, and cTnC) as the substrate. Immunoblotting on lysates or immunoprecipitated PKCδ was according to methods described previously or to the manufacturer's instructions. In each figure, each

panel represents the results from a single gel (exposed for a uniform duration); detection was with enhanced chemiluminescence. ³²P incorporation was quantified by phosphorimager, and PKCô phosphorylation was normalized to PKCô protein levels.

Peptide kinase assays were carried out in a similar manner in 200 µl of a reaction mixture containing 26 mM Tris, pH 7.5, 5 mM MgCl₂, 0.6 mM EGTA, 0.6 mM EDTA, 0.5 µM PKI, 10 µM protein phosphatase 1 (PP1), 0.25 mM DTT, 89 µg/ml phosphatidylserine plus 175 nM PMA, and 50 µM peptide substrate, as indicated in the legend of Fig. 6. Reactions were initiated by the addition $[\gamma$ -³²P]ATP (10 µCi, 66 µM) and were performed in quadruplicate at 30°C for 15 min. Assays were terminated by placing samples on ice, which was followed by centrifugation at 1,500 × g for 10 min at 4°C. Forty microliters of each supernatant was spotted onto phosphocellulose filter papers (P-81), which were dropped immediately into water and washed (five times for 5 min), and radioactivity counts were determined.

Multiple-reaction monitoring (MRM) phosphorylation of PKCô. WT-PKC δ and PKC δ - Δ C2 enzymes were heterologously overexpressed in HEK293 cells, immunoprecipitated for IVKAs, and then subjected to in-gel digestion as described previously (15). Briefly, WT-PKCS and PKC δ - Δ C2 bands separated by SDS-PAGE were excised, cut into 1-mm pieces, and washed three times with 50% acetonitrile-25 mM ammonium bicarbonate for 15 min with shaking. Gel pieces were incubated with 25 mM ammonium bicarbonate plus 10 mM dithiothreitol for 60 min at 55°C, washed with acetonitrile (ACN), and then incubated with 25 mM ammonium bicarbonate plus 55 mM iodoacetamide (freshly made) for 30 min in the dark. Gel pieces were then washed with ACN, dried, rehydrated with 10 ng/µl trypsin (sequencing grade; Promega) in 25 mM ammonium bicarbonate, and then placed on ice for 30 min. Excess trypsin was removed, and then 20 µl of 25 mM ammonium bicarbonate was added. Samples were digested at 37°C for 18 h. The liquid was transferred to a clean tube. The peptides were extracted twice using 50% ACN-0.1% trifluoroacetic acid (TFA) for 20 min at 25°C with shaking. The final peptide mixture was subjected to C18 reverse-phase chromatography in C18 ZipTips (Millipore) using 0.1% TFA. The peptides were then eluted two times with 20 µl of 70% ACN-0.1% TFA and 95% ACN-0.1% TFA. The combined solution was dried using a SpeedVac vacuum centrifuge (Thermo Electron) and frozen at -80°C until analysis.

MRM assays were developed, optimized, and validated using a nanoliquid chromatography-tandem mass spectrometry (nano-LC-MS/MS) system, the 4000 QTRAP hybrid triple-quadrupole/linear ion trap mass spectrometer (AB Sciex). Peptides obtained from the in-gel digestion of PKC8 proteins were reconstituted in 20 µl of 0.1% formic acid. Peptides were separated by an Eksigent Tempo nano-LC system (Eksigent Technology) onto a BioBasic C18 reverse-phase PicoFrit column (300-Å pore size, 5-µm particle size, 75-µm inner diameter by 10-cm length, 15-µm tip; New Objective). Peptides were eluted in a 36-min AB linear gradient from 5 to 40% mobile phase B (mobile phase A, 2% [vol/vol] ACN containing 0.1% [vol/vol] formic acid; mobile phase B, 98% [vol/vol] ACN containing 0.1% [vol/vol] formic acid) at a 500 nl/min flow rate on the 4000 QTRAP MS system, with the NanoSpray source spray head coupled to a distal coated PicoTip fused silica spray tip (360-µm outside diameter, 75-µm inside diameter, 15-µm emitter orifice diameter; New Objective). Samples were analyzed using the following settings: curtain gas (CUR), 15; collision gas (CAD), high; ion spray voltage (IS), 2.5 kV; ion source gas 1 (GS1), 25; ion source gas 2 (GS2), 0; resolution Q1 and Q3, unit; heater interface temperature, 150°C. Each sample was run in triplicate. Peak detection and quantification of peak area were determined with Multiquant software, version 2.0, and inspected manually to ensure correct peak identification and quantification. Quantification of PKC8 phosphosites was carried out using a ratio of the peak area to gel band densitometry

FRET sensor data. The C2 domain of PKC δ (123 aa) was cloned from full-length human PKC δ cDNA. All constructs contain an N-terminal Flag tag immediately followed by mCitrine. In sequence behind the

mCitrine are the C2 domain of PKC δ , 10-nm ER/K α -helix linker (16), a tobacco etch virus (TEV) protease site (ENLYFQ), mCerulean, and a 13amino-acid peptide sequence containing a Tyr residue that when phosphorylated corresponds to a C2 domain consensus binding site. Fluorescent resonance energy transfer (FRET) sensors were generated with either the optimal binding sequence MALYSIYQPYVFA (4), the native PKCo SEPVGIY³¹³QGFEKK sequence, or these sequences with Tyr→Phe (in boldface) substitutions (MALYSIFQPYVFA and SEPVGIFQGFEKK) as controls. All domains and fluorophores are linked with three to four Gly-Ser-Gly repeats to allow rotational flexibility and are cloned between unique restriction sites. A C2 domain H62D mutation was generated by site-directed mutagenesis (QuikChange; Stratagene). These constructs were cloned between unique restriction sites in pBiex-1 vector and used for expression in Sf9 cells. Proteins were purified as described previously (17). FRET spectra for recombinant proteins were acquired on a Fluoro-Max-4 fluorometer (Horiba Scientific). Samples were excited at 430 nm (spectral band pass [bp 8 nm]), and emission was scanned from 450 to 650 nm (bp 4 nm). All samples were suspended in a buffer composed of 50 mM Tris-HCl, 10 mM MgCl₂, 10% glycerol, and 2.5 mM DTT. Recombinant Src kinase was added to the reaction samples and incubated at 30°C for 30 min before spectra were taken. The samples also contain 0.05 mg/ml bovine serum albumin (BSA) to limit nonspecific surface adsorption of sensor proteins.

RESULTS

A FRET-based sensor detects a C2 domain interaction with a pTyr³¹³-bearing peptide. Since traditional bimolecular approaches are unlikely to be an effective approach to detect a cis interaction between the C2 domain and the pTyr³¹³ motif (which is predicted to be facilitated by the tethering of the two domains within full-length PKC δ), we generated FRET-based sensors consisting of a single polypeptide with (N to C terminus) the C2 domain, mCerulean (as FRET donor), an ER/K linker (18), a 13residue peptide based upon either a previously described optimal pTyr binding motif (4) or sequence flanking Tyr³¹³ in PKCo, and mCitrine (as a FRET acceptor). These sensors are designed to primarily report on the strength of the interaction between the C2 domain and the peptide (higher FRET indicates a stronger interaction) (Fig. 1A) (16). Sensors were purified and subjected to in vitro kinase assays with recombinant Src. Figure 1B and C show that the FRET signals for sensors bearing either the optimal pTyr binding motif or the Tyr³¹³-bearing peptide increase as a result of in vitro phosphorylation by Src. Two sets of control sensors were generated to establish the specificity of the FRET signals (Fig. 1C). First, studies with sensors containing Tyr->Phe substitutions at each peptide's phosphorylation site establish that the increase in FRET signal is due to phosphorylation at the designated tyrosine residue in the peptide. Second, studies with sensors containing H62D substitutions in the C2 domain pTyr binding pocket (that disrupts the C2 domain-pTyr interaction) (schematic in Fig. 1D) (4) point to a phosphorylation-dependent interaction with the C2 domain. These results indicate that the Src-dependent increases in FRET are due to C2 domain interactions with Tyr-bearing peptides, providing direct evidence for an interaction between the C2 domain and the pTyr³¹³ motif in the V3 hinge of PKCδ.

