Oxygen Exchange in Leaves in the Light¹

Received for publication September 13, 1979 and in revised form March 12, 1980

DAVID T. CANVIN², JOSEPH A. BERRY³, MURRAY R. BADGER, HEINRICH FOCK⁴, AND C. BARRY OSMOND Department of Environmental Biology, Research School of Biological Sciences, Australian National University, P.O. Box 475 Canberra City ACT 2601, Australia

ABSTRACT

Photosynthetic O₂ production and photorespiratory O₂ uptake were measured using isotopic techniques, in the C3 species Hirschfeldia incana Lowe., Helianthus annuus L., and Phaseolus vulgaris L. At high CO2 and normal O₂, O₂ production increased linearly with light intensity. At low O₂ or low CO₂, O₂ production was suppressed, indicating that increased concentrations of both O₂ and CO₂ can stimulate O₂ production. At the CO_2 compensation point, O_2 uptake equaled O_2 production over a wide range of O₂ concentrations. O₂ uptake increased with light intensity and O₂ concentration. At low light intensities, O₂ uptake was suppressed by increased CO₂ concentrations so that O₂ uptake at 1,000 microliters per liter CO₂ was 28 to 35% of the uptake at the CO₂ compensation point. At high light intensities, O₂ uptake was stimulated by low concentrations of CO2 and suppressed by higher concentrations of CO2. O2 uptake at high light intensity and 1000 microliters per liter CO₂ was 75% or more of the rate of O₂ uptake at the compensation point. The response of O₂ uptake to light intensity extrapolated to zero in darkness, suggesting that O2 uptake via dark respiration may be suppressed in the light. The response of O₂ uptake to O₂ concentration saturated at about 30% O₂ in high light and at a lower O₂ concentration in low light. O₂ uptake was also observed with the C₄ plant Amaranthus edulis; the rate of uptake at the CO₂ compensation point was 20% of that observed at the same light intensity with the C₃ species, and this rate was not influenced by the CO₂ concentration. The results are discussed and interpreted in terms of the ribulose-1,5-bisphosphate oxygenase reaction, the associated metabolism of the photorespiratory pathway, and direct photosynthetic reduction of O₂.

Both O_2 evolution and O_2 uptake take place in leaves of C_3 and C_4 plants in the light (4, 8, 17, 21, 23, 24, 27, 28). O_2 evolution is derived entirely from the water-splitting reaction of PSII, but three principal O_2 uptake processes are presently recognized. These are: the oxygenase reaction of ribulose bisP carboxylase-oxygenase and the associated metabolism of P-glycolate (2, 4, 5, 18, 20); the Mehler reaction (22), which results in the direct photoreduction of O_2 and may support ATP synthesis via pseudocyclic photophosphorylation (9, 13, 16); and the possibility that O_2 uptake associated with mitochondrial respiration continues in the light (18).

Volk and Jackson and their colleagues (17, 23, 24, 27, 28) have made substantial contributions to the study of O₂ exchange in intact leaves, but only a limited range of conditions were em-

ployed. In this paper, we describe experiments over a wide range of CO_2 and O_2 concentrations in which net CO_2 uptake, O_2 uptake, and O_2 evolution were measured. These show that, in C_3 plants but not in C_4 plants, O_2 uptake is depressed by high CO_2 and permits partial resolution of the alternative pathways of O_2 uptake in intact leaves.

MATERIALS AND METHODS

Leaves of Indian mustard (*Hirschfeldia incana* Lowe. syn. Brassica genniculata Desf.) were harvested from plants growing under natural conditions. Leaves of sunflower (*Helianthus annuus* L. var. Bronze Hybrid), Amaranthus edulis L. and bean (*Phaseolus vulgaris* L.) were harvested from plants growing in soil in a glasshouse.

