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Abstract: The importance of the right ventricle (RV) in pulmonary arterial hypertension (PAH) has been gain-

ing increased recognition. This has included a reconceptualization of the RV as part of an RV–pulmonary

circulation interrelated unit and the observation that RV function is a major determinant of prognosis in PAH.

Noninvasive imaging of RV size and function is critical to the longitudinal management of patients with PAH,

and continued understanding of the pathophysiology of pulmonary vascular disease relies on the response of

the RV to pulmonary vascular remodeling. Echocardiography, in particular the newer echocardiographic mea-

surements and techniques, allows easy, readily accessible means to assess and follow RV size and function.
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Pulmonary arterial hypertension (PAH) is characterized

by severe remodeling of distal pulmonary arterioles due

to a complex interplay between genetic and molecular fac-

tors.1,2 This remodeling is characterized by intimal hy-

perplasia, vasoconstriction,medial hypertrophy, and the de-

velopment of plexiform lesions, all of which contribute to

and result in higher pulmonary artery pressure. The prev-

alence of PAH is 7–15 individuals per million people.3,4 A

diagnosis of PAH is initially suggested by symptoms in-

cluding dyspnea, syncope, and exertional intolerance and

is usually evaluated first with echocardiography.5 Echocar-

diography may suggest elevated pulmonary artery pres-

sures (PAPs) and help formulate a working hypothesis

regarding the etiology of the presumed pulmonary hyper-

tension (PH), but right heart catheterization remains es-

sential to provide final hemodynamic classification of PH

and, with that knowledge in hand, to guide appropriate

World Health Organization (WHO) PH group–specific

therapy.6 Once the diagnosis of PAH is established (mean

PAP ≥ 25 mmHg and pulmonary capillary wedge pres-

sure ≤ 15 mmHg), most clinicians rely on a combination

of frequent clinical evaluations and echocardiography to

follow therapeutic response and to give insight into the

effects of elevated PAP on the structure and function of

the right ventricle (RV). The right ventricle’s adaptation or

maladaptation to the increased afterload is often a sign of

the severity of PH.7

The relevance of the relationship between the RV and

the pulmonary circulation in PAH has been gaining in-

creased recognition.8 As a pump, the RV generates the

same stroke volume as the left ventricle (LV) with one-

fourth the stroke work because of the lower resistance of

the normal pulmonary vasculature.9 The RV is thin walled,

with the free wall measuring 2–5 mm, and contains one-

sixth the muscle mass of the LV.9 It is a crescent-shaped

chamber with a high capacitance and a greater ability to

handle changes in preload than in afterload. When chroni-

cally exposed to increased afterload, the RV can adapt with

myocardial hypertrophy, since increase in wall pressure

leads to increase in wall stress that, by way of LaPlace’s

law, can be tempered by increased wall thickness. However,

maladaptive changes can subsequently occur that lead to
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RV dilation and a decreased contractility.7 Concomitant

with the pressure burden, metabolic shifts, neurohormonal

signal alterations, ischemia, oxidative stress, and inflam-

mation have been proposed to adversely affect the RV in

PAH and may play a role in the development of RV dys-

function.10 Ultimately, RV remodeling and RV dysfunc-

tion have been associated with a poor prognosis, and RV

failure is a leading cause of death in PAH.10,11

With the advances made in echocardiographic tech-

niques, in particular 3-dimensional (3D) echocardiogra-

phy and speckle-tracking right ventricular (RV) strain, RV

imaging by transthoracic echocardiography (TTE) has im-

proved considerably, enabling the acquisition of accurate

assessment of RV function. Echocardiography is also more

affordable for serial testing and more universally available

than more advanced cardiac imaging tests such as cardiac

magnetic resonance imaging (MRI) and positron emis-

sion tomography. In this review of using echocardiogra-

phy to follow the RV in the setting of PAH, we outline the

ability of Doppler, 2-dimensional (2D), and 3D echocardi-

ography to assess RV structure and function, and we pro-

pose that echocardiography will remain the mainstay in

the evaluation of the RV in PAH throughout patient man-

agement in developed and developing countries.

THE ROLE OF ECHOCARDIOGRAPHY

IN THE DIAGNOSIS OF PAH

Doppler echocardiography represents the most accessible

screening tool for PAH12-14 with an estimation of the RV

systolic pressure (RVSP). The RVSP is calculated from

Bernoulli’s principle on the basis of the velocity of the

tricuspid regurgitant (TR) jet (4v2, where v is the maxi-

mum velocity of the tricuspid valve regurgitant jet, plus

the estimated right atrial [RA] pressure). Recognizing that

the RVSP measurement is only an estimate and subject to

error,15 the measurement should be interpreted in context

of the information on the echocardiogram as a whole. In a

meta-analysis, Janda and colleagues16 showed only mod-

est sensitivity and specificity for the use of peak TR jet

velocities to estimate the RVSP, in combination with RA

pressures, to diagnose PH (sensitivity of 83% and specific-

ity of 72%). In addition, Rich and colleagues15 have shown

the tendency for misclassification of pressures by TR jet

velocity with both underestimation and overestimation of

pulmonary artery systolic pressures.

On the other hand, even when the estimated RVSP is

normal, other echocardiographic parameters may suggest

RV dysfunction, which ultimately may be related to undi-

agnosed PAH (Table 1). No significant tricuspid regurgita-

Table 1. Right ventricular structural echocardiography parameters

Parameter Echo view Normal value

2D RV measurements

RV basal diameter, mm RV focused apical 4CH <41

RV midcavity diameter, mm RV focused apical 4CH <35

RV base-apex RV longitudinal diameter, mm RV focused apical 4CH ≤83

Indexed RV end-diastolic area in men, cm2/m2 RV focused apical 4CH ≤12.6

Indexed RV end-diastolic area in women, cm2/m2 RV focused apical 4CH ≤11.5

RVOT proximal, mm Parasternal short axis ≤35

RVOT distal, mm Parasternal short axis ≤27

RVOT wall thickness, mm Parasternal long or subcostal ≤5

3D RV measurements

Indexed RV end-diastolic volume in men, mL/m2 ≤87

Indexed RV end-diastolic volume in women, mL/m2 ≤74

RV EF, % ≥45

2D RA dimensions

Indexed RA volume in men, mL/m2 Apical 4CH 25 ± 7

Indexed RA volume in women, mL/m2 Apical 4CH 21 ± 6

Note: EF: ejection fraction; RA: right atrial; RV: right ventricular; RVOT: RV outflow tract; 2D: 2-
dimensional; 3D: 3-dimensional; 4CH: 4-chamber. The 2D RV normal values, 2D RA normal values, and
3D normal volumes are from American Society of Echocardiography guidelines.33
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tion (TR) or low/normal estimated RVSP has been noted

in 10%–25% of patients with PH, as the TR Doppler pro-

file may be insufficient to measure.6,17 Thus, specific eval-

uation for evidence of RV dysfunction is of paramount

importance if there is clinical suspicion of PH and should

prompt the clinician to pursue further clinical workup.

THE RELATIONSHIP BETWEEN THE RV

AND PROGNOSIS IN PAH

Many echocardiographic RV parameters have been shown

to be key determinants in the prognosis in PAH10 as the

RV adapts to the elevated pulmonary vascular resistance

(PVR), with poor adaptation significantly contributing to

mortality.18,19 Parameters that have correlated with an in-

creased mortality risk in PAH include evidence of right-

sided pressure overload with secondary abnormal RV sys-

tolic and diastolic function, the presence of pericardial

effusion, increased RA area indexed to height, increased

RV diameter, decreased tricuspid annular plane systolic

excursion (TAPSE), decreased Tei index, alterations in RV

free-wall strain, and decreased isovolumic contraction ve-

locity (IVCv).20-29 These are reflective of increasing RV

and RA size and decreased RV contractility. A thorough

discussion of how to obtain these parameters and the limi-

tations of each one are outlined below.

Interestingly, the presence of a mild-to-moderate peri-

cardial effusion has also long been associated with chronic

severe PAH30 and has consistently been shown to correlate

with increased mortality.20-23 The development of a pericar-

dial effusion in PAH is proposed to be the result of high

RA pressures from RV dysfunction. This subsequently in-

hibits lymphatic drainage via the thoracic duct and may

increase in proportion to the elevated RA pressure.

ASSESSMENT OF RV STRUCTURE

The differences between the RV and the LV include

structural, embryological, genetic, and neurohormonal re-

sponses.9,31,32 Structurally, the healthy RV is an anterior,

thin-walled, trabeculated, crescent-shaped structure with

a complex geometry that wraps around the ellipsoid LV

and has been delineated anatomically into the inlet, the

trabeculated apex, and the infundibulum. The RV con-

tracts in a peristolic (“bellows”) motion,9 which is the re-

sult of contraction from predominantly longitudinal mus-

cle fibers. The structure and orientation of the RV in the

anterior chest, as well as its unique shape, have made it

challenging to fully characterize the RV by 2D echocardi-

ography. The RV sits close to the anterior chest wall and

may be subject to poorer near-field resolution, and there is

no one echocardiographic view that is able to completely

visualize the whole of the RV. Thus, different probe orien-

tations are used to assess the RV in piecemeal fashion,

including the parasternal long- and short-axis views, the

RV inflow view, the apical 4-chamber view, and the sub-

costal views (Fig. 1).33

Figure 1 summarizes the segmental anatomy of the

RV in different echocardiographic views.34 To assess RV

size and volume, the American Society of Echocardiogra-

phy proposes the use of standard 2D size measurements

from parasternal short-axis and apical 4-chamber views

of the heart (Figs. 2, 3).33 However, these measurements

correlate poorly with 3D volumes obtained with echocar-

diography and are highly dependent on probe and pa-

tient positions35,36 and therefore have been the subject

of criticism of the true assessment of RV size.37 Use of 2D

methods, such as Simpson’s method of disks, underesti-

mates volumes of the RV because of the crescentic shape

of the RV.38 The size and shape of the RV are also intrinsi-

cally linked to those of the LV, and visual estimation of RV

size is often made relative to that of the LV.8 However,

qualitative measurements of the RV size and function have

wide interobserver variability, compared with quantitative

assessment.39

Over time in PAH, with the associated chronic after-

load elevation, the RV dilates. This is noted when an end-

diastolic RV area approximates or is greater than that of

Figure 1. Segmental anatomy of the right ventricle (RV), as
shown in representative echocardiographic views. The colors in-
dicate the different subdivisions of the interventricular septum.
AO: aorta; LA: left atrium; LV: left ventricle; RA: right atrium;
RVOT: right ventricular outflow tract. Adapted from Jiang34 with
permission from the publisher (copyright 1994, Lippincott Wil-
liams & Wilkins).
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Figure 2. Examples of 2-dimensional echocardiographic chamber dimensions and RV wall thickness. A, Parasternal long-axis view
and the proximal RVOT diameter. B, Basal parasternal short-axis view and the proximal RVOT diameter. C, Parasternal short-axis
view of the pulmonary bifurcation and the main PA measurement. The RVOT distal measurement is made in this view just above
the pulmonary valve. D, Right atrial volume in the apical 4-chamber view in end-systole when the RA has the largest area. E, RV
wall thickness, measured in the subcostal view at end-diastole. PA: pulmonary artery; RA: right atrium; RV: right ventricular;
RVOT: RV outflow tract.

Figure 3. RV dimension and area measurements in the apical 4-chamber view. A, Basal, midcavity, and longitudinal RV dimensions.
B, The upper panel shows an RV with normal systolic function and a normal FAC. The lower panel shows a markedly dilated RV with
decreased function and an abnormal FAC. The calculation of percentage FAC is [(area at ED − area at ES)/area at ED)] × 100. ED: end-
diastole; ES: end-systole; FAC: fractional area change; RV: right ventricle.



the LV in the apical 4-chamber view (Fig. 4A, 4B). Ghio
and colleagues26 showed that patients with an RV end-

diastolic diameter greater than 36.5 mm, measured on the

parasternal long-axis view, had a higher mortality than pa-

tients with an RV end-diastolic diameter of up to 36.5 mm,

with a hazard ratio of 2.64. Similarly, increased RA area in-

dexed to height, a reflection of high atrial pressures, has

been shown to predict increased mortality.20,40

RV WALL THICKNESS

Chronic RV pressure overload seen in PAH can induce

RV hypertrophy (RVH), which is an adaptive change to

the increased afterload. The increased RV thickness is a

reflection of an increase in total RV mass. Using subcostal

views of the RV, an end-diastolic free-wall thickness greater

than 5 mm indicates hypertrophy and remodeling in re-

sponse to chronically elevated afterload.41 No studies have

shown survival benefit or hazard with increased RV hyper-

trophy in PAH. Ghio and colleagues42 looked at RV wall

thickness in a small study of 59 patients with severe PH

(mean PAP = 54 mmHg and PVR = 14 Wood units) from

idiopathic PAH, followed these patients for an average of

52 months, and found that the mean RV free-wall thick-

ness in this group was 3.8 mm. Although in the general

population and in heart failure with preserved ejection frac-

tion (EF), RVH has been found to be predictive of worse

outcomes,43,44 in idiopathic PAH there was no significant

association with survival or mortality based on wall thick-

ness. However, the finding of normal wall thickness in

severe PAH suggests that there may be a predominance of

maladaptive RV remodeling or a mix of adaptive and mal-

adaptive remodeling responses.12

ABNORMAL INTERVENTRICULAR WALL

MOTION AS A SIGN OF VENTRICULAR

INTERDEPENDENCE

Despite the differences between the LV and the RV, their

functions are not independent of each other.45 The RV

has a critically important anatomic and physiologic inter-

dependence with the LV that must be understood to ap-

preciate the effects of RV dysfunction and failure. Ana-

tomically, the RV shares the septum with the LV, with

attachments at the anterior and posterior septum; has mu-

tually encircling epicardial fibers; and is jointly enclosed

within the intrapericardial space.35 This interdependence

is evident in many cardiac disease processes, including re-

strictive and constrictive pathophysiology.46 With RV pres-

sure or volume overload, a bowing and flattening of the in-

terventricular septum (IVS) toward the LV is noted (Fig. 4C;
Video 1, available online). A greater degree of septal shift

occurs toward end-systole in chronic pressure overload.

RV volume overload may also result in septal flattening

and shifting of the IVS, predominantly during diastole

and especially toward end-diastole. This leftward bowing

of the IVS contributes to decreased LV filling and a reduc-

Figure 4. Two-dimensional echocardiography of RV and LV size
and ventricular interdependence. A, Apical 4-chamber view show-
ing an enlarged RV, where the RV is larger than the LV. B, Par-
asternal long-axis view with an enlarged RV and bowing of the
septum into the LV chamber. C, Flattening of the ventricular
septum, forming a D-shaped short-axis LV appearance. D, Rep-
resentation of the end-diastolic eccentricity index, which is the
ratio between the LV anteroposterior dimension (D1) and LV sep-
tolateral dimension (D2). LV: left ventricle; RA: right atrium; RV:
right ventricle.

Video 1. Image from a video, available online, showing an exam-
ple of severe right ventricular volume and pressure overload with
flattening of the interventricular septum throughout the cardiac
cycle.
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tion in stroke volume. The ratio of the end-diastolic antero-

posterior distance to the septal-lateral distance on short-

axis views of the LV at end-diastole is referred to as the LV

eccentricity index, and a ratio greater than 1 is indicative

of RV overload (Fig. 4D).47 Physiologically, with RV dila-

tion and a septum shift leftward, the RV loses the normal

LV septal contractile force’s contribution to RV stroke work,

amounting to approximately one-third of the work. This

septal flattening may in turn negatively affect LV filling

and RV perfusion from decreased peak LV pressures.9

RV FUNCTION

As discussed above, survival in PAH and the severity of

symptoms are strongly associated with RV function.48 His-

torically, since the RV has been so difficult to visualize by

2D echocardiography, numerous ways were developed to

assess RV function (Table 2). The traditional surrogate

measures of RV performance are fractional area change

(FAC), which is defined as [(RV end-diastolic area − RV

end-systolic area)/RV end-diastolic area] × 100 and mea-

sured in the apical 4-chamber view; TAPSE, which is the

M-mode measurement of the longitudinal displacement

of the tricuspid annulus; and RV myocardial performance

index (RV-MPI), which is the ratio of total isovolumic time

to ejection time. Newer 2D echocardiographic methods to

quantify RV function include the RV free-wall longitudi-

nal systolic tissue velocity (S′), measured with pulse-wave

or color Doppler tissue imaging (DTI); the first derivative

of RV pressure (dP/dtmax); IVCv; and RV strain imaging.

The measurement of RV FAC is demonstrated in Fig-

ure 3. A good correlation has been observed between RV

FAC and RVEF, and it appears to be the 2D measure of

RV function that best correlates with RV systolic function

measured on cardiac MRI.49,50

TAPSE assesses longitudinal RV function through the

use of the M-mode in the apical 4-chamber view (Fig. 5A).
A focus on quantitative measures of RV function has cen-

tered on estimating the longitudinal shortening, or base-

to-apex movement, of the RV, since this motion has been

presumed to contribute more to the RV stroke volume

than circumferential shortening.51 TAPSE has been shown

to be a reliable predictor of prognosis in PAH and a mea-

sure of RV function, with a value of less than 18 mm pre-

dicting mortality from PAH.25 Acquisition of TAPSE is an-

gle dependent and preload and afterload dependent. Some

concern has been raised about the accuracy of TAPSE

when compared with EFs obtained with cardiac MRI, as

TAPSE represents only basal RV systolic function and

therefore is not reflective of global function as well as be-

ing influenced by passive translational or tethering forces.50

Forfia and colleagues25 evaluated TAPSE in a prospec-

tive study of 63 patients with PAH. Patients with TAPSE

no greater than 1.8 cm had a survival estimate of 50% at

2 years, compared with 88% 2-year survival in patients

with TAPSE greater than 1.8 cm.25 In all, TAPSE is like-

ly the most widely used and reproducible technique to

follow RV function, although the timing of the deteriora-

tion in TAPSE relative to the onset of RV failure is ill

defined.52

The RV-MPI, also known as the Tei index, incorpo-

rates elements of both systolic and diastolic phases in the

assessment of global ventricular function (Fig. 5B ). The
Tei index is defined as the sum of the isovolumic con-

traction and the isovolumic relaxation times divided by

ejection time.53 These measurements can be obtained on

either DTI of the tricuspid annulus or pulsed-wave Dopp-

ler imaging of the RV outflow for the ejection time and

from either tricuspid valve inflow or regurgitation for the

tricuspid valve opening time. Values greater than 0.55

by DTI and greater than 0.40 by pulsed-wave Doppler

reflect RV dysfunction.37 The Tei index correlates well

with RVEF54 and is less affected by heart rate or loading

conditions, thereby making it more reproducible. In a se-

ries of 53 patients studied by Yeo and colleagues,24 a Tei

index cut-off value of at least 0.83 was associated with

decreased 1-, 2-, and 5-year survival of 71%, 28%, and 4%,

respectively, compared to a Tei index of less than 0.83,

which had 1-, 2-, and 5-year survival of 96%, 87%, and

73%, respectively.

Pulsed DTI of the tricuspid annulus records the peak

systolic tricuspid lateral annular velocity (S′; Fig. 5C), which
is a reflection of systolic longitudinal RV myocardial con-

tractility. An S′ of less than 9.7 cm/s is associated with

abnormal RV contractility, and S′ has been shown to be

potentially useful in the early detection of RV dysfunc-

tion.12,55 The S′ is inversely related to PVR and correlates

with RVEF.56 Acquisition is limited by angle dependence

and tethering effects, similar to TAPSE, as this measure-

ment is taken at the same angle and is focused on the

same lateral segment of the tricuspid annulus as TAPSE.

The dP/dtmax as the RV pressure changes by 12–

15 mmHg (depending on the measurement of velocities

from 1 to 2 m/s or from 0.5 to 2 m/s) is a useful measure

in the assessment of RV systolic function and contractility

(Fig. 5D).57 This index can be noninvasively estimated by

continuous-wave Doppler echocardiography using TR.58

However, the Doppler-derived dP/dtmax has not been used

routinely as a clinical index because it depends on preload

and is sensitive to the incident angle. The dP/dtmax is in-

dependent of afterload. Some investigators contend that

34 | RV echo in PAH Harrison et al.
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dividing the derivative of the RV pressure by the maximum

pressure (dP/dtmax) is a more accurate measure of RV

contractility because it does not have the load- and angle-

dependent features.59

The IVCv is the peak velocity by DTI measurement at

the level of the tricuspid annulus that is taken during iso-

volumic contraction, a period in the cardiac cycle in early

systole when the RV contracts and pressures rise acutely

without any change in ventricular volume (a brief period

after the tricuspid valve is closed and before the pulmonic

valve is open). It is the velocity deflection seen just before

the S′ deflection on DTI. This contractility is relatively

preload and afterload independent and may reflect a more

global ventricular contractility.60 Ernande and colleagues28

found IVCv to be an independent predictor of mortality

in PAH by multivariate analysis, with a 1-year survival of

95% if IVCv exceeds 9 cm/s and 80% if it does not, with

an associated hazard ratio of 3.68.

FUTURE DIRECTIONS OF RV ASSESSMENT

As acquisition of RV physiology improves and our under-

standing of RV function changes, the aforementioned de-

scriptions of RV function may become obsolete. Looking

at the movement of one side of the tricuspid annulus and

measuring DTI from this region may not be as valuable

once RV strain and 3D RVEF become more advanced and

adopted.61 However, many echocardiographic laboratories

are currently using the conventional measures along with

Figure 5. Surrogate echocardiographic markers of right ventricle (RV) function. A, Tricuspid annulus plane systolic excursion
(TAPSE). M-mode cursor placed through the RV apex to the lateral tricuspid annulus in the apical 4-chamber view for the purpose of
measuring the distance traveled by the annulus in centimeters from end-diastole to end-systole. Abnormal TAPSE of 1.3 cm is noted
by cross-hatching. B, RVMPI (Tei index). Top, representation of the two ways to calculate RVMPI: on tissue Doppler and on pulsed-
wave Doppler. Bottom, isovolumic contraction and relaxation times (IVCT and IVRT, respectively) and ejection time (ET), where right
ventricular myocardial performance index (RVMPI) = (IVCT + IVRT)/ET. C, Doppler tissue imaging (DTI) of the tricuspid annulus
after pulsed-wave interrogation of the lateral wall of the tricuspid annulus. These measurements can be made after high-frame-rate
acquisition with color-coded Doppler offline (not shown). IVCv: isovolumic contraction velocity; S′: highest systolic velocity. D: Rate of
pressure rise in the RV, or the dP/dT. On the ascending limb of the continuous Doppler image of the tricuspid regurgitation jet, the
time for the velocity to increase from 1 to 2 m/s is measured, and the dP/dT is 12 mmHg/time in seconds.
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the newer methods described below for complete RV echo-

cardiographic analysis.62

RV STRAIN

Advances in echocardiographic evaluation of the RV have

improved the ability to assess RV strain. Strain is a mea-

surement of tissue deformation as the myocardium con-

tracts in systole as a result of sarcomere shortening. The

myocardial tissue deforms as the myocardial tissue changes

3D shape, with longitudinal shortening, circumferential

shortening, and radial thickening. This deformation re-

sults in a smaller RV cavity and forward ejection of blood

from the ventricle. We describe this myocardial deforma-

tion as strain, the percent change from the initial length

in end-diastole or onset of the cardiac cycle.63 Longitudi-

nal shortening resulting in a negative strain can be mea-

sured with DTI in the apical 4-chamber view, and circum-

ferential shortening strain, which is also a negative strain,

is obtained in the short-axis view but is less standardized

than longitudinal strain in the acquisition methods. Color

DTI strain is limited by different ranges of “normal” pro-

vided by different echocardiogram vendors and is depen-

dent on complex postprocessing, image acquisition, frame

rate, and angle of acquisition.

Speckle tracking is a technique where the unique

speckled back-scatter of the reflected ultrasound beam in

the myocardium is followed frame by frame.63 This is a

more reliable measure of RV strain than DTI64 and uses

algorithms that identify and follow speckles in the myo-

cardium on sequential frames, and strain values are de-

rived from this movement. Unlike color DTI, speckle

tracking is angle dependent, but it is dependent on im-

age quality and frame rate. This method also allows for

short-axis and long-axis strain measurement reliably.64

The normal and abnormal values still vary, depending on

the vendor providing the strain software, which makes

comparison between centers very difficult.61

Worsening of RV longitudinal strain has been associ-

ated with increased pulmonary artery pressures, decreased

TAPSE, worsened functional class, and increased mortality

from PAH (Fig. 6).65,66 RV strain has been shown to im-

prove with vasodilator therapy,67 and an improvement in

Figure 6. A, B, Velocity vector imaging showing normal (A) and abnormal (B) segmental patterns of longitudinal displacement,
velocity, and strain. LA: left atrium; LV: left ventricle; RA: right atrium; RV: right ventricle. Adapted from Sanz et al.37 with permission.
C, A severe reduction in RV free-wall systolic strain at follow-up (<−12.5%) was associated with a poor prognosis over 4 years of sub-
sequent follow-up (P = 0.002). D, An improvement in RV free-wall systolic strain by 5% was associated with a better survival over 4 years
of follow-up (P = 0.006). C and D are adapted from Hardegree et al.68 with permission.
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strain in response to therapy is predictive of a favorable

prognosis.68

3D ECHOCARDIOGRAPHIC ASSESSMENT

OF THE RV

Although RVEF is highly dependent on loading condi-

tions, it remains the most commonly used index of RV

contractility. Under normal conditions, RVEF is lower than

LVEF, because the RV chamber is larger than the LV cham-

ber, with a normal range of RVEF varying between 40%

and 76%, depending on the technique used.69 A decline in

RVEF is predictive of mortality and correlates with wors-

ening functional class.70,71

RV volumes acquired with 3D TTE correlate consider-

ably better than 2D TTE with the reference standard of

cardiovascular MRI, but in the past this has been limited

by suboptimal image quality.72 In patients with dilated

RV, the exclusion of the free wall from the imaging sec-

tor can lead to inaccuracy of RV volumes. Improvements

in image acquisition technology are making this less prev-

alent and have overcome many of the difficulties sur-

rounding 3D reconstruction of the RV. Currently, in order

to acquire 3D volumes of the RV, tracings of anatomical

landmarks are made at the end of diastole, and then, akin

to speckle tracking, these sites are followed over the course

of systole in order to reconstruct the 3D images. There

remains a need to obtain 3–6 cardiac cycles to create full-

volume imaging, and therefore this can be subject to in-

creased error in the setting of arrhythmia. However, this

method does facilitate imaging of the entire RV and can

therefore measure RV volumes. These volume acquisitions

and subsequent RVEF measurements have been validated

compared to in vivo volumes and function, have demon-

strated minimal interobserver variability (∼4%), and have

been found to be accurate and reproducible (Fig. 7A–
7C).73-75 Changes in RV function and volume based on

3D TTE correlate with symptoms in patients with PAH.

Interestingly, Leary and colleagues75 observed that RVEF

obtained with 3D TTE did not correlate well with TAPSE.

This likely reflects a limitation of TAPSE due to other in-

fluences on this parameter, such as LV function and respi-

ration.

The technique of knowledge-based reconstruction has

been applied to PAH in 3D echocardiography with some

success. In the published versions of knowledge-based

reconstruction in PAH, the technique involves the acqui-

sition of 2D images localized in 3D space by a magnetic-

field generator. A magnetic-field sensor is attached to the

echocardiographic transducer, and the specific anatomic

landmarks are identified and recorded by the user. A re-

construction algorithm uses these landmarks to generate

a 3D model by cataloging them against patients with simi-

lar pathologies (Fig. 7D, 7E).76 The generation of a 3D RV

model from 2D transthoracic echocardiographic has been

validated in vitro and against cardiac MRI in patients with

congenital heart disease.77,78 The RV end-diastolic volumes

and RVEF in patients with PAH obtained through this

technique correlate well with those seen in CMR.79

ECHOCARDIOGRAPHY AND RV

HEMODYNAMICS

To understand how and why the RV adapts to the changes

in the pulmonary circulatory system, one should take a

thoughtful look at RV hemodynamics, including the after-

load (PVR), preload (central venous pressure [CVP]), and

contractility, as assessed in invasive RV pressure-volume

loops or conceptualized in a calculated RV stroke-work

index.80 Just as worsening echocardiographic parameters

of RV function have correlated with a worse prognosis, so

have worsening cardiac hemodynamics indicative of the

struggling RV (RA pressure >15 mmHg and cardiac in-

dex < 2.0 L/min/m2).81

Doppler echocardiography can estimate the afterload

and preload of the RV and can help clinicians understand

the hemodynamic significance of any RV dysfunction.82

The estimation of CVP can be made by assessing the size

and collapsibility of the inferior vena cava (IVC) proximal

to the hepatic veins.83 An IVC that has a size greater than

2.1 cm and is also not collapsible by more than 50% sug-

gests an RA pressure higher than 15 mmHg (range: 10–

20 mmHg).84,85 The collapsibility, or “sniff test,” is as-

sessed on inspiration because the intrapleural pressure

drop leads to an increase in central venous return, a de-

crease in CVP, and an IVC that should collapse. The ca-

veat is that young patients may have dilated IVCs at

baseline and that assessment of high RA pressures can-

not be made on positive pressure ventilation, although

a collapsible IVC is indicative of low RA pressure on pos-

itive pressure ventilation. Afterload is most commonly eval-

uated as PVR, with PVR = (mean PAP − pulmonary cap-

illary wedge pressure)/cardiac output.86

Other measures of the right-sided pressures estimated

by Doppler echocardiography are noted in Table 3. Despite

the advances in the assessment of right-sided hemody-

namics noninvasively, right heart catheterization contin-

ues to be the gold standard to determine hemodynamic

parameters. However, some advocate a future time when

hemodynamic parameters will confidently be measured
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by noninvasivemethods, including echocardiography. It re-

mains unclear how current hemodynamics measurements

by echocardiography are influencing day-to-day clinical

practice.

RV CONTRACTILE RESERVE ASSESSED

BY ECHOCARDIOGRAPHY

The concept of using stress, whether during exercise or in-

duced pharmacologically, to evaluate ventricular contrac-

tile reserve or the ability to augment function is not new.

Most consistently, contractile reserve is evaluated in aortic

stenosis and low-flow, low-gradient conditions where the

reduced LV systolic function is the focus. However, this

framework is analogous in the RV and has been explored

in a few disease states, looking at the ability of the RV to

improve function as a favorable prognostic sign.105-108

Two recent studies have applied the idea of RV reserve

to PAH. Blumberg and colleagues109 took an invasive ap-

proach and looked at the ability to increase cardiac index

(and thus augmentable RV function) in 26 patients with

severe PH from PAH or inoperable chronic thromboem-

bolic pulmonary hypertension. In this study, patients with

right ventricle reserve, defined invasively as an increase in

RV cardiac index with exercise, had a better prognosis.

Grünig and colleagues110 used a noninvasive approach

with Doppler echocardiography to assess RV contractile

reserve during exercise, as measured by an increase in pul-

monary artery systolic pressure (PASP) of at least 30mmHg.

Figure 7. A–C, Three-dimensional (3D) reconstructions from patients with a normal heart (A), idiopathic pulmonary arterial hyperten-
sion (iPAH; B), or connective tissue disease related pulmonary hypertension (ctd-PH; C), demonstrating apical rounding (asterisks)
and basal bulging (plus signs). Adapted from Leary et al.75 with permission. av: aortic valve; LV: left ventricle; mv: mitral valve; pv:
pulmonic valve; RV: right ventricle; tv: tricuspid valve. D, Transthoracic echocardiographic images with points placed to define
anatomic landmarks and borders of 3D model superimposed (yellow outlines): parasternal long-axis view (A), Parasternal short-axis
view at the level of the papillary muscles (B), RV inflow view (C), RV inflow-outflow view (D), standard apical 4-chamber view (E), and
focused RV apical view (F). Colors of points are as follows: red for RV endocardium, cyan for interventricular septum, green for RV
septal edge, violet for tricuspid annulus, blue for conal septum, orange for pulmonic annulus, brown for basal bulge, and light pink for
RV apex. E, 3D model of the RV at end-diastole, with endocardial points placed during multiplane initialization. F, Bland-Altman
analysis comparing TTE-derived measurements with cardiac magnetic resonance imaging (CMR) reference values for end-diastolic
volume (EDV). TTE: transthoracic echocardiogram. G, Scatterplot analysis comparing TTE-derived measurements with CMR reference
values for ejection fraction (EF). D–G are adapted from Bhave et al.79 with permission.
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Patients with the ability to augment PASP had 1-, 3-, and 4-

year survival of 96%, 92%, and 89%, respectively, com-

pared to survivals of 92%, 69%, and 48% in patients with

low contractile reserve.110

INTERNATIONAL ACCESS TO

ECHOCARDIOGRAPHY

On the basis of data from the Intersocietal Accreditation

Commission, the number of currently accredited adult

echocardiography sites in 2013 in the United States is ap-

proximately 5,000. However, worldwide access to echo-

cardiography remains limited in most developing coun-

tries because of the costs of the technique and the lack of

highly specialized personnel to perform it. Echocardiogra-

phy is portable and safe, uses a simple power supply, and

does not require large amounts of maintenance; these

characteristics make it the most suitable imaging tech-

nique in PAH for low-resource areas, especially those in

sub-Saharan Africa. Coincident with this is the fact that

more than 200 million people worldwide are infected with

schistosomiasis and that approximately 1% of those chron-

ically infected will develop PAH.111 This is also localized

to developing countries, particularly in sub-Saharan Af-

rica. Rheumatic heart disease and endomyocardial fibrosis

with subsequent PH are also common in these areas,112,113

further necessitating the spread of echocardiography into

these underserved areas (Fig. 8). Not only will a prolif-

eration of echocardiography in developing countries assist

in the diagnosis and characterization of PH, but it will

also increase our understanding of these epidemic disease

processes and form the basis of imaging and clinical re-

search.114

RELEVANCE OF RV IMAGING

BY ECHOCARDIOGRAPHY IN

CLINICAL DECISION MAKING

The American College of Cardiology/American Heart As-

sociation 2009 Expert Consensus Document on Pulmonary

Hypertension and the recent Fifth World Symposium on

PH recommend basing the initial therapeutic decision for

PAH on vasoreactivity testing.6,115 Subsequent decisions

should be based on risk stratification of low- and high-risk

PAH patients based on clinical assessment, which may in-

clude WHO functional class, physical examination, and/

or echocardiography. The recognition of RV dysfunction,

Figure 8. Researcher performing echocardiography in an Afri-
can rural setting.

Figure 9. Our approach to RV assessment in echocardiography
is summarized. A measurement of size in the apical 4-chamber
view evaluating minor and major right ventricular (RV) dimen-
sions is reported, along with RV thickness from the subcostal
window. Surrogate measures of RV function routinely evaluated
include fractional area change (FAC), tricuspid annulus plane sys-
tolic excursion (TAPSE), myocardial performance index (MPI),
and systolic velocity (S′), with others utilized in research or in
times of measurement discrepancies. Comments about qualita-
tive RV wall motion and the relationship between right and left
ventricles, as evidenced by septal motion, are described.We highly
recommend use of RV strain and three-dimensional (3D) RV as-
sessment in all pulmonary arterial hypertension patients if the
capability exists within the clinical setting. Recommended routine
noninvasive hemodynamics that can be easily obtained include
right ventricular systolic pressure (RVSP), central venous pres-
sure (CVP), pulmonary artery acceleration time (PAAT), and pul-
monary vascular resistance (PVR).
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RA enlargement, and RV volume overload in PAH leads

one to characterize these patients as high-risk, which ne-

cessitates consideration of parenteral prostacyclins.6 With

patient outcomes closely tied to the fate of the RV, more

knowledge about the effect currently available therapies

have on RV dysfunction and investigating new therapies

targeting RV dysfunction appears warranted. Our model

for a noninvasive evaluation of the RV by echocardiogram

is shown in Figure 9.

CONCLUSION

PAH continues to be a very challenging disease to diag-

nose and manage. Echocardiography has a clear and vital

role in both the diagnosis and the management of this

disease, and with improved RV imaging, additional ways

will become available to evaluate RV structure and func-

tion. In particular, 3D echocardiographic imaging of the

RV and RV speckle tracking provide accurate and repro-

ducible measures of RV size and function that can be

routinely used in clinical practice. In addition, surrogate

markers of RV function have been validated against more

invasive and extensive assessments of RV performance,

such as nuclear ventriculography and cardiac MRI. Con-

tinuing advances in acquisition of RV imaging will in-

crease the ability of echocardiography to prognosticate and

potentially influence treatment options in PAH. These ad-

vances, lower cost, and worldwide availability make echo-

cardiography more attractive as the predominant imaging

modality in the longitudinal management of patients with

PAH.
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