The C2 domain is required for *in vivo* PMA-dependent PKC δ -Tyr³¹³ phosphorylation. We used a PKC δ -C2 domain deletion construct (PKC δ - Δ C2) to examine the consequences of C2 domain-dependent interactions in a cellular context. Figure 2A shows that WT-PKC δ and PKC δ - Δ C2 are expressed at similar levels in HEK293 cells and that both enzymes undergo similar maturational phosphorylations at the activation loop (Thr⁵⁰⁷) and C-terminal (Ser⁶⁴⁵ and Ser⁶⁶⁴) phosphorylation sites. These

"priming" site phosphorylations are stable modifications that are not altered by PMA or H_2O_2 . H_2O_2 and pervanadate promote WT-PKC δ and PKC δ - Δ C2 phosphorylation at Tyr³¹³ and Tyr³³⁴ (Fig. 2A and B). In each case, Tyr³¹³ and Tyr³³⁴ phosphorylation is via an Src-dependent mechanism that is inhibited by PP1 (7). In contrast, PMA induces an Src-dependent increase in WT-PKC δ phosphorylation at Tyr³¹³ but not at Tyr³³⁴. PMA does not increase PKC δ - Δ C2 phosphorylation at Tyr³¹³ (Fig. 2A and B).

Control studies indicate that the effect of the C2 domain deletion to prevent PMA-dependent Tyr³¹³ phosphorylation is not due to a defect in PKC8 targeting to Src-enriched caveolar membranes. Figure 2C shows that WT-PKC δ and PKC δ - Δ C2 both translocate to the caveolar membrane fraction. These results indicate that some other mechanism must account for the selective defect in PMA-dependent PKC δ - Δ C2-Tyr³¹³ phosphorylation. Therefore, we considered whether a C2 domain deletion disrupts the docking interaction that protects the phosphorylation site at Tyr³¹³ (but not Tyr³³⁴) from dephosphorylation by cellular phosphatases. This mechanism could account for the puzzling observation that Src phosphorylates PKC8 in vitro at both Tyr³¹³ and Tyr³³⁴ although PKCδ is phosphorylated via an Src-dependent mechanism at Tyr³¹³ and not Tyr³³⁴ in PMA-treated cells. Indeed, Fig. 2D shows that a PKC⁸ H62D substitution in the C2 domain pY binding site (4) completely abrogates PMA-dependent Tyr³¹³ phosphorylation, whereas Tyr³¹³ phosphorylation is not influenced by a Y64F substitution at an adjacent site in the C2 domain that does not contribute to pY binding.

PKC δ - Δ C2 displays a high level of cTnI-Thr¹⁴⁴ and cTnT kinase activity that is not influenced by Src. We performed in vitro kinase assays (IVKAs) without and with Src in buffers containing $[\gamma^{32}P]$ ATP, PS/PMA, and cardiac troponin (cTn) complex (consisting of equimolar cTnI, cardiac troponin T [cTnT], and cardiac troponin C [cTnC] as the substrate) to determine whether a C2 domain deletion alters PKCô's in vitro enzymology. Figure 3 shows that WT-PKCô executes a time-dependent autophosphorylation reaction. This is tracked as an increase in ³²P incorporation, which provides an integrated measure of autophosphorylation and (where specified) PKCδ tyrosine phosphorylation by Src (Fig. 3); a representative autoradiogram is depicted on the left, with the results of three separate experiments quantified on the right. PKCô autophosphorylation also is detected by immunoblot analysis with an anti-pTXR motif phosphorylation site-specific antibody (PSSA) that specifically recognizes one of several autophosphorylation sites on PKCS at Thr²⁹⁵ (19). It is important to note that Thr²⁹⁵ autophosphorylation is tracked in this study solely as a convenient readout of PKC8 autocatalytic activity. Studies to date show that a T295A substitution (in the vicinity of Tyr³¹³) leads to a defect in Src-dependent PKCδ-Tyr³¹³ phosphorvlation (and therefore prevents the Src-dependent increase in PKCS catalytic activity) but that a T295A substitution does not otherwise grossly influence PKCô catalytic activity. Insofar as this study focuses on mechanisms that activate PKCS downstream from Src (that bypass the requirement for phosphorylation at Tyr³¹³) (see below), a regulatory role for Thr²⁹⁵ autophosphorylation is unlikely and was not considered. Figure 3 shows that WT-PKCδ executes a time-dependent autophosphorylation and that autophosphorylation (quantified as ³²P incorporation) is enhanced by Src, consistent with previous evidence that Src enhances PKCô's autocatalytic activity.

The kinetics of PKC⁸ phosphorylation of cTnI and cTnT were

FIG 1 A FRET-based sensor detects a C2 domain interaction with PKCô's pTyr³¹³ motif. (A) Schematic of the C2 domain pY peptide-binding motif sensor in the unphosphorylated/inactive (left) and phosphorylated/active (right) conformations. The sensor consists of a single polypeptide containing (from its N to C terminus) the C2 domain, mCerulean (mCer), an ER/K α -helical linker, a peptide based upon the optimal C2 domain peptide binding motif previously defined by Benes et al. (4) or sequence flanking the Tyr³¹³ site in PKCô, and mCitrine (mCit). (B) Representative emission spectra, after donor excitation at 430 nm, of indicated sensors before and after treatment with Src kinase (donor emission peak, 475 nm; acceptor emission peak, 525 nm). (C) Src-dependent changes in the FRET ratio (mCitrine/mCerulean, 525 nm/475 nm) for wild-type and mutant sensors. Data are means ± standard deviations of at least four spectral repeats. Results were consistent in three independent recombinant sensor preparations. (D) Schematic representation of the interface between the pY³¹³ peptide (cyan backbone) and the C2 domain (green ribbon) of PKCô (modeled on Protein Data Bank [PDB] accession number 1YFK). Residues that contribute to pTyrbinding (Lys⁴⁸, Arg⁶⁷, and His⁶²) and Tyr⁶⁴ at the binding interface are highlighted in the bottom inset.

examined in parallel (note that cTnC is not a substrate for PKC). Figure 3 shows that the time course for WT-PKC δ phosphorylation of individual sites on cTnI is strikingly different. WT-PKC δ phosphorylates cTnI at Ser²³/Ser²⁴ very rapidly. This reaction reaches a maximal level at early time points, well in advance of WT-PKC δ -Thr²⁹⁵ autophosphorylation or WT-PKC δ -Tyr³¹³ phosphorylation by Src. In contrast, WT-PKC δ phosphorylation of cTnI at Thr¹⁴⁴ is detected following more prolonged incubations (30 to 60 min) exclusively in assays with Src. The anti-pTXR motif PSSA also exposes an Src-dependent increase in PKC δ phosphorylation of cTnT; cTnT contains three TXR motifs (in boldface) in PKC phosphorylation clusters at T¹⁹⁴ERKS¹⁹⁸GKRQT²⁰³ER and KVT²⁸⁴GR. Importantly, we previously showed that the Src-dependent acquisition of cTnI-Thr¹⁴⁴ kinase activity is abrogated by a Y313F substitution in PKC δ (9); a Y313F substitution also abrogates the Src-dependent increase in TXR motif phosphorylation on cTnT (data not shown).

A similar kinetic analysis of the *in vitro* kinase activity of PKC δ - Δ C2 shows the following. (i) PKC δ - Δ C2 exhibits a time-dependent increase in autophosphorylation, detected as an increase in ³²P incorporation and phosphorylation at Thr²⁹⁵. Quantification, based upon ³²P incorporation, shows that PKC δ - Δ C2 autophosphorylates to a higher level than WT-PKC δ ; PKC δ - Δ C2 autophosphorylation is not influenced by Src. (ii) PKC δ - Δ C2 phosphorylates cTnI at Ser²³/Ser²⁴ but, unlike WT-PKC δ , displays a high level of Src-independent cTnI-Thr¹⁴⁴ and cTnT-TXR motif activity. These results suggest that the C2 domain functions to limit PKC δ -dependent cTnI-Thr¹⁴⁴ and cTnT-TXR motif phosphorylation.

FIG 2 PMA-dependent PKC δ -Tyr³¹³ phosphorylation requires an intact pTyr-binding C2 domain. HEK293 cells that transiently overexpress WT-PKC δ (WT- δ) and PKC δ - Δ C2 (δ - Δ C2) (A to C) or PKC δ -H62D (δ -H62D) or PKC δ -Y64F (δ -Y64F) (D) were challenged with vehicle, 300 nM PMA, 5 mM H₂O₂, or 100 μ M pervanadate (PV) as indicated. Immunoblotting was on cell lysates (A, B, and D) or on the caveolar fraction (Cav), pooled heavy gradient fractions (F8 to F12), and the insoluble pellet (P) that are separated by a detergent-free caveolar purification scheme (C). It should be noted that the bands representing WT-PKC δ and PKC δ - Δ C2 were aligned for presentation purposes in panels A and B; the increased electrophoretic mobility due to the C2 domain deletion was observed in all experiments and can be observed in panel C. All results were replicated in three to six separate experiments on separate culture preparations. Each panel shows results from a single gel exposed for a uniform duration.

The C2 domain controls phosphorylation of the ATP-positioning loop at Ser³⁵⁹. WT-PKC δ and PKC δ - Δ C2 were subjected to IVKAs and then targeted multiple-reaction monitoring (MRM)-mass spectrometry to determine whether PKC δ - Δ C2's altered enzymology is attributable to a change in phosphorylation. We identified a novel phosphorylation site at Ser³⁵⁹ in the highly conserved Gly-rich ATP-positioning loop (G loop, also known as the phosphate positioning P loop) in the small lobe of the kinase domain (see Fig. S1 in the supplemental material). Quantification (peak areas) showed that the Ser³⁵⁹-phosphorylated peptide is detected by MRM in tryptic digests from WT-PKCô but that it is not detected in digests from PKC δ - Δ C2 (see Fig. S1A, B, E, and F in the supplemental material). The precise stoichiometry of phosphorylation at this site could not be assessed since unphosphorylated Ser³⁵⁹ peptide ionizes poorly in the MS instrument; it is detected (elution time, ~ 16 min), but the levels are below the lower limit of quantification.

We developed an anti-PKC δ -pSer³⁵⁹ PSSA as a separate strategy to track PKC δ G-loop phosphorylation. Figure 3B shows the validation of this reagent; the anti-PKC δ -pSer³⁵⁹ PSSA recognizes WT-PKC δ but not a PKC δ -S359A mutant. Western blots using this reagent show that Ser³⁵⁹ phosphorylation is detected on WT-PKC δ but not on the PKC δ - Δ C2 mutant (Fig. 3B). Separate experiments showed that WT-PKC δ or PKC δ - Δ C2 phosphorylation at Ser³⁵⁹ does not grossly change during the IVKA (data not shown). This contrasts with phosphorylation at Thr²⁹⁵, which increases during IVKAs on both WT-PKC δ and PKC δ - Δ C2 (Fig. 3A). The Thr²⁹⁵-phosphorylated peptide also was detected in the MRM studies, where the quantification showed a 37% higher level of the Thr²⁹⁵-phosphorylated peptide in tryptic digests from PKC δ - Δ C2 than in the digest from WT-PKC δ (see Fig. S1A to D in the supplemental material).

The C2 domain regulates PKC δ catalytic activity indirectly by controlling Ser³⁵⁹ phosphorylation. PKC δ mutants harboring single-residue substitutions at position 359 (either on the WT-PKC δ or PKC δ - Δ C2 backbone) were subjected to IVKAs to examine their autocatalytic and Tn kinase activities. Preliminary studies showed that Ser³⁵⁹ substitutions do not grossly alter PKC δ expression, priming site (Thr⁵⁰⁷, Ser⁶⁴⁵, and Ser⁶⁶⁴) phosphorylation, or cTnI-Ser²³/Ser²⁴ kinase activity (data not shown), suggesting that the PKC δ G loop is a relatively flexible structure that accommodates a range of amino acid substitutions at position 359.

Figure 4 shows that WT-PKC δ activity is strictly lipid dependent, but PKC δ -S359A possesses a considerable amount of lipidindependent autocatalytic activity, detected as a high level of lipidindependent autophosphorylation at Thr²⁹⁵ (Fig. 4A) and ³²P incorporation (Fig. 4B). The S359A substitution also increases lipid-independent cTnI-Ser²³/Ser²⁴ kinase activity (relative to WT-PKC δ), and it confers Src-independent cTnI-Thr¹⁴⁴ and cTnT-TXR kinase activity. PS/PMA treatment results in further increases in PKC δ -S359A activities.

PKC δ -S359E also possesses a modest level of lipid-independent autocatalytic activity (detected as increased Thr²⁹⁵ autophos-

FIG 3 A C2 domain deletion confers Src-independent cTnI-Thr¹⁴⁴ and cTnT kinase activity. (A) WT-PKC δ or PKC δ - Δ C2 was immunoprecipitated from HEK293 cells and subjected to IVKAs with PS/PMA with or without Src and Tn complex as the substrate. Autoradiography and immunoblotting were performed for PKC δ protein (to validate equal protein recovery) and PKC δ autophosphorylation at Thr²⁹⁵ and PKC δ -Tyr³¹³ phosphorylation by Src (top left). Src also induces parallel increases in WT-PKC δ and PKC δ - Δ C2 phosphorylation at Tyr³³⁴; these immunoblots have been omitted from the figure since we previously demonstrated that Tyr³³⁴ phosphorylation does not contribute to the control of PKC δ catalytic activity (9). Immunoblotting was performed for cTnI phosphorylation at Thr¹⁴⁴ (detected with an anti-pTXR motif PSSA) (9), and cTnT phosphorylation at TXR motifs (bottom left). The schematic shows PKC phosphorylation sites on cTnI and cTnT. Results for ³²P incorporation into PKC δ , cTnI, and cTnT are quantified (n = 3) (right). Results in each panel are normalized to phosphorylation levels detected in assays with WT-PKC δ activity. Results are presented as the means ± standard errors and are analyzed with a Student's *t* test with a Bonferroni correction for multiple comparisons (*, P < 0.05). (B) WT-PKC δ , PKC δ - Δ C2, or PKC δ -S359A was immunoprecipitated from HEK293 cells and subjected to immunoblot analysis with a PSSA that specifically recognizes phosphorylation at Ser³⁵⁹ or PKC δ protein (to validate equal protein loading).

phorylation and ³²P incorporation into the enzyme) (Fig. 4A and B). The observation that $S \rightarrow E$ and $S \rightarrow A$ substitutions both increase lipid-independent PKCô autocatalytic activity suggests that an electrostatic interaction involving the Ser³⁵⁹ hydroxyl group (rather than Ser³⁵⁹ phosphorylation) stabilizes the inactive conformation of the enzyme. However, S359A and S359E substitutions exert very different effects on Tn phosphorylation. PKCô-S359E retains wild-type cTnI-Ser²³/Ser²⁴ kinase activity, but it does not phosphorylate cTnI at Thr¹⁴⁴ or cTnT at TXR motifs (even when it is Tyr³¹³ phosphorylated by Src). While a PKCδ-S359E-dependent increase in ³²P incorporation into cTnT was detected in assays with Src (Fig. 4B), this was mapped to a different cTnT phosphorylation site that is recognized by an anti-PKC substrate motif PSSA (that recognizes pS flanked by R or K at -2 and +2 positions) (Fig. 4A); cTnT's PKC phosphorylation cluster contains a site (T¹⁹⁴ERKS¹⁹⁸GKRQT²⁰³ER; the phosphorylation site is underlined, and the boldface R at the -2position and K at the +2 position relative to the phosphorylation site show that this conforms to the described PKC consensus motif) that conforms to this motif.

The antithetical effects of S359A and S359E substitutions on PKCô's TXR kinase activity could suggest a role for a negative charge (e.g., phosphorylation) at this site. However, Fig. 4C shows that a position 359 bulky/uncharged Leu substitution also abrogates cTnI-Thr¹⁴⁴ and cTnT-TXR motif phosphorylation, without disrupting PKCô autocatalytic activity or cTnI-Ser²³/Ser²⁴ kinase activity. These results argue that the steric bulk of a position 359 phosphate group (rather than the negative charge) disrupts PKCô activity toward cTnI-Thr¹⁴⁴ and cTnT-TXR motifs.

We introduced an S359E substitution into the PKC δ - Δ C2 backbone to test whether the C2 domain controls PKC δ catalytic activity indirectly by regulating Ser³⁵⁹ phosphorylation. Figure 4D shows that PKC δ - Δ C2 and PKC δ - Δ C2-S359E display similar cTnI-Ser²³/Ser²⁴ kinase activities. PKC δ - Δ C2 (which is not detectably phosphorylated at Ser³⁵⁹) displays high levels of cTnI-Thr¹⁴⁴ and cTnT-TXR motif activity. cTnI-Thr¹⁴⁴ and cTnT-TXR motif phosphorylation is completely abrogated by an S359E substitution in the PKC δ - Δ C2 backbone.

These studies (summarized in Fig. 5) implicate Ser^{359} as a novel PKC δ phosphorylation site that plays a heretofore unrecognized

FIG 4 An S359A substitution enhances while an S359E substitution prevents cTnI and cTnT phosphorylation at TXR motifs. PKC δ constructs (WT-PKC δ , PKC δ -S359A, or PKC δ -S359E in panel A, PKC δ -S359L in panel C, and PKC δ - Δ C2 or PKC δ - Δ C2-S359E in panel D) were subjected to IVKAs with Tn complex as the substrate, without or with PS/PMA or Src as indicated. Phosphorylation was tracked by immunoblotting, with results representative of immunoblots from two (for PKC δ -S359L and PKC δ - Δ C2), three (for PKC δ -S359E), four (for PKC δ -S359A), or seven (for WT-PKC δ) separate experiments. (B) ³²P incorporation was quantified by phosphorimager analysis for assays performed with WT-PKC δ (n = 7), PKC δ -S359A (n = 4), and PKC δ -S359E (n = 3). Results are presented as the means \pm standard errors and are analyzed with Student's *t* test with a Bonferroni correction for multiple comparisons (*, P < 0.05). Note that the apparent difference between the PS/PMA-dependent increases in WT-PKC δ -Thr²⁹⁵ phosphorylation in the two IVKAs in panel A is attributable to a difference in exposure times were considerably shorter for studies that compared WT-PKC δ with the highly active PKC δ -S359A mutant than for studies that compared WT-PKC δ with PKC δ -S359A mutant than for studies that compared WT-PKC δ with PKC δ -S359A mutant than for studies that compared WT-PKC δ with PKC δ -S359A mutant than for studies that compared WT-PKC δ with PKC δ -S359A mutant than for studies that compared WT-PKC δ with PKC δ -S359A mutant than for studies that compared WT-PKC δ with PKC δ -S359A mutant than for studies that compared WT-PKC δ with PKC δ -S359A mutant than for studies that compared WT-PKC δ with PKC δ -S359A mutant than for studies that compared WT-PKC δ with PKC δ -S359A mutant than for studies that compared WT-PKC δ with PKC δ -S359A mutant than for studies that compared WT-PKC δ with PKC δ -S359A mutant than for studies that compared WT-PKC δ with PKC δ -S359A mutant than for studies that co

role to control phosphorylation of TXR motifs on cTnI and cTnT (but not cTnI phosphorylation at Ser²³/Ser²⁴). However, these newer results also raise a question regarding the mechanism underlying our original observation that Src increases WT-PKCô's in vitro TXR activity; Src-phosphorylated WT-PKC8 acquires TXR activity without any gross change in its Ser³⁵⁹ phosphorylation status in the IVKAs (an artificial context that does not include cellular phosphatases). The simplest, most parsimonious, explanation for this finding is that WT-PKCô TXR activity arises from a pool of enzyme that is recovered without G-loop Ser³⁵⁹ phosphorylation. This formulation is consistent with (i) the MRM-MS studies that detected, but could not quantify, the unphosphorylated Ser³⁵⁹ peptide and (ii) the mutagenesis studies showing that TXR activity is completely abrogated by the phosphomimetic or bulky Ser³⁵⁹ substitutions, indicating that an unphosphorylated, or alanine substituted, Ser³⁵⁹ in the G loop is necessary for TXR activity. In fact, the data shown in Fig. 3 showing that WT-PKC8

displays a very low level of Src-independent TXR activity when incubations are pushed to very prolonged intervals suggest that TXR activity reflects both the fraction of total enzyme that is recovered without Ser³⁵⁹ phosphorylation and its overall catalytic activity and that Src increases WT-PKCô's TXR activity by enhancing its catalytic activity (independent of any effect on Ser³⁵⁹ phosphorylation). We performed additional studies with the PKCô-Y313F mutant enzyme (which prevents phosphorylation by Src but does not influence G-loop Ser³⁵⁹ phosphorylation) (see Fig. 8C) to test this hypothesis. The observation that a Y313F substitution decreases PKCô autophosphorylation at Thr²⁹⁵ (53% ± 7% relative to WT-PKCô; *P* < 0.05, *n* = 3) indicates that an Src-driven conformational change, which may or may not involve the C2 domainpTyr³¹³ docking interaction, contributes to the mechanism for maximal activation of WT-PKCô.

An S359A substitution influences the phosphoacceptor pref erence of PKCδ. While PKCδ is generally viewed as an Ser/Thr

<u>ΡΚC-δ</u>	<u>cTnl</u>		<u>cTnT</u>
	<u>cTnl-pS²³/S²⁴</u> ^{он} ✔	<u>сТпІ-рТ¹⁴⁴</u>	он 🔀
WT-PKCδ	+		-
WT-PKCō + Src	+	+	+
ΡΚCδ-ΔC2	+	++	++
РКСō-ΔС2-S359E	+	-	-
РКСठ-S359A	+	+++	+++
PKCδ-S359E (with or without Src)	+	-	-
PKCδ-S359L (with or without Src)	+	-	-
REGULATORY DOMAIN DAG/PMA DAG/PMA C2 H ⁶² Y ⁶⁴ C1A C1B T ^{2/5} Ý ³³⁴ CATALYTIC DOMAIN Kinase T ⁵⁰⁷ S ⁶⁴⁵ Š ⁶⁶⁴			
Y ³¹³ S ³⁵⁹			

FIG 5 Summary of the PKC δ mutants used in this study and their activity toward phosphorylation sites on cTnI and cTnT. Regulatory phosphorylation sites at Y^{313} and S^{359} , priming phosphorylation sites (T^{507} , S^{645} , and S^{664}), and other residues examined in this study are localized in the schematic of the PKC δ domain structure.

kinase, substrate sequence logos suggest a clear preference for substrates with an Ser at the phosphoacceptor site (P site). Of note, structural studies of PKA complexed with ATP and PKI (an inhibitor peptide that docks to the active site) place the Ser in the GK GSFG sequence at the tip of the G loop in close proximity to the P site on substrates (Fig. 6A). Our observation that an S359A substitution (at the tip of the G loop of PKCδ) selectively increases phosphorylation of TXR (Thr-directed) motifs on cTnI and cTnT provided a rationale to test whether posttranslational modifications (PTMs) at Ser³⁵⁹ specifically regulate substrate phosphorylation at Thr (but not Ser) residues. We compared WT-PKCô and PKCδ-S359A activity toward short peptide substrates based upon the cTnI phosphorylation site at position 144 with either Thr or Ser at the P site. It is worth noting that IVKAs described in the previous sections tracked WT-PKC8 phosphorylation of proteins in the troponin complex; these assays are performed at limiting/ submicromolar substrate concentrations since practical issues related to cost and protein insolubility preclude the use of higher concentrations of protein substrates. In contrast, peptide kinase assays are performed at a considerably higher substrate concentration (50 µM) and expose a low level of cTnI-Thr¹⁴⁴ phosphorylation by PKCô. However, Fig. 6B shows that WT-PKCô displays a considerably higher level of activity toward the cTnI-Ser¹⁴⁴ peptide. Moreover, the S359A substitution increases peptide kinase activity. PKCô-S359A phosphorylates both cTnI-Thr144 and cTnI-Ser¹⁴⁴ peptides; it does not discriminate between these peptides. Similar results were obtained in assays with peptides based upon the Ser¹³³ phosphorylation site in CREB, which is flanked by

a different phosphorylation motif (Fig. 6C). In this case, WT-PKCô and PKCô-S359A display high levels of activity toward the CREB-Ser¹³³ peptide. An S133T substitution markedly decreases peptide phosphorylation by WT-PKCô but not PKCô-S359A. These results implicate PTMs at Ser³⁵⁹ in PKCô's G loop as a mechanism that regulates PKCô's P-site specificity.

G-loop regulation of PKCa and PKA activities. The G-loop Ser³⁵⁹ phosphorylation site in PKC8 is highly conserved in other PKCs and in PKA (Fig. 7). Since there is recent evidence that this G-loop site is posttranslationally modified in PKC α and PKA (20, 21) and since the functional role of this site in PKC α and PKA remains uncertain, we examined whether G-loop substitutions influence PKC α or PKA catalytic activity. Figure 7B and C show that single-residue substitutions in the G-loops of PKCa (at Ser³⁴⁹) or PKA (at Ser⁵³) do not influence enzyme expression or priming/activation loop phosphorylation. WT-PKCa displays a modest amount of activity toward cTnI-Ser²³/Ser²⁴ in assays with PS/PMA (Fig. 7B). The S349A substitution increases PKCa's lipid-dependent cTnI-Ser²³/Ser²⁴ kinase activity, without imparting activity toward cTnI-Thr¹⁴⁴ or cTnT-TXR motifs (and it does not confer lipid-independent catalytic activity). Control studies performed in parallel show that a similar level of cTnI-Ser²³/Ser²⁴ phosphorylation by lipid-/Src-activated PKCS is associated with considerable amounts of cTnI-Thr¹⁴⁴ and cTnT-TXR activity. Figure 7C shows that an S53A substitution increases while an S53E substitution decreases cTnI-Ser²³/Ser²⁴ phosphorylation by PKA. WT and mutant PKA constructs do not phosphorylate TXR sites on cTnI or cTnT. Collectively, these studies implicate G-loop

FIG 6 The ATP binding loop Ser³⁵⁹ phosphorylation site controls P-site selectivity. (A) Structure of the PKA catalytic subunit (PDB accession number 3FJQ) complexed with PKI (in green) and ATP (in blue) at the cleft interface. The Gly-rich loop (GKGSFG) is highlighted in violet, with α -carbons of the three Gly residues shown as balls. Side chains of the G-loop Ser and Phe residues are included, with the G-loop Ser residue highlighted in red. The Ser residue at the P site of PKI also is highlighted in red. The close-up view of the G-loop region of the PKA-PKI-ATP ternary complex shows the close proximity between the Ser residue at the tip of the G loop and the phosphoacceptor site on substrate. The PKA structure is depicted since there are no structural data for a PKC isoform complexed with ATP and substrate. (B and C) WT-PKC δ and PKC δ -S359A phosphorylation of peptide substrates with either Thr or Ser at the position 144 phosphorylation site in CREB (C) was examined in triplicate, as described in Materials and Methods. Results are presented as the means \pm standard errors from three separate experiments (*, P < 0.05).

PTMs as general regulators of PKC δ , PKC α , and PKA activity. In each case, S \rightarrow A substitutions increase and S \rightarrow E substitutions decrease activity. However, the detailed nature of the regulatory control is kinase specific. The G-loop S \rightarrow A substitution confers TXR motif activity on PKC δ but not on PKC α or PKA.

H₂O₂ decreases PKCδ-Ser³⁵⁹ phosphorylation in cardiomyocytes; PKCδ-S359A displays an activated phenotype in cardiomyocytes. We examined whether PKCô-Ser³⁵⁹ phosphorylation is regulated in cardiomyocytes. Figure 8A shows that endogenous PKCδ is recovered from cardiomyocytes as a Ser³⁵⁹-phosphorylated enzyme and that PKCô-Ser³⁵⁹ phosphorylation decreases in association with the H2O2-dependent increase in PKCS phosphorylation at Tyr³¹³. PKCo-pSer³⁵⁹ immunoreactivity is reduced by 74% \pm 4% relative to levels in resting cardiomyocytes following treatment with 5 mM H_2O_2 (n = 4, P < 0.05). Figure 8B shows that the reciprocal H₂O₂-dependent changes in PKC\delta-Tyr³¹³ and Ser³⁵⁹ phosphorylation are associated with the acquisition of lipid-independent cTnI-Ser²³/Ser²⁴ and cTnI-Thr¹⁴⁴ kinase activities. Figure 8C uses a heterologous overexpression strategy to establish a link between the H₂O₂-dependent changes in Tyr³¹³ and Ser³⁵⁹ phosphorylation. Figure 8C shows that the H₂O₂-dependent decrease in Ser³⁵⁹ phosphorylation is abrogated by a Y313F substitution.

We used an overexpression strategy with WT-PKC8 and PKCô-S359A followed by immunoblotting with the anti-PKC substrate PSSA (as a general screen for target protein phosphorylation), anti-pTXR (a specific screen for phosphorylation at Thr phosphoacceptor sites), and antibodies that recognize activating phosphorylations on protein kinase D (PKD, a PKCô-activated effector) (22) to examine the functional importance of Ser³⁵⁹ in a cellular context. Immunoblotting studies on cell lysates show that WT-PKCô or PKCô-S359A overexpression leads to an increase in PMA-dependent responses (Fig. 8D). However, PKCδ-S359A uniquely acts as a constitutively activated enzyme to enhance (basal) anti-PKC substrate PSSA immunoreactivity and phosphorylation/activation of PKD (Fig. 8D). PKCδ-S359A overexpression also increases substrate phosphorylation at TXR motifs. However, pTXR motif immunoreactivity was detected on only a limited number of proteins in cell lysates. Therefore, we also assessed phosphorylation in the myofibrillar fraction. Figure 8D shows that WT-PKCô and PKCô-S359A overexpression leads to a marked increase in basal and PMA-dependent anti-

FIG 7 S \rightarrow A substitutions in the G loops of PKC α and PKA increase cTnI-Ser²³/Ser²⁴ phosphorylation without conferring activity toward cTnI-Thr¹⁴⁴ or TXR sites on cTnT. (A) Alignment of the highly conserved G loops in PKC isoforms and PKA. WT-PKC α and PKC α -S349A (B) or WT-PKA, PKA-S53A, and PKA-S53E (C) were subjected to IVKAs with Tn complex (TnC) as the substrate. Control experiments were performed in parallel with full-length WT-PKC δ (with and without PS/PMA and Src added, as indicated) (B) or a PKC δ isolated kinase domain (KD) construct (C). Protein expression, activation loop (PKC α -Thr⁴⁹⁷ or PKA-Thr¹⁹⁷) phosphorylation, and substrate phosphorylation were tracked by immunoblot analysis (top panels); ³²P incorporation into cTnI was quantified by phosphorimager (bottom panels). All results were replicated in two separate experiments. WT α , WT-PKC α .

PKC substrate PSSA immunoreactivity in the myofibrillar fraction: PKC substrate motif phosphorylation is higher in cardiomyocytes that overexpress PKC δ -S359A than in cardiomyocytes that overexpress WT-PKC δ . The myofibrillar fractions also contain considerable amounts of pTXR immunoreactivity. pTXR immunoreactivity (including on a band that comigrates with cTnT) is considerably higher in the myofibrillar fraction from cardiomyocytes that overexpress PKC δ -S359A than in WT-PKC δ .

DISCUSSION

PKC δ was originally described as a signaling kinase that mediates growth factor-dependent cellular responses. The original allosteric model of PKC δ activation focused on translocation events that deliver the enzyme in an active conformation to DAG-enriched membranes. This model assumes that the cellular actions of PKC δ are membrane delimited and that PKC δ 's catalytic activity is an inherent property of the enzyme that is not altered by the activation process. However, subsequent studies exposed alternative lipid-independent mechanisms for PKC δ activation that result in the generation of distinct molecular forms of PKC δ with altered catalytic properties in various subcellular compartments (not just in DAG-enriched membranes). We previously reported that oxidative stress leads to the activation of Src and accumulation of a Tyr³¹³-phosphorylated form of PKC δ with altered catalytic properties in cardiomyocytes (7, 9). This study identifies the mechanism that links Tyr³¹³ phosphorylation to changes in catalytic activity by showing that the Tyr³¹³-phosphorylated hinge region functions as a docking site for the pTyr binding C2 domain of PKC δ (schematized in Fig. 9).

We used a PKC δ - Δ C2 deletion mutant to examine the functional consequences of C2 domain-mediated docking interactions. First, we showed that full-length PKC δ phosphorylates cTnI-Thr¹⁴⁴ and cTnT-TXR motifs when it is Tyr³¹³ phosphorylated by Src. In contrast, PKC δ - Δ C2 possesses a high level of Srcindependent cTnI-Thr¹⁴⁴ and cTnT-TXR motif activity. These results suggest that the C2 domain functions as an autoinhibitory regulator of certain full-length PKC δ activities and that a docking interaction between the C2 domain and the Tyr³¹³-phosphorylated hinge region induces a global conformational change that relieves this C2 domain-mediated autoinhibitory constraint. Second, we showed that the C2 domain regulates PKC δ activity by controlling phosphorylation at Ser³⁵⁹. WT-PKC δ displays a high level of Ser³⁵⁹ phosphorylation. Studies

FIG 8 H_2O_2 decreases PKCô-Ser³⁵⁹ phosphorylation in cardiomyocytes; PKCô-S359A displays an activated phenotype in cardiomyocytes. (A and B) Neonatal rat cardiomyocyte cultures were treated for 5 min with vehicle or the indicated concentrations of H_2O_2 . Endogenous PKCô was then immunoprecipitated and probed for phosphorylation at Tyr³¹³ and Ser³⁵⁹ (A) or subjected to IVKAs to track basal and lipid-dependent activity toward individual sites on cTnI (B). (C) WT-PKCô- and PKCô Y313F-overexpressing cultures were treated for 5 min with vehicle or 5 mM H_2O_2 . Cell lysates were subjected to immunoblot analysis for PKCô protein and Tyr³¹³/Ser³⁵⁹ phosphorylation. (D) WT-PKCô- or PKCô-S359A-overexpressing cultures were treated for 20 min with vehicle or 200 nM PMA. Cell lysates were subjected to immunoblot analysis with the anti-PKC substrate and anti-TXR motif PSSAs as well as with antibodies that recognize activated/ phosphorylated forms of PKD. A purified myofibrillar fraction also was subjected to immunoblot analysis with the anti-TXR motif PSSAs. All results were replicated in two to four separate experiments.

using two different experimental approaches (multiple-reaction monitoring–mass spectrometry and Western blotting with a PSSA) show that PKC δ - Δ C2 is recovered from cells without Ser³⁵⁹ phosphorylation, indicating that Ser³⁵⁹ phosphorylation is disrupted by the C2 domain deletion. Mutagenesis studies implicate this Ser³⁵⁹ phosphorylation defect as the mechanism underlying PKC δ - Δ C2's altered catalytic activity. These results suggest that the C2 domain in the inactive enzyme is positioned to protect Ser³⁵⁹ from cellular phosphatases and that a C2 domain deletion or a mechanism that displaces the C2 domain from this site (such as the docking interaction with the Tyr³¹³phosphorylated hinge region) decreases Ser³⁵⁹ phosphorylation. This model is supported by cell-based studies showing that the H₂O₂-dependent increase in Tyr³¹³ phosphorylation is associated with a decrease in Ser 359 phosphorylation on WT-PKC δ but not the PKC δ -Y313F mutant.

The G-loop sequence is highly conserved in many protein kinases. Structural studies of PKA and several PKCs show that the G loop forms a flexible clamp that orients the γ -phosphate of ATP for transfer to substrate; localized changes in the position of this loop influence the kinetics of nucleotide binding and the phosphoryl transfer reaction. The Ser in the GKGSFG sequence in PKA is strategically positioned at the tip of the G loop at the entrance to the ATP-binding cleft, in close proximity to the P site on substrates (Fig. 7A). This site in the G loop of several other kinases has been implicated in the control of catalytic activity. For example, CDK1 (a regulator of the eukaryotic cell cycle) is maintained in an inactive conformation by inhibitory phosphorylations at Y¹⁵ and,

FIG 9 Schematic of the agonist-specific activation mechanisms for PKCô. See the text. GPCR, G protein-coupled receptor.

to a lesser extent, in the adjacent T¹⁴ in its ATP-binding GEGTYG motif; dephosphorylation of these sites at the onset of mitosis leads to enzyme activation (23). The nononcogenic c-ABL protooncogene is activated by a G-loop GGGQ(Y253F)G substitution (24); point mutations in Bcr-Abl (the constitutively active tyrosine kinase that drives malignant transformation in chronic myeloid leukemia) that alter G-loop Y²⁵³ phosphorylation confer drug resistance and enhanced oncogenicity (25, 26). Finally, there is evidence that c-Raf is maintained in a basal autoinhibited state through G-loop autophosphorylation and that c-Raf becomes activated (leading to a paradoxical activation of the mitogen-activated protein kinase pathway) by ATP-competitive Raf inhibitors that prevent G-loop autoinhibitory phosphorylation (27). However, posttranslational modifications at the G loop that regulate PKC (or PKA) activities have never been reported. This study identifies G-loop regulation of two key aspects of PKCô's enzymology, as follows.

(i) Phosphomimetic or bulky substitutions at Ser³⁵⁹ inhibit PKCô phosphorylation of TXR motifs on cTnI and cTnT but not cTnI phosphorylation at Ser²³/Ser²⁴. Ser³⁵⁹ phosphorylation could in theory influence PKCô's substrate specificity indirectly by restructuring the catalytic pocket to accommodate a wider range of phosphorylation motifs or by modulating docking interactions that control substrate alignment in the catalytic pocket. However, experiments with short peptide substrates harboring single-residue P-site substitutions show that a phosphomimetic substitution at position 359 prevents phosphorylation of Thrphosphoacceptor sites (presumably due to steric clash with the Thr methyl group); Ser-phosphoacceptor sites are not affected. Hence, while recent literature has focused on consensus phosphorylation motifs (residues that are either preferred or deselected at positions flanking the P site on a particular substrate) as the key determinant of enzyme substrate specificity, our studies show that PKCô activity can also vary depending upon whether the P site is a Ser or Thr residue. The novelty of this observation deserves emphasis. While Chen et al. recently identified the "DFG +1" residue (a residue immediately downstream of a conserved Asp-Phe-Gly sequence) in the activation segment as a structural determinant that defines the inherent P-site specificity of various Ser/Thr kinases (28), a dynamically regulated posttranslational modification that can alter P-site specificity in a stimulus-specific manner is unprecedented. This study implicates ATP-positioning loop phosphorylation at Ser³⁵⁹ as a mechanism that dynamically regulates the P-site specificity of PKC δ .

(ii) An S359A substitution imparts a high level of lipid-independent catalytic activity. The PKC δ -S359A mutant is a constitutively active enzyme; it acts (much like the lipid-independent form of PKC δ that accumulates in cells subjected to oxidative stress) to phosphorylate substrates throughout the cell, not just on lipid membranes. This suggests that the ATP-positioning loop site participates in an autoinhibitory intramolecular interaction and that this intramolecular interaction is dynamically controlled by Gloop phosphorylation. This result is consistent with recent structural evidence that the basal catalytic activity of PKC β II is limited by an autoinhibitory interaction between the ATP binding site and the C1 domain (29).

Several aspects of our study have implications for the pathogenesis and/or treatment of clinical disease. First, the observation that phosphomimetic and bulky hydrophobic amino acid substitutions at Ser³⁵⁹ produce similar changes in PKCS activity indicates that regulation is due to steric hindrance from the bulky phosphate group, rather than from the negative charge, at this site. This suggests that other bulky substitutions might have similar consequences. This may be pertinent to the diabetic state, where both PKC and increased protein O-GlcNAcylation contribute to cardiac dysfunction (30). Studies to date suggest that hyperglycemia activates PKC by inducing oxidative stress or increasing de novo DAG synthesis. However, the evidence that Ser³⁴⁹ in PKCa's G loop is a target for O-GlcNAcylation (addition of a bulky sugar moiety [21]) suggests that PTMs directed at the G loop might also underlie hyperglycemia-induced changes in PKC isoform activity.

Second, while PKC δ - Δ C2 was used in this study as a molecular tool to interrogate the structural determinants that regulate PKC δ catalytic activity, this construct resembles a truncated PKC δ isoform that is expressed in a developmentally regulated manner as a result of alternative splicing in mouse testis (31). Since disease-specific changes in PKC δ mRNA splicing have recently been identified in certain heart failure phenotypes (32, 33), a truncated PKC δ isoform might be a component of the altered cardiac transcriptome that contributes to pathological cardiac stress responses.

Finally, this study identifies a protein-protein interaction involving the C2 domain and the Tyr³¹³-phosphorylated hinge region that calibrates PKCô's substrate specificity by controlling phosphorylation at Ser³⁵⁹. This mechanism is prominent during oxidative stress, where Src activation leads to an increase in PKCô-Tyr³¹³ phosphorylation; PKC δ -Tyr³¹³ phosphorylation is not a feature of G protein-coupled receptor-activated signaling responses. Stimulus-specific differences in PKCS phosphorylation at Tyr³¹³ and Ser³⁵⁹ that impact substrate specificity provide a very plausible explanation for PKCô's diverse roles in both the pathogenesis of ischemia-reperfusion injury and as a mediator of ischemic preconditioning (a cardioprotective mechanism that mitigates ischemic injury) (34). Stimulus-specific signaling modes for PKC⁸ that link to functionally distinct cellular responses could also explain why recent efforts to bring a PKCô inhibitor compound to the clinic for the treatment of ischemic cardiac injury met with failure; the trial involved a PKCô inhibitor that was not designed to discriminate between pools of PKCS with distinct phosphorylation patterns at Tyr³¹³ and Ser³⁵⁹. Our results suggest that an inhibitor compound designed to prevent the C2 domainpTyr³¹³ interaction (and/or Ser³⁵⁹ dephosphorylation) might selectively block the redox-activated PKCô-dependent signaling responses that contribute to ischemic injury and offer significant therapeutic advantage.

ACKNOWLEDGMENTS

This work was supported by HL77860 (S.F.S) and grants to the Johns Hopkins Innovation Proteomics Center in Heart Failure (HHSN268201000032C and NHLBI-HV-10-05 to J.E.V.E.). S.F.S. was supported by an award from the NIH (1DP2 CA186752-01) and by an AHA Scientist Development Grant (13SDG14270009).

REFERENCES

- Stahelin RV, Digman MA, Medkova M, Ananthanarayanan B, Rafter JD, Melowic HR, Cho W. 2004. Mechanism of diacylglycerol-induced membrane targeting and activation of protein kinase Cô. J Biol Chem 279:29501–29512. http://dx.doi.org/10.1074/jbc.M403191200.
- Dekker LV, Parker PJ. 1997. Regulated binding of the protein kinase C substrate GAP-43 to the V0/C2 region of protein kinase C-δ. J Biol Chem 272:12747–12753. http://dx.doi.org/10.1074/jbc.272.19.12747.
- Lopez-Lluch G, Bird MM, Canas B, Godovac-Zimmerman J, Ridley A, Segal AW, Dekker LV. 2001. Protein kinase Cδ C2-like domain is a binding site for actin and enables actin redistribution in neutrophils. Biochem J 357:39–47. http://dx.doi.org/10.1042/0264-6021:3570039.
- 4. Benes CH, Wu N, Elia AE, Dharia T, Cantley LC, Soltoff SP. 2005. The C2 domain of PKCδ is a phosphotyrosine binding domain. Cell 121:271–280. http://dx.doi.org/10.1016/j.cell.2005.02.019.
- Konishi H, Yamauchi E, Taniguchi H, Yamamoto T, Matsuzaki H, Takemura Y, Ohmae K, Kikkawa U, Nishizuka Y. 2001. Phosphorylation sites of protein kinase Cδ in H₂O₂-treated cells and its activation by tyrosine kinase in vitro. Proc Natl Acad Sci U S A 98:6587–6592. http://dx .doi.org/10.1073/pnas.111158798.
- Steinberg SF. 2008. Structural basis of protein kinase C isoform function. Physiol Rev 88:1341–1378. http://dx.doi.org/10.1152/physrev.00034.2007.
- Rybin VO, Guo J, Sabri A, Elouardighi H, Schaefer E, Steinberg SF. 2004. Stimulus-specific differences in protein kinase C-δ localization and activation mechanisms in cardiomyocytes. J Biol Chem 279:19350– 19361. http://dx.doi.org/10.1074/jbc.M311096200.
- Rybin VO, Guo J, Gertsberg Z, Feinmark SJ, Steinberg SF. 2008. Phorbol 12-myristate 13-acetate-dependent protein kinase C-δ-Tyr³¹³ phosphorylation in cardiomyocyte caveolae. J Biol Chem 283:1777– 17788. http://dx.doi.org/10.1074/jbc.M800333200.
- Sumandea MP, Rybin VO, Hinken AC, Wang C, Kobayashi T, Harleton E, Sievert G, Balke CW, Feinmark SJ, Solaro RJ, Steinberg SF. 2008. Tyrosine phosphorylation modifies PKCδ-dependent phosphorylation of cardiac troponin I. J Biol Chem 283:22680–22689. http://dx.doi.org/10 .1074/jbc.M802396200.

- Lu W, Finnis S, Xiang C, Lee HK, Markowitz Y, Okhrimenko H, Brodie C. 2007. Tyrosine³¹³ is phosphorylated by c-Abl and promotes the apoptotic effect of PKCδ in glioma cells. Biochem Biophys Res Commun 352: 431–436. http://dx.doi.org/10.1016/j.bbrc.2006.11.028.
- Nakashima H, Frank GD, Shirai H, Hinoki A, Higuchi S, Ohtsu H, Eguchi K, Sanjay A, Reyland ME, Dempsey PJ, Inagami T, Eguchi S. 2008. Novel role of protein kinase C-δ Tyr³¹³ phosphorylation in vascular smooth muscle cell hypertrophy by angiotensin II. Hypertension 51:232–238. http://dx.doi.org/10.1161/HYPERTENSIONAHA .107.101253.
- 12. Rybin VO, Sabri A, Short J, Braz JC, Molkentin JD, Steinberg SF. 2003. Cross-regulation of novel protein kinase C (PKC) isoform function in cardiomyocytes. Role of PKC-epsilon in activation loop phosphorylations and PKC-delta in hydrophobic motif phosphorylations. J Biol Chem 278: 14555–14564. http://dx.doi.org/10.1074/jbc.M212644200.
- Aprigliano O, Rybin VO, Pak E, Robinson RB, Steinberg SF. 1997. β₁-And β₂-adrenergic receptors exhibit differing susceptibility to muscarinic accentuated antagonism. Am J Physiol 272:H2726–H2735.
- Rybin VO, Xu X, Lisanti MP, Steinberg SF. 2000. Differential targeting of β-adrenergic receptor subtypes and adenylyl cyclase to cardiomyocyte caveolae: A mechanism to functionally regulate the cAMP signaling pathway. J Biol Chem 275:41447–41457. http://dx.doi.org/10.1074/jbc.M006951200.
- Zhang P, Kirk JA, Ji W, dos Remedios CG, Kass DA, Van Eyk JE, Murphy AM. 2012. Multiple reaction monitoring to identify site-specific troponin I phosphorylated residues in the failing human heart. Circulation 126:1828– 1837. http://dx.doi.org/10.1161/CIRCULATIONAHA.112.096388.
- Sivaramakrishnan S, Spudich JA. 2011. Systematic control of protein interaction using a modular ER/K alpha-helix linker. Proc Natl Acad Sci U S A 108:20467–20472. http://dx.doi.org/10.1073/pnas.1116066108.
- Ritt M, Guan JL, Sivaramakrishnan S. 2013. Visualizing and manipulating focal adhesion kinase regulation in live cells. J Biol Chem 288:8875– 8886. http://dx.doi.org/10.1074/jbc.M112.421164.
- Sivaramakrishnan S, Spink BJ, Sim AY, Doniach S, Spudich JA. 2008. Dynamic charge interactions create surprising rigidity in the ER/K alphahelical protein motif. Proc Natl Acad Sci U S A 105:13356–13361. http: //dx.doi.org/10.1073/pnas.0806256105.
- Rybin VO, Guo J, Harleton E, Feinmark SJ, Steinberg SF. 2009. Regulatory autophosphorylation sites on protein kinase C-delta at Thr¹⁴¹ and Thr²⁹⁵. Biochemistry 48:4642–4651. http://dx.doi.org/10.1021/bi802171c.
- Seidler J, Adal M, Kubler D, Bossemeyer D, Lehmann WD. 2009. Analysis of autophosphorylation sites in the recombinant catalytic subunit alpha of cAMP-dependent kinase by nano-UPLC-ESI-MS/MS. Anal Bioanal Chem 395:1713–1720. http://dx.doi.org/10.1007/s00216-009 -2932-4.
- Robles-Flores M, Melendez L, Garcia W, Mendoza-Hernandez G, Lam TT, Castaneda-Patlan C, Gonzalez-Aguilar H. 2008. Posttranslational modifications on protein kinase C isozymes. Effects of epinephrine and phorbol esters. Biochim Biophys Acta 1783:695–712. http://dx.doi.org/10 .1016/j.bbamcr.2007.07.011.
- Ozgen N, Obreztchikova M, Guo J, Elouardighi H, Dorn GW, Wilson BA, Steinberg SF. 2008. Protein kinase D links Gq-coupled receptors to cAMP response element-binding protein (CREB)-Ser¹³³ phosphorylation in the heart. J Biol Chem 283:17009–17019. http://dx.doi.org/10.1074/jbc .M709851200.
- Norbury C, Blow J, Nurse P. 1991. Regulatory phosphorylation of the p34cdc2 protein kinase in vertebrates. EMBO J 10:3321–3329.
- Allen PB, Wiedemann LM. 1996. An activating mutation in the ATP binding site of the ABL kinase domain. J Biol Chem 271:19585–19591. http://dx.doi.org/10.1074/jbc.271.32.19585.
- Skaggs BJ, Gorre ME, Ryvkin A, Burgess MR, Xie Y, Han Y, Komisopoulou E, Brown LM, Loo JA, Landaw EM, Sawyers CL, Graeber TG. 2006. Phosphorylation of the ATP-binding loop directs oncogenicity of drug-resistant BCR-ABL mutants. Proc Natl Acad Sci U S A 103:19466– 19471. http://dx.doi.org/10.1073/pnas.0609239103.
- 26. Griswold JJ, MacPartlin M, Bumm T, Goss VL, O'Hare T, Lee KA, Corbin AS, Stoffregen EP, Smith C, Johnson K, Moseson EM, Wood LJ, Polakiewicz RD, Druker BJ, Deininger MW. 2006. Kinase domain mutants of Bcr-Abl exhibit altered transformation potency, kinase activity, and substrate utilization, irrespective of sensitivity to imatinib. Mol Cell Biol 26:6082–6093. http://dx.doi.org/10.1128/MCB.02202-05.
- Holderfield M, Merritt H, Chan J, Wallroth M, Tandeske L, Zhai H, Tellew J, Hardy S, Hekmat-Nejad M, Stuart DD, McCormick F, Nagel TE. 2013. RAF inhibitors activate the MAPK pathway by relieving inhib-

itory autophosphorylation. Cancer Cell 23:594-602. http://dx.doi.org/10 .1016/j.ccr.2013.03.033.

- Chen C, Ha BH, Thevenin AF, Lou HJ, Zhang R, Yip KY, Peterson JR, Gerstein M, Kim PM, Filippakopoulos P, Knapp S, Boggon TJ, Turk BE. 2014. Identification of a major determinant for serine-threonine kinase phosphoacceptor specificity. Mol Cell 53:140–147. http://dx.doi.org /10.1016/j.molcel.2013.11.013.
- 29. Leonard TA, Rozycki B, Saidi LF, Hummer G, Hurley JH. 2011. Crystal structure and allosteric activation of protein kinase C-βII. Cell 144:55–66. http://dx.doi.org/10.1016/j.cell.2010.12.013.
- McLarty JL, Marsh SA, Chatham JC. 2013. Post-translational protein modification by O-linked N-acetyl-glucosamine: Its role in mediating the adverse effects of diabetes on the heart. Life Sci 92:621–627. http://dx.doi .org/10.1016/j.lfs.2012.08.006.
- 31. Kawaguchi T, Niino Y, Ohtaki H, Kikuyama S, Shioda S. 2006. New

PKCδ family members, PKCδIV, δV, δVI, and δVII are specifically expressed in mouse testis. FEBS Lett **580**:2458–2464. http://dx.doi.org/10.1016/j.febslet.2006.03.084.

- Song HK, Hong SE, Kim T, Kim do, H. 2012. Deep RNA sequencing reveals novel cardiac transcriptomic signatures for physiological and pathological hypertrophy. PLoS One 7:e35552. http://dx.doi.org/10.1371 /journal.pone.0035552.
- Ricci M, Xu Y, Hammond HL, Willoughby DA, Nathanson L, Rodriguez MM, Vatta M, Lipshultz SE, Lincoln J. 2012. Myocardial alternative RNA splicing and gene expression profiling in early stage hypoplastic left heart syndrome. PLoS One 7:e29784. http://dx.doi.org/10.1371/journal.pone .0029784.
- 34. Steinberg SF. 2012. Cardiac actions of protein kinase C isoforms. Physiology (Bethesda) 27:130–139. http://dx.doi.org/10.1152/physiol.00009 .2012.