Experiments were conducted with the closed gas exchange system of Berry *et al.* (4). The system had been modified by Berry and Badger (unpublished) who added a capillary arrangement to supply CO₂ to the system. Leaves of the above species were detached under water and placed in the plant chamber. After equilibration of the leaves in air at 400 μ E m⁻² s⁻¹ illumination, the air in the system was replaced by flushing the system with argon. The flow of argon was stopped and, with the two-way valve open, the required amount of ¹⁸O₂ (99% ¹⁸O, Norsk Hydro, Oslo, Norway) was injected into the system. The system was closed and the gas was circulated over the leaf with a metal bellows pump. Mass 32, mass 36, and mass 40 were monitored continuously with a GD 150/4 mass spectrometer.

 O_2 uptake and O_2 evolution were calculated using the methods previously described (25, 27). CO₂ concentration was measured with an IRGA analyzer (UNOR-2, Maihak, Hamburg, Germany) included in the gas circuit, and CO₂ concentration during illumination could be controlled by varying the pressure of CO_2 on a capillary that bled pure CO_2 into the closed system. CO_2 uptake, at constant CO₂ concentration in the system, was calculated from the rate of CO₂ addition. Each measurement was averaged over an 8- to 10-min period of gas exchange after the rate of CO₂ uptake had reached a steady rate at each CO₂ concentration. The total gas pressure in the small system increased due to O₂ production and was equilibrated to atmospheric pressure between measurements. In this closed system, water vapor was condensed in a trap held at 5 C below the leaf temperature but it was not possible to measure stomatal responses, so that all CO₂ concentrations cited in the text refer to ambient, not intercellular, CO₂ concentration.

RESULTS

The responses of net CO_2 fixation and the components of net O_2 exchange (gross O_2 production from water and gross O_2 uptake from the atmosphere) to ambient CO_2 concentration were measured in leaves of the C_3 plant *H. incana.* These responses at four quantum flux densities (light intensities) at 30 C are shown in Figure 1, A to D. In all of these experiments, net O_2 exchange measured by MS was within 5% of net CO_2 exchange which was

¹ This paper is Carnegie Institute of Washington publication No. 686.

² Permanent address: Department of Biology, Queen's University, Kingston, Ontario K7L 3N6, Canada.

³ Permanent address: Department of Plant Biology, Carnegie Institution of Washington, 290 Panama Street, Stanford, Calif. 94305.

⁴ Permanent address: Fachbereich Biologie, Universität Kaiserslautern, Postfach 3049, D-6750 Kaiserslautern, Federal Republic of Germany.

FIGS. 1. Effect of CO₂ and light intensity on O₂ exchange and CO₂ assimilation in leaves of *H. incana* L. Light intensity was as shown; temperature was 30 ± 1 C except for the three highest CO₂ concentrations of D where temperature was 34 to 36 C. Other conditions: A, 24 to 27% O₂; B, 25 to 28% O₂; C, 24 to 30% O₂; D, 25 to 30% O₂. \bigcirc , O₂ production; \triangle , O₂ uptake; \bigcirc , net O₂ release; \triangle , CO₂ uptake.

independently determined from the pressure versus flow calibration of the capillary used to add CO_2 to the closed system. Thus, the data of net O_2 evolution and CO_2 uptake are internally consistent. Increased CO_2 at each light intensity leads to an increase in CO_2 uptake. At the three lowest light intensities, either CO_2 or O_2 could apparently serve equally well and were mutually competitive as acceptors for electrons from the water-splitting reactions of photosynthesis. O_2 production was independent of CO_2 concentration at low light intensities but, at higher light intensities, CO_2 stimulated O_2 production (Fig. 1, C and D).

The inhibition of O_2 uptake by CO_2 is most clearly seen in Figure 2, which shows the data of Figure 1, A to C, normalized to the rate of O_2 uptake at the CO_2 compensation point at the

FIG. 2. Effect of CO_2 on O_2 uptake. O_2 uptake data of Figure 1, A (\bullet), B (\bigcirc), and C (\triangle), are replotted as a percentage of the O_2 uptake that occurred at the CO_2 compensation point.

appropriate light intensity and replotted as a function of CO₂ concentration. (The data of Fig. 1D, which will be discussed later, were omitted because of the complex change in O₂ uptake at the low CO₂ concentrations.) At the CO₂ compensation point, O₂ uptake was equal to the O₂ production (100%) and the relative rate of O₂ uptake fell to 28 to 35% of the rate of O₂ uptake with increasing CO₂ was hyperbolic. Half-inhibition occurred at about 400 to 450 μ l 1⁻¹ CO₂ and inhibition did not appear to be saturated by 900 to 1,000 μ l 1⁻¹, the highest concentration of CO₂ used in these studies. The pattern of the inhibitory effect of CO₂ on O₂ uptake appeared to be similar at light intensities equal or below 800 μ E m⁻² s⁻¹.

At 1,200 μ E m⁻² s⁻¹ (Fig. 1D), O₂ uptake was stimulated by low concentrations of CO₂ and subsequently inhibited by higher CO₂ concentrations. With the detached leaf system, it was not possible to control leaf temperature or to avoid leaf wilting at higher light intensities. A modified chamber was developed which permitted studies with attached leaves and allowed exact control of leaf temperature at high light intensities. Experiments similar to those in Figure 1 were run at 1,800 μ E m⁻² s⁻¹ using leaves of the C₃ plants H. incana and P. vulgaris (Fig. 3). At this light intensity, evidence to support the data of Figure 1D was obtained, as O_2 uptake was greatly stimulated by low concentrations of CO₂. Inhibition of O_2 uptake by higher CO_2 concentrations was much less than that observed at low light intensities (Fig. 2), as O_2 uptake rates at about 1,500 μ l l⁻¹ CO₂ were equal to, or only 25% less than, O₂ uptake rates at the CO₂ compensation point. It is also evident that O₂ production was severely limited at the CO₂ compensation point and that CO₂ greatly stimulated O₂ production.

The dependence of O_2 and CO_2 exchange on light intensity is shown in Figure 4, A to C. The rate of O_2 production equalled the rate of O_2 uptake at the CO_2 compensation point, and these were rate-saturated at about 800 μ E m⁻² s⁻¹ (Fig. 4A). Presumably this saturation is due to a limitation on the supply of electron acceptors

FIGS. 3. Effect of CO₂ on O₂ exchange and CO₂ assimilation in leaves of *H. incana* and *P. vulgaris*. Light intensity was 1800 μ E m⁻² s⁻¹; temperature was 28 ± 0.5 C and 29 ± 0.5 C, respectively; the O₂ range was 18 to 25% and 20 to 27%, respectively. (\bigcirc), O₂ production; (\triangle), O₂ uptake; (\bigcirc), net O₂ evolution; (\triangle), net CO₂ uptake.

under these conditions, rather than to a limitation of electron transport because, in the presence of 21% O₂ and concentrations of CO₂ of 300 μ l l⁻¹ or higher, the rate of O₂ production was linear to 1,200 μ E m⁻² s⁻¹ (Fig. 4, B and C).

The slope of O_2 production (Fig. 4B) was 0.075 mol $O_2 E^{-1}$ which is similar to the quantum yield for CO_2 fixation observed with C_3 plants in low O_2 concentrations. Net CO_2 uptake at 300 or 1,000 μ l l⁻¹ CO₂ increased with light intensity, but the relative rate of increase declined continuously so that uptake (Fig. 4, B and C) was saturated at about 800 μ E m⁻² s⁻¹. In contrast to CO₂ uptake, the rate of O₂ uptake increased with light intensity with a progressively greater rate of increase as the light intensity was increased (Fig. 4, B and C). These observations suggest that, as light intensity is increased, an increasing proportion of electron transport is diverted to O₂ as the terminal electron acceptor.

Another interesting feature of these data is that the light-response curves for O_2 uptake can be extrapolated to zero (Fig. 4). This indicates that dark respiration probably plays no significant role in the O_2 uptake measured here. O_2 uptake in the dark was 0.2 nmol cm⁻² s⁻¹.

 O_2 uptake as a function of O_2 concentration is shown in Figure 5. At the CO₂ compensation point and at the light intensity used (400 μ E m⁻² s⁻¹), uptake was rate saturated at 20 to 30% O₂. A similar response of O₂ uptake to O₂ concentration was also observed with sunflower (Fig. 6), soybean (23), and algae (26). At this light intensity, increased CO₂ concentration inhibited the rate of O₂ uptake (Fig. 5) but had little effect on the shape of the O₂ concentration dependence. The O₂ concentration required to saturate O₂ uptake in sunflower was lower at lower light intensity (Fig. 6). Similar data were obtained for mustard at 400 and 800 μ E m⁻² s⁻¹. These responses are similar to those observed for CO₂ uptake as a function of CO₂ concentration at different light intensities (10).

Figure 6 also shows a comparison between photorespiratory

 CO_2 release and O_2 uptake as a function of O_2 concentration. The CO_2 release into CO_2 -free air (measured in a separate experiment but on an equivalent leaf) roughly parallels O_2 uptake and is consistent with the assumption that both processes are related to photorespiration. The ratio of CO_2 production to O_2 uptake was about 1:6 at O_2 concentrations above 10%.

Our studies also indicated a dependence of O₂ production on O₂ concentration. At the CO₂ compensation point, O₂ production equalled O_2 uptake over the entire range of O_2 concentration and decreased as the O_2 concentration decreased (Fig. 5). This would appear to be due to the inability of low concentrations of O_2 , at the CO₂ compensation point, to support the maximum capacity for electron transport. The restriction of O₂ production at low O₂ was partially, but not completely, overcome at higher CO_2 concentrations (Fig. 7). At 400 μ l l⁻¹ CO_2 and 400 μ E m⁻² s⁻¹, O_2 production was still stimulated 25% between an O₂ concentration change from 4 to 21%. Over the same range of O₂ concentrations, O₂ uptake increased from nearly zero to close to saturation, whereas net CO_2 uptake decreased (Fig. 7). The increase in O_2 uptake was much larger than the decrease in CO₂ uptake. If the change in O₂ concentration only affected photorespiratory processes, one might have expected a much greater decrease in CO2 fixation. Because CO₂ fixation did not decrease an amount equivalent to the increase in O₂ uptake and because O₂ production was stimulated by O₂, O₂ uptake processes other than oxygenase would seem to be involved.

 O_2 uptake in the C₄ species *A. edulis* was also observed. The dependence of O_2 uptake on O_2 concentration was similar to that observed with the C₃ species (Fig. 8A). However, O_2 uptake was not affected by the CO₂ concentration (Fig. 8B), and the maximum rate of O_2 uptake was only about 20% of that observed at the same light intensity with the C₃ species. These results indicate substantial differences in the O_2 exchange patterns of C₃ and C₄ plants.

FIG. 4. Effect of light intensity on O_2 exchange in leaves of *H. incana* at the CO_2 compensation point (A), at 250 to 300 μ l l⁻¹ CO_2 (B), and at 900 to 1,000 μ l l⁻¹ CO_2 (C). \bigcirc , O_2 production; \triangle , O_2 uptake; \blacksquare , CO_2 uptake. Measuring conditions were as in Fig. 1.

DISCUSSION

At normal O₂ concentrations, reactions involving atmospheric O₂ apparently consume a large fraction (20–100%) of the electrons produced in the photosynthetic oxidation of water by illuminated intact leaves of C₃ and C₄ plants. There is now abundant evidence that the biochemical pathway of photorespiration (18, 20) occurs with the fixation of O₂ by Ru-P₂⁵ carboxylase-oxygenase and the metabolism of the product of that reaction, P-glycolate, to 3-PGA and CO₂ (2, 4, 5, 8, 20). Rapid O₂ uptake has also been observed with algae (25, 26) and here it was attributed to direct photosyn-

FIG. 5. Effect of O₂ and CO₂ on O₂ exchange in leaves of *H. incana.* Light intensity was 400 μ E m⁻² s⁻¹; temperature was 24.7 to 27.1 C. O₂ production (\bigcirc) and uptake (\triangle) at the CO₂ compensation point. O₂ uptake at 390 to 420 μ l l⁻¹ CO₂ (\square), at 769 to 875 μ l l⁻¹ CO₂ (\blacksquare), and at 1150 to 1240 μ l l⁻¹ CO₂ (\blacktriangle).

FIG. 6. Effect of O₂ concentration and light intensity on O₂ uptake at the CO₂ compensation point and CO₂ evolution into a CO₂-free atmosphere by sunflower leaves at 420 μ E m⁻² s⁻¹, at 26 to 30 C. O₂ uptake at the light intensities shown (\Box , \bigcirc); CO₂ evolution (\times 10) into a CO₂-free atmosphere (\blacktriangle).

thetic reduction of O₂ that was independent of photosynthetic carbon metabolism. It is important to consider which of these two mechanisms of O_2 uptake should be applied to the O_2 uptake reported here, but, as with previous studies (23, 28), the results of O_2 exchange in intact leaves of C_3 and C_4 plants are difficult to interpret unequivocally. The data, however, may allow a partial resolution of the question and some issues which arise from the data should be considered. These include (a) the mechanisms of O_2 uptake, (b) the basis of the differences of the O_2 exchange properties of C_3 and C_4 plants, (c) the relative abilities of O_2 and CO_2 to support photosynthetic electron transport (act as electron acceptors) in vivo, (d) the basis for the inhibition of O_2 uptake by increased concentrations of CO_2 , (e) the apparent kinetics of O_2 exchange reactions in vivo in comparison to measurements which have been made in vitro of possible O2 uptake mechanisms, and (f) the apparent stimulation of photosynthetic O_2 production by O_2 or CO_2 .

Mechanisms of O_2 Uptake. Either CO_2 or O_2 may serve as acceptors for electrons from photosynthetic O_2 production. To

⁵ Abbreviations: Ru-P₂, ribulose 1,5-bisphosphates; 3-PGA, 3-phosphoglyceric acid.

FIG. 7. Effect of O₂ concentration on O₂ production (\Box), O₂ uptake (\bigcirc), and CO₂ uptake (\blacksquare) by leaves of *H. incana* at 390 to 420 μ l l⁻¹ CO₂, 30 C, and 400 μ E m⁻² s⁻¹.

FIG. 8. A, O₂ production (\bullet) and uptake (\Box) of a leaf of *A. edulis* L. at the CO₂ compensation point. B, O₂ production (\bullet), O₂ uptake (\Box), and net O₂ release (\triangle) of a leaf of *A. edulis* L. as a function of CO₂ concentration. Light intensity was 400 μ E m⁻² s⁻¹; temperature was 26 to 28 C. O₂ concentrations for B were 26 to 28%.

some extent, one may substitute for the other (Fig. 1) but in other cases (Figs. 3 and 8) the two acceptors appear to be additive. CO_2 acts as an ultimate acceptor because its fixation and metabolism in photosynthesis regenerates ADP and NADP⁺. O_2 acts as an electron acceptor because the reactions of photorespiration regenerates ADP and NADP⁺ or it may react directly with a component of PSI and be reduced in a reaction termed the "Mehler reaction" (22). As mentioned earlier, both O_2 uptake reactions have been shown to occur *in vivo* and it is not possible to distinguish them by only following total O_2 uptake.

Some estimate of each reaction may be obtained by considering the stoichiometry of the photorespiratory reactions at the compensation point. In a previous study, the balanced photorespiratory reactions require that 3.5 O_2 should be taken up for every CO_2 released (4). In this study, CO_2 release into CO_2 -free air over a wide range of O_2 concentrations was approximately one-sixth of the O_2 uptake at the compensation point (Fig. 6). By applying the expected stoichiometry, about 60% of the O_2 uptake may be attributed to photorespiration. This estimate is lower than that reported previously (4), but the estimate may be low due to refixation of CO_2 . The balance of the O_2 uptake could be due to a Mehler reaction and dark respiration. Many workers have argued that a Mehler reaction may be involved in regulating phosphorylation *in vivo* (9, 16, 19), but the exact requirement for this reaction is unknown.

 O_2 Exchange in C_3 and C_4 Plants. The rate of O_2 uptake by the C4 plant A. edulis was only about 20% of that of a C3 species under the same conditions, and this rate was apparently unaffected by the CO₂ concentration (Figs. 1 and 8). It is generