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Fatigue reduces the complexity of knee extensor torque
fluctuations during maximal and submaximal intermittent
isometric contractions in man
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Endurance Research Group, School of Sport and Exercise Sciences, University of Kent, Chatham, UK

Key points

� Healthy physiological systems generate time series possessing complex structures, as seen for
example in heart rate variability, respiratory rate and gait.

� A loss of complexity in physiological time series has been associated with system dysfunction,
and this loss is a characteristic feature of torque output from the ageing neuromuscular system.

� We sought to determine the effect of neuromuscular fatigue on the complexity of knee extensor
torque output in healthy young humans performing repeated maximal and submaximal contra-
ctions.

� Fatigue resulted in a substantial loss of knee extensor torque complexity, with the noise in the
torque signal becoming increasingly Brownian in character.

� Complexity has been associated with system adaptability, and the fatigue-induced loss of
complexity, the physiological origin of which is obscure, may contribute to the inability to
sustain physical exercise.

Abstract Neuromuscular fatigue increases the amplitude of fluctuations in torque output during
isometric contractions, but the effect of fatigue on the temporal structure, or complexity, of these
fluctuations is not known. We hypothesised that fatigue would result in a loss of temporal
complexity and a change in fractal scaling of the torque signal during isometric knee extensor
exercise. Eleven healthy participants performed a maximal test (5 min of intermittent maximal
voluntary contractions, MVCs), and a submaximal test (contractions at a target of 40% MVC
performed until task failure), each with a 60% duty factor (6 s contraction, 4 s rest). Torque
and surface EMG signals were sampled continuously. Complexity and fractal scaling of torque
were quantified by calculating approximate entropy (ApEn), sample entropy (SampEn) and
the detrended fluctuation analysis (DFA) scaling exponent α. Fresh submaximal contractions
were more complex than maximal contractions (mean ± SEM, submaximal vs. maximal: ApEn
0.65 ± 0.09 vs. 0.15 ± 0.02; SampEn 0.62 ± 0.09 vs. 0.14 ± 0.02; DFA α 1.35 ± 0.04 vs. 1.55 ± 0.03;
all P < 0.005). Fatigue reduced the complexity of submaximal contractions (ApEn to 0.24 ± 0.05;
SampEn to 0.22 ± 0.04; DFA α to 1.55 ± 0.03; all P < 0.005) and maximal contractions (ApEn to
0.10 ± 0.02; SampEn to 0.10 ± 0.02; DFA α to 1.63 ± 0.02; all P < 0.01). This loss of complexity
and shift towards Brownian-like noise suggests that as well as reducing the capacity to produce
torque, fatigue reduces the neuromuscular system’s adaptability to external perturbations.
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Introduction

It is well known that neuromuscular fatigue (an
exercise-induced decline in maximal force-generating
capacity; Taylor & Gandevia, 2008) has both central and
peripheral components that can be identified by supra-
maximal motor nerve stimulation during and after a
maximal voluntary contraction (for review see Gandevia,
2001). Neuromuscular fatigue also has functional effects
on motor output during submaximal tasks. One of
these effects is to increase the variability in motor
output during isometric contractions (Furness et al. 1977;
Galganski et al. 1993). Classically, increased variability
is reflected in an increase in the standard deviation
(SD) or the coefficient of variation (CV) of force or
torque output (Galganski et al. 1993; Slifkin & Newell,
2000; Hunter & Enoka, 2003; Contessa et al. 2009). The
increase in force variability as fatigue progresses has
been suggested to be a consequence of alterations in
motor unit recruitment and/or discharge timing as task
failure approaches (Hunter & Enoka, 2003; Contessa et al.
2009). However, whilst the magnitude of fluctuations in
force or torque output has been heavily investigated, the
temporal structure or ‘complexity’ of these fluctuations
has received less attention. In this context, complex
time series produce irregular fluctuations resembling
non-linear chaos, whereas less complex signals produce
more regular/periodic fluctuations (Lipsitz & Goldberger,
1992).

Measures of complexity are derived from the field
of non-linear dynamics, and include metrics related to
information theory (such as approximate entropy, ApEn;
Pincus, 1991; and sample entropy, SampEn; Richman and
Moorman, 2000), which provide a measure of the apparent
randomness or regularity of a system’s output, and
measures of fractal scaling (such as detrended fluctuation
analysis, DFA; Peng et al. 1994, 1995). The latter can be
used to differentiate signals that are random (white noise),
statistically self-similar (pink or 1/f noise) or Brownian
in character, as well as identify long-term correlations
(Hausdorff et al. 1995; Goldberger et al. 2002a). It has
been suggested that self-similarity is a salient feature of
the spatial structure of a range of physiological systems,
most notably the vascular and respiratory trees (Glenny,
2011). Moreover, these ‘fractal’ structures are also evident
in physiological time series, as long-range correlations
are observed in heart rate (Yamamoto & Hughson, 1994;
Pikkujämsä et al. 1999), respiratory frequency (Peng et al.
2002; Schumann et al. 2010), and gait (Hausdorff et al.
1995, 2001). Thus, a variety of healthy physiological
systems produce outputs containing DFA α values >0.5
(white noise), but <1.5 (Brownian noise). A change in
these fractal structures (i.e. a shift from 1/f noise [α �1.0]
towards white or Brownian noise) has been associated

with system dysfunction and a variety of pathologies (see
Goldberger et al. 2002a for review).

The neuromuscular system is composed of ensembles
of interconnected components (e.g. motor cortical neuro-
nes, spinal motoneurons, muscle fibres, muscle afferents)
whose interactions produce complex patterns of force
output (Vaillancourt & Newell, 2003; Forrest et al. 2014).
A reduction in complexity and a change in fractal
scaling of force output (from pink towards Brownian
noise) have been frequently observed in healthy ageing
(Vaillancourt & Newell, 2003; Vaillancourt et al. 2003;
Challis, 2006; Sosnoff & Newell, 2008). Reductions in
complexity, especially when combined with an increase
in the amplitude of force fluctuations (Hunter et al. 2005),
imply a loss of system control (Lipsitz & Goldberger,
1992; Peng et al. 2009; Lipsitz, 2004; Manor & Lipsitz,
2013; Sejdić & Lipsitz, 2013) and a tendency for system
components to operate in increasing isolation (Pincus,
1994). In addition, it has been demonstrated that the
complexity of force output is dependent on the intensity of
the contractions, with complexity (measured using ApEn)
being highest at �30–50% MVC and declining as torque
requirements are increased (Slifkin & Newell, 2000). The
effect of neuromuscular fatigue on the complexity of
joint torque during isometric contractions is, however,
currently unknown.

Recently, Cashaback et al. (2013) observed a reduction
in the complexity of biceps brachii surface electro-
myogram (EMG) in the final third of exhaustive
submaximal isometric elbow flexion exercise, which
may translate to reduced complexity of torque output
through the process of excitation–contraction coupling.
In addition, because neuromuscular fatigue, by definition,
reduces MVC torque, a given submaximal target torque
will require an increasing fraction of the MVC torque
as fatigue develops. We would therefore predict that
fatigue will result in a reduction in complexity and a
move from pink (1/f) to Brownian noise during sub-
maximal contractions of the knee extensors, reflecting a
neuromuscular system that becomes less able to adapt
to external perturbations (Lipsitz & Goldberger, 1992;
Seely & Macklem, 2012). In the same vein, we would
predict that during maximal contractions, complexity
would initially be lower than during submaximal contra-
ctions, but that the rapid development of fatigue in this
situation (e.g. Burnley, 2009) would reduce complexity
still further. In order to quantify both the complexity of
torque output during contractions and the development
of central and peripheral fatigue, and provide sufficient
data for complexity and fractal scaling analyses (Lipsitz
& Goldberger, 1992), we used the intermittent isometric
contraction regime of Bigland-Ritchie et al. (1986).

The aim of the present study, therefore, was to determine
whether the complexity of knee extensor torque was

C© 2015 The Authors. The Journal of Physiology C© 2015 The Physiological Society



J Physiol 593.8 Loss of complexity in torque during fatiguing muscle contractions 2087

perturbed by neuromuscular fatigue, and to test the
following experimental hypotheses: (1) that for fresh
muscle, the knee extensor torque would be more complex
during submaximal contractions and would exhibit more
fractal-like scaling (DFA α �1.0); (2) that, compared to
the complexity of fresh contractions, neuromuscular
fatigue would result in a reduction in the complexity of
knee extensor torque during maximal and submaximal
isometric contractions; and (3) that the reduction in the
complexity of knee extensor torque would be accompanied
by a change in fractal scaling from pink (DFA α �1.0)
toward Brownian noise (DFA α = 1.5).

Methods

Ethical approval

Eleven healthy participants (10 male, 1 female; mean±SD:
age 25.0 ± 5.6 years; height 1.77 ± 0.05 m; body mass
78.6 ± 13.7 kg) provided written informed consent to
participate in the study, which was approved by the ethics
committee of the University of Kent, and which adhered to
the Declaration of Helsinki. Participants were instructed to
arrive at the laboratory rested (having performed no heavy
exercise in the preceding 24 h) and not to have consumed
any food or caffeinated beverages in the 3 h before arrival.
Participants attended the laboratory at the same time of
day (±2 h) during each visit.

Experimental design

Participants were required to visit the laboratory on
three occasions over a 2 week period, with a minimum
of 48 h between each visit. During their first visit,
participants were familiarised with all testing equipment
and procedures, and the settings for the dynamometer and
stimulator were recorded. During their second and third
visits, participants performed either a series of 30 inter-
mittent maximal isometric contractions, accompanied
by peripheral nerve stimulation (the ‘maximal test’; see
below) or a series of intermittent submaximal isometric
contractions until task failure, accompanied by peripheral
nerve stimulation (the ‘submaximal test’; see below).
The maximal and submaximal tests were presented in a
randomised order.

Dynamometry

During all visits, participants were seated in the chair
of a Cybex isokinetic dynamometer (HUMAC Norm;
CSMi, Stoughton, MA, USA), initialised and calibrated
according to the manufacturer’s instructions. Their right
leg was attached to the lever arm of the dynamometer,
with the seating position adjusted to ensure that the lateral

epicondyle of the right femur was in line with the axis of
rotation of the lever arm. Participants sat with relative hip
and knee angles of 85 deg and 90 deg, respectively, with full
extension being 0 deg. The lower leg was securely attached
to the lever arm above the malleoli with a padded Velcro
strap, while straps secured firmly across both shoulders
and the waist prevented any extraneous movement and
the use of the hip extensors during the isometric contra-
ctions. The seating position was recorded during the first
visit and replicated for each subsequent visit.

Peripheral nerve stimulation

An Ag/AgCl electrode (32 mm × 32 mm; Nessler
Medizintechnik, Innsbruck, Austria) coated in conductive
gel acted as the cathode, and was placed in the femoral
triangle, over the femoral nerve. The anode, a carbon
rubber electrode with adhesive gel (100 mm × 50 mm;
Phoenix Healthcare Products Ltd, Nottingham, UK), was
placed lateral to the ischial tuberosity, on the posterior
aspect of the leg. A constant-current, variable voltage
stimulator (Digitimer DS7AH, Welwyn Garden City, UK)
was used to deliver single (200 μm pulses) and doublet
stimuli (200 μm pulses, 10 ms interval) at 400 V. The
precise location of the cathode was established using
a motor point pen (Compex; DJO Global, Guildford,
UK), and determined based on the location giving the
largest twitch and greatest peak-to-peak amplitude of the
compound muscle action potential (M-wave) following
single stimulation at 100 mA.

Following establishment of the cathode location, single
stimuli were initiated starting at 100 mA, and the
stimulator current increased in steps of 20 mA until
there was no further increase in the measured twitch
torque or M-wave. Participants then produced an MVC,
and then subsequently reproduced 50% MVC. A single
pulse was delivered during the contraction at 50% MVC
in order to test whether there was any further increase in
the M-wave. If there was a decrease in the M-wave, the
current was increased again until the M-wave plateaued.
Once a plateau in the M-wave was obtained, the current
was increased to 130% of the plateau current (range
utilised 260–598 mA) to ensure supramaximality, and this
intensity was used for stimulation during the subsequent
tests.

Surface EMG

The EMG of the vastus lateralis was sampled using
Ag/AgCl electrodes (32 mm × 32 mm; Nessler
Medizintechnik, Innsbruck, Austria). Prior to attachment
of the electrodes, the skin of the participants was shaved,
abraded and then cleaned with an alcohol-soaked cotton
pad, in order to reduce impedance. Positioning of the
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electrodes was preceded by palpation of the muscle during
a manually resisted contraction, to outline its length and
belly. The electrodes were placed in a direction parallel to
the alignment of the muscle fibres over the belly of the
muscle. A reference electrode was placed on prepared skin
medial to the tibial tuberosity. The raw EMG signals were
sampled at 1 kHz, amplified (gain 1000; Biopac MP150,
Biopac Systems Inc., Goleta, CA, USA) and band-pass
filtered (10–500 Hz; Biopac MP150, Biopac Systems Inc.).

Protocol

All visits followed a similar pattern of data acquisition,
beginning with the instrumentation of the participants
and the (re-)establishment of the correct dynamometer
seating position and supramaximal stimulation response.
Participants then performed a series of brief (3 s) MVCs
to establish their maximum torque. The contractions
were separated by 60 s rest, and continued until three
consecutive peak torques were within 5% of each other.
Participants were given a countdown, followed by very
strong verbal encouragement to maximise torque. The
first MVC was used to establish the fresh maximal
EMG signal, against which the subsequent EMG signals
were normalised (‘Data analysis’; see below). The second
and third MVCs were performed with peripheral nerve
stimulation; at 1.5 s into the contraction, during a plateau
in torque, a doublet was delivered and a further doublet
delivered at rest 2 s after the contraction. The pulses super-
imposed on the contraction tested the maximality of the
contraction and provided the fresh voluntary activation,
while the pulses after the contraction established the
fresh potentiated doublet response (‘Data analysis’; see
below). All subsequent contractions with peripheral nerve
stimulation were conducted in this manner. Following
the final MVC, participants rested for 10 min, after which
they performed either the maximal or submaximal test.

Maximal test

A 5-minute all-out test, adapted from the test developed by
Burnley (2009), was performed by all participants during
their familiarisation visit and again during either their
second or third visit to the laboratory. The test consisted
of 30 intermittent MVCs, with a contraction regime of 6 s
work and 4 s rest (Bigland-Ritchie et al. 1986). Participants
were given feedback on their previous MVCs and were
encouraged to equal or exceed these values during the
first 2–3 contractions. Participants were also informed to
expect their torque to decrease by more than 50% during
the test, but to still produce a maximal effort during each
contraction despite this occurrence. During the test the
participants were very strongly encouraged to maximise
and maintain their torque, but were not informed of

the number of contractions remaining or the elapsed
time. The test was ended after the 30th contraction was
completed. During the test, peripheral nerve stimulation
was delivered every sixth contraction (i.e. at the end of
each minute).

Submaximal test

A test at 40% MVC was performed by all participants
during either their second or third visit to the laboratory.
The target torque at 40% MVC was determined from
the MVCs measured at the start of the visit. Participants
were instructed to match their instantaneous torque
with a target bar superimposed on the display in front
of them and were required to continue matching this
torque for as much of the 6 s contraction as possible.
The test was conducted until task failure, the point at
which the participant failed to reach the target torque
on three consecutive occasions, despite strong verbal
encouragement. Participants were not informed of the
elapsed time during the test, but were informed of each
‘missed’ contraction. During the test, participants were
required to perform an MVC, accompanied by peri-
pheral nerve stimulation, every sixth contraction (i.e.
at the end of each minute). After the third missed
contraction, participants were instructed to immediately
produce an MVC, which was accompanied by peripheral
nerve stimulation.

Data acquisition

Data were acquired from all peripheral devices through
BNC cables connected to a Biopac MP150 (Biopac
Systems Inc.) and CED Micro 1401-3 (Cambridge Electro-
nic Design, Cambridge, UK) interfaced with a personal
computer. All signals were sampled at 1 kHz. The data
were collected in Spike2 (Version 7; Cambridge Electronic
Design).

Data analysis

All data were analysed using code written in MATLAB
R2013a (The MathWorks, Natick, MA, USA). The data
analysis focused on three specific areas: (1) basic measures
of torque and EMG; (2) measures of central and peripheral
fatigue; and (3) the variability and complexity of the torque
output.

Torque and EMG. The peak and mean torque for each
contraction were determined for both the maximal and
submaximal tests. The mean torque was calculated from
the steadiest 5 s of each contraction, i.e. the 5 s with the
least variation. To establish the point of task failure the
mean torque recorded during the first five contractions
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(i.e. during the first minute of the test, before the MVC)
was calculated. Task failure was deemed to have occurred
when the mean torque recorded during three consecutive
contractions was more than 5 N m below the mean torque
of the first five contractions, with the first of these contra-
ctions being considered the point of task failure.

The EMG output from the vastus lateralis for each
contraction was full-wave rectified. The average rectified
EMG (arEMG) was then calculated and normalised
by expressing the arEMG as a fraction of the arEMG
obtained during an MVC from the fresh muscle preceding
commencement of the maximal and submaximal tests.

Central and peripheral fatigue. The potentiated doublet
torque, the decline of which was our measure of peri-
pheral fatigue, was calculated as the peak torque attained
following doublet stimuli at rest between contractions.
The superimposed doublet torque was calculated as
the increment in torque immediately following doublet
stimuli during the contraction. Voluntary activation was
determined using the twitch interpolation technique
(Belanger & McComas, 1981; Behm et al. 1996), and was
calculated as:

Voluntary activation (%)

= 1 −
(

superimposed doublet

potentiated doublet

)
× 100 (1)

where the superimposed doublet was that measured
during the contraction of interest and the potentiated
doublet was measured at rest 2 s after the contraction.

Variability and complexity. All measures of variability
and complexity were calculated using the steadiest 5 s
of each contraction. The amplitude of variability in the
torque output of each contraction was measured using the
SD and CV. The SD provides a measure of the absolute
amount of variability in a time series, while the CV
provides a measure of the amount of variability in a time
series normalised to the mean of the time series. The
temporal complexity of these fluctuations was examined
using a cluster of time domain analyses as recommended
by Goldberger et al. (2002b). ApEn and SampEn were
used to estimate the complexity of torque output, while
DFA was used to estimate the noise colour and temporal
fractal scaling. The calculation of these statistics is briefly
described below.

The ApEn statistic (Pincus, 1991) quantifies the negative
natural logarithm of the conditional probability that a
template of length m (set at 2) is repeated during the
time series. Matching templates that remain arbitrarily
similar (i.e. within the tolerance, r, set at 0.1SD; Pincus,
1991; Forrest et al. 2014) are then counted; the number
of matches to the ith template of length m is designated

Bi. Then the number of these matches that remain similar
for the m + 1th point is counted; this number for the ith
template is designated Ai. The conditional probability that
the template including the m + 1th data point matches
given that the template of length m is then calculated
for each template match. The negative logarithm of the
conditional probability is calculated for all templates and
the results averaged (eqn (2)). If the data are highly ordered
then templates that are similar for m points are likely to
also be similar for m + 1 points. For such data sets the
conditional probability will therefore be close to 1, and the
negative log and therefore the entropy will be close to zero.
This will reflect low complexity and high predictability.

ApEn(m, r, N) = 1

N − m

N−m∑
i=1

log
Ai

B i
(2)

where N is the number of data points in the time series, m
is the length of the template, Ai is the number of matches
of the ith template of length m + 1 data points, and Bi

is the number of matches of the ith template of length m
data points.

To avoid the occurrence of ln(0) in the ApEn algorithm,
a template is allowed to match itself. Therefore each
template occurs at least once. A more recent algorithm,
‘sample entropy’ (SampEn, Richman & Moorman, 2000)
avoids this by taking the logarithm after averaging (as
shown in eqn (3)). This method avoids the introduction
of self-matching but moves away from entropy calculated
in the information theoretic sense. The SampEn thus was
calculated as:

SampEn(m, r, N)= − log

⎛
⎜⎜⎜⎝

N−m∑
i=1

Ai

N−m∑
i=1

B i

⎞
⎟⎟⎟⎠= − log

(
A

B

)
(3)

The fractal scaling of the torque time series was
assessed using detrended fluctuation analysis (DFA). In
this algorithm, the time series is first integrated and then
the vertical characteristic scale of the integrated time
series is measured. The integrated time series is divided
into boxes of length n and a least-squares line is fitted,
representing the trend in each box. The y coordinate of the
straight line segment of length n in the kth box is denoted
by yn(k), and the integrated time series is detrended by sub-
tracting the local trend in each box. For a given box size n,
the characteristic size of fluctuation for the integrated and
detrended time series is given by:

F (n) =
√√√√ 1

N

N∑
k=1

[y(k) − yn(k)]2 (4)

This computation is then repeated over all time scales or
box sizes (57 box sizes in total ranging from 1250 to 4
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data points) to provide a relationship between box size
and F(n). The slope of the log–log plot of n and F(n)
determines the scaling parameter α.

Statistics

One-way analysis of variance with repeated measures
was used to analyse the temporal profiles of potentiated
doublet torque and voluntary activation over the course
of the tests. Contrasts between end-test values and all
other time points were made using Bonferroni-adjusted
95% paired-samples confidence intervals. The variability
and complexity of the torque and EMG outputs were
analysed using averages from the first minute and final
minute before task failure of each test using two-way
ANOVAs with repeated measures (condition × time). Post
hoc Bonferroni-adjusted 95% paired-samples confidence
intervals were then used to identify specific differences.
All data are presented as means ± SEM, and results were
deemed statistically significant when P < 0.05.

Results

Preliminary measures

The peak instantaneous MVC torque recorded prior to the
maximal test was 235.6 ± 15.5 N m and the voluntary
activation achieved was 89.6 ± 2.0%; while the peak
instantaneous MVC torque recorded prior to the sub-
maximal test was 237.7 ± 14.8 N m and the voluntary
activation achieved was 90.6 ± 1.8%. Neither of these
values was significantly different (95% paired samples
confidence intervals (CIs): peak MVC torque, –11.9,
16.2 N m; voluntary activation, –1.4, 3.0%).

Torque and EMG

The mean torque profiles during the maximal test are
shown in Fig. 1A. Torque declined from a peak of �96%
MVC during the first contraction to an average of �44%
during the last three contractions of the maximal test.
The mean data for the arEMG of the vastus lateralis
for each contraction of the maximal test are shown
in Fig. 1B. The arEMG, normalised to a fresh pre-test
MVC, significantly decreased from 96.3 ± 2.5% (first
contraction) to 73.8 ± 5.8% (last contraction; CIs –38.2,
–9.7%).

The mean data for mean torque during each common
contraction and that at task failure in all participants
for the submaximal test are shown in Fig. 1A. The
target torque, as calculated from the pre-test MVCs,
was 95.1 ± 5.9 N m, and task failure occurred when
participants were not able to achieve this target torque,
despite continued effort. The mean torque achieved

during the MVC at task failure (87.4 ± 8.3 N m) was
not significantly different from the test target torque
(CIs –23.9, 8.4), indicating that participants required a
maximal effort to achieve the target torque. The mean
time to task failure was 17.3 ± 4.3 min, with a range
of 8.2–58.0 min. The arEMGs of the vastus lateralis for
each contraction of the submaximal test are shown in
Fig. 1B. The normalised arEMG significantly increased
from 44.4 ± 5.2% (first contraction) to 68.5 ± 5.6% (last
contraction; CIs 10.7, 37.5%; Table 1).

Global, peripheral and central fatigue

The potentiated doublet responses and voluntary
activation decreased as both tests progressed, indicating
the presence of peripheral and central fatigue, respectively.
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Figure 1. Torque and muscle activity during maximal and
submaximal contractions
Knee extensor torque (A) and average rectified EMG amplitude (B)
during the maximal test (open circles) and submaximal test (filled
circles). The penultimate data point in the submaximal test
represents the last common contraction, whereas the final data
point represents task failure. Values are mean ± SEM.
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Table 1. Voluntary and stimulated torque, muscle activation and complexity during maximal and submaximal contractions

Maximal test Submaximal test

Fresh Test end Fresh Task failure

Variable
Peak MVC torque (N m) 235.6 ± 15.5 112.6 ± 10.9∗ 237.7 ± 14.8 109.2 ± 9.7∗

Potentiated doublet (N m) 105.3 ± 7.1 62.4 ± 8.6∗ 112.4 ± 7.9 70.3 ± 10.0∗

Voluntary activation (%) 89.8 ± 2.0 68.6 ± 5.6∗ 90.6 ± 1.8 66.2 ± 4.7∗

Electromyogram
arEMG (%MVC) 96.3 ± 2.5 73.8 ± 5.8∗ 44.4 ± 5.2 68.5 ± 5.6∗

Variability
Standard deviation (N m) 8.5 ± 1.3 10.2 ± 1.3 2.6 ± 0.2† 7.1 ± 0.7∗

Coefficient of variation (%) 4.2 ± 0.5 8.2 ± 1.4∗ 2.8 ± 0.8† 8.1 ± 2.3∗

Complexity statistics
ApEn 0.15 ± 0.02 0.10 ± 0.02∗ 0.65 ± 0.09† 0.24 ± 0.05∗

SampEn 0.14 ± 0.02 0.10 ± 0.02∗ 0.62 ± 0.09† 0.22 ± 0.04∗

DFA α 1.55 ± 0.03 1.63 ± 0.02∗ 1.35 ± 0.04† 1.55 ± 0.03∗

Values are mean ± SEM. ∗Significantly different from ‘Fresh’ in the same condition. † Significantly different from ‘Fresh’ in the maximal
test (P < 0.05).

In the maximal test, the potentiated doublet response had
decreased by �40% at the end of the test (F5,10 = 69.98,
P < 0.001; Table 1, Fig. 2A); while voluntary activation
had fallen by �24% by the end of the test (F5,10 = 3.74,
P = 0.01; Table 1; Fig. 2B). During the submaximal test,
the potentiated doublet response had decreased by �37%
at task failure (F9,10 = 18.65, P < 0.001; Fig. 2A), while
voluntary activation had fallen by �27% at task failure
(F9,10 = 11.91, P = 0.004; Table 1, Fig. 2B).

Torque variability

The metrics associated with the variability in torque (SD
and CV) are presented in Table 1. The SD of torque
fluctuations was higher in the maximal test than the sub-
maximal test (F1,10 = 14.59, P = 0.003), and there was
a main effect of time (F1,10 = 42.55, P < 0.001). The CV
significantly increased over time in both tests (F1,10 = 95.7,
P < 0.001). The SD was significantly higher at the start of
the maximal test (8.4 ± 1.3 vs. 2.6 ± 0.3; CIs 2.6, 9.2 N m).
During the maximal test the standard deviation did not
increase (CIs –0.4, 3.8 N m), in contrast to the increased
CV (CIs 2.4, 6.0%). During the submaximal test there were
significant increases in both the SD (CIs 2.9, 6.1 N m) and
CV (CIs 3.5, 7.2%; Table 1).

Complexity

Maximal contractions were associated with smaller
ApEn (F1,10 = 34.79, P < 0.001) and SampEn values
(F1,10 = 33.50, P < 0.001) and a larger DFA α scaling
exponent (F1,10 = 37.22, P < 0.001; Fig. 3) than sub-
maximal contractions. In the first minute of contractions,
there was significantly lower complexity in the torque

output during the maximal test compared to the sub-
maximal test, as evidenced by lower ApEn (CIs –0.69,
–0.30; Fig. 3A) and SampEn (–0.68, –0.28; Fig. 3B); and
a significantly higher DFA α scaling exponent (0.13, 0.27;
Fig. 3C). These data are shown for comparison in Table 1.
The grand mean r2 values of the fits for the DFA were
0.98 ± 0.01 for the maximal test and 0.97 ± 0.01 for the
submaximal test.

There was a main effect of time for all three complexity
statistics (ApEn: F1,10 = 73.86, P < 0.001; SampEn:
F1,10 = 58.93, P < 0.001; DFA α F1,10 = 48.88, P < 0.001).
In the maximal test, there was a decrease in ApEn from
0.15 ± 0.02 (first minute) to 0.10 ± 0.02 (last minute;
CIs –0.08, –0.01; Fig. 3A) and SampEn (from 0.14 ± 0.02
(first minute) to 0.10 ± 0.02 (last minute); CIs –0.08,
–0.01; Fig. 3B). The DFA α scaling exponent significantly
increased from 1.55 ± 0.03 (first minute) to 1.63 ± 0.02
(last minute; CIs 0.04, 0.13; Fig. 3C).

Over the course of the submaximal test, ApEn decreased
(from 0.65 ± 0.09 (first minute) to 0.27 ± 0.04 (task
failure); CIs –0.55, –0.28; Table 1, Fig. 3A), as did SampEn
(from 0.62 ± 0.09 (first minute) to 0.22 ± 0.04 (task
failure); CIs –0.54, –0.25; Fig. 3B). The DFA α scaling
exponent increased (from 1.35 ± 0.04 (first minute) to
1.55 ± 0.03 (task failure); CIs 0.12, 0.28; Fig. 3C). Example
contractions from the beginning and end of the sub-
maximal test are shown in Fig. 4.

Discussion

The major novel finding of the present study was
that neuromuscular fatigue was associated with reduced
complexity in motor output, whether the muscle was
driven maximally or submaximally, during repeated
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isometric contractions. Our results also demonstrate that
when the muscle is driven maximally in the absence of
fatigue, the fluctuations present in knee extensor torque
are substantially less complex than when the muscle
is driven submaximally. As the complexity of torque
fluctuations decreased during submaximal contractions
performed to task failure, these fluctuations became
increasingly Brownian in character (DFA α = 1.50).
Finally, and in contrast to our hypothesis, we did not
observe 1/f noise (DFA α= 1.00) during fresh submaximal
contractions. Nevertheless, the torque signal possessed
long-range correlations and this fractal-like scaling of
torque changed as fatigue progressed.

Complexity during ‘fresh’ maximal and submaximal
contractions

It has been suggested that an inverted U-shaped
relationship exists between contraction intensity and the
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Figure 2. Central and peripheral fatigue during maximal and
submaximal contractions
Peripheral fatigue measured from the potentiated doublet torque (A)
and central fatigue measured from voluntary activation of the knee
extensors (B) for the maximal and submaximal tests (open and filled
symbols, respectively). Values are mean ± SEM.

complexity of torque output, with complexity peaking at
�40% MVC (Slifkin & Newell, 1999, 2000; Svendsen &
Madeleine, 2010). In light of this, we predicted that for
fresh muscle, torque output during submaximal contra-
ctions would be more complex than maximal contra-
ctions. Our data support this hypothesis: ApEn and
SampEn were both significantly greater during the initial
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symbols represent the maximal test, filled symbols represent the
submaximal test.
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contractions of the submaximal test, indicating a more
complex output at 40% MVC. Furthermore, the DFA
α scaling exponent was significantly lower during the
submaximal test. Slifkin & Newell (1999) reasoned that
complexity peaked at �40% MVC in their experiments
because, at least for muscles of the fingers, at this point
force could be modulated by either motor unit recruitment
or rate coding. Below 40% MVC increased force would
typically occur primarily through increased motor unit
recruitment; above that point increased discharge rates
would be the dominant means of force increase. An
intensity of 40% MVC thus represented the point of
maximal system adaptability and information transfer
(Slifkin & Newell, 1999). It is known, however, that
limb muscles, such as m. quadriceps femoris, are able
to modulate force output by motor unit recruitment over
a considerably greater range of intensities than muscles
of the hand (DeLuca et al. 1982). Thus, whether the
same inverted U-shaped relationship between contractile
intensity and torque complexity in the finger flexors holds
for the knee extensors is unclear. Nevertheless, the pre-
sent results confirm that submaximal contractions are
associated with greater complexity than MVCs.

Submaximal contractions rarely achieve tetanic rates of
discharge (Enoka & Fuglevand, 2001), meaning the force
exerted by a muscle will exhibit fluctuations due to sub-
maximal activation of motor units (Taylor et al. 2003).
As contraction intensity increases, a higher discharge
rate is required (Bigland & Lippold, 1954; Moritz et al.
2005). Such higher discharge rates are more likely to
result in output approximating a fused tetanus (Buller &
Lewis, 1965), which may result in a smoother, more peri-
odic torque output with fewer fluctuations. The greater
complexity during the submaximal test was in contrast
to the amount of variability, which was significantly lower
for submaximal contractions (Table 1). This confirms that
variability metrics assess different properties of the torque
signal to complexity and fractal scaling statistics (the

former characterises the amplitude of torque fluctuations
whereas the latter quantifies their temporal structure;
Lipsitz & Goldberger, 1992).

Fatigue-induced reduction in complexity during
submaximal contractions

During submaximal contractions performed to task
failure, central and peripheral fatigue developed
progressively, and the arEMG gradually increased (Fig. 1B,
Fig. 2, Table 1). These responses are typical of exhaustive
submaximal contractions, in which the neuromuscular
system compensates for the loss of peripheral output by
increasing central motor drive at the expense of a loss
of maximal torque-generating capacity (Bigland-Ritchie
et al. 1986; Hunter et al. 2009; Burnley et al. 2012).
The results of the present study demonstrate that the
complexity of submaximal torque output, measured using
ApEn, SampEn and DFA, also systematically falls as fatigue
progresses (Fig. 3, Table 1). Given that the compensatory
adjustments made by the neuromuscular system would
increase the number of activated motor units and their
firing frequency (Adam & De Luca, 2003, 2005), the
reduced complexity observed is at first sight surprising.
Indeed, the fall in complexity was in contrast to the rise
in variability in torque output (SD and CV, Table 1) as
exercise progressed. This increase in variability has been
observed consistently in previous work and has been
attributed to various properties of motor unit recruitment
and firing frequency for both fresh and fatiguing muscle
(Hunter & Enoka, 2003; Contessa et al. 2009; Missenard
et al. 2009). However, complexity has been shown to
decrease as the intensity of muscle contractions increases
from �40% MVC to the maximum attainable torque (see
above). Functionally, fatigue reduces the MVC torque and
thus systematically increases the relative demand of a sub-
maximal task, which might explain why complexity falls as

50 N.m

First minute Task failure

ApEn        0.99
SampEn   0.96
DFAα 1.10

ApEn        0.30
SampEn   0.29
DFAα 1.43

Figure 4. Raw torque output from the submaximal test
The data represent the second contraction performed (from 10 to 16 s – ‘First minute’) and the contraction at task
failure (from 500 to 510 s – ‘Task failure’) at 40% MVC. The complexity metrics associated with each contraction
are given, showing the reduced complexity (lower ApEn and SampEn values) and change of fractal scaling (DFA α

increasing towards 1.5) at task failure.
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an increasing proportion of the motor unit pool is engaged
in the task.

The DFA demonstrated that reduced complexity during
the submaximal test was also associated with a change
in the fractal scaling of torque as fatigue developed.
We hypothesised that fresh submaximal contractions at
40% MVC would produce pink (1/f) noise, and that this
output would become Brownian as fatigue developed. This
hypothesis was only partially supported, since the DFA
α scaling exponent was �1.35 at the beginning of the
contractions and rose to �1.55 at task failure. The latter
value approximates Brownian noise (α = 1.50), whereas
the former value, whilst representing output possessing
long-term correlations, cannot be described as pink noise.
Nevertheless, these results suggest that fatigue is associated
with a change in fractal scaling in the torque signal
(Brownian noise being inherently less complex than 1/f
noise; Goldberger et al. 2002a). Such a change, and more
generally the loss of complexity, has not been previously
observed in the output of fatiguing muscle. Reduced
complexity in torque output is, however, often observed
in motor output in ageing (Vaillancourt & Newell, 2003;
Vaillancourt et al. 2003; Challis, 2006; Sosnoff & Newell,
2008).

The ‘loss of complexity’ hypothesis in ageing first
proposed by Lipsitz & Goldberger (1992), and much
studied since (for review see Manor & Lipsitz, 2013),
postulates that healthy physiological systems produce
inherently complex temporal outputs. In this context,
complex fluctuations in output allow a system to explore
a variety of control solutions (that is, it is adaptable),
whereas a loss of complexity reduces this exploratory
freedom (Peng et al. 2009; Stergiou & Decker, 2011), with
system components becoming increasingly isolated and
less responsive to other inputs (Pincus, 1994). The pre-
sent work extends the loss of complexity hypothesis to
the neuromuscular fatigue process in otherwise healthy
young humans. Yet the physiological origin of the loss of
knee extensor torque complexity is not clear, since both
central and peripheral fatigue was observed. Nevertheless,
a loss of torque complexity must, by definition, be the
result of mechanisms directly affecting the output of the
motor unit pool. For example, the fall in the force output of
fatiguing motor units, consequent to metabolite-mediated
peripheral fatigue (Allen et al. 2008), may have
contributed to the less complex torque profile as contra-
ctions progressed. Additionally, reduced responsiveness
of repetitively activated motoneurones to increasing
excitatory input (Johnson et al. 2004; Taylor & Gandevia,
2008) could result in either no change or diminished
motor unit firing rate, further reducing the complexity
of the torque signal. At the same time, recruitment of
fresh higher-order motor units could increase targeting
error and hence the coefficient of variation of torque
output (Hunter & Enoka, 2003; Contessa et al. 2009).

The net result would be a neuromuscular system that
is unable to adjust torque output to match the required
target as rapidly as in the absence of fatigue (Fig. 4). Thus,
task failure, which often occurs at apparently submaximal
levels of muscle activity (Fig. 1B; Dideriksen et al. 2011)
and, for sustained contractions, with a significant torque
‘reserve’ (e.g. Hunter et al. 2004; Klass et al. 2008), may, in
part, be a failure of the neuromuscular system to adapt to
increasing task demands wrought by fatigue, rather than
a failure of neuromuscular capacity.

Fatigue-induced reduction in complexity during
maximal contractions

During the maximal test, central and peripheral fatigue
developed rapidly, and torque fell systematically as the
MVCs progressed (Figs 1 and 2). Despite the relatively
low complexity of these contractions in comparison to
submaximal exercise, a reduction in complexity was still
observed as ApEn and SampEn decreased and DFA
α increased (Fig. 3). This suggests that the torque
signal became smoother as the contractions progressed,
although, as with the submaximal contractions, torque
variability (measured as the CV) increased during the
maximal test. These apparently divergent results have been
discussed above, but it is important to note that in this
particular test there was no target torque – subjects simply
produced the maximal attainable torque over each 6 s
contraction. In this regard, measures of variability may
be somewhat misleading as they quantify the inability to
reach a stable plateau in torque during each contraction
rather than the variance around a stable mean torque.
Stated differently, the loss of complexity during the sub-
maximal test appears to reflect a loss of motor control in
achieving a required target, whereas the loss of complexity
in the maximal test seems to be directly related to the loss
of torque-generating capacity. Thus, peripheral fatigue
(Fig. 2A), as well as the reduced motoneurone firing
frequency that accompanies fatiguing maximal contra-
ctions (Marsden et al. 1971; Bigland-Ritchie et al. 1983),
may have resulted in an already relatively regular knee
extensor torque time series becoming even more so as
fatigue developed.

Conclusion

The performance of fatiguing maximal and submaximal
isometric contractions of the knee extensors resulted
in a progressive decrease in maximal voluntary torque
that was accompanied by a significant reduction in the
structural complexity of torque output. Fresh maximal
contractions were associated with significantly lower
complexity than submaximal contractions performed at
40% MVC. As the submaximal contractions progressed,
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neuromuscular fatigue reduced the complexity of motor
output and resulted in a change in fractal scaling, leading
to Brownian-like noise in the torque signal at task
failure. The reduced complexity observed suggests that
the impact of neuromuscular fatigue is not limited to a
decrease in torque-generating capacity, but also affects
the adaptability of the neuromuscular system to external
perturbations.
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Pikkujämsä SM, Mäkikallio TH, Sourander LB, Raiha IJ,
Puukka P, Skytta J, Peng C-K, Goldberger AL & Huikuri HV
(1999). Cardiac interbeat interval dynamics from childhood
to senescence: comparison of conventional and new
measures based on fractals and chaos theory. Circulation
100, 393–399.

Pincus SM (1991). Approximate entropy as a measure of
system complexity. Proc Natl Acad Sci U S A 88, 2297–2301.

Pincus SM (1994). Greater signal regularity may indicate
increased system isolation. Math Biosci 122, 161–181.

Richman JS & Moorman JR (2000). Physiological time-series
analysis using approximate and sample entropy. Am J Physiol
Heart Circ Physiol 278, H2039–H2049.

Schumann AY, Bartsch RP, Penzel T, Ivanov PC & Kantelhardt,
JW (2010). Aging effects on cardiac and respiratory
dynamics in healthy subjects across sleep stages. Sleep 33,
943–955.

Seely AJE & Macklem P (2012). Fractal variability: An emergent
property of complex dissipative systems. Chaos 22, 013108.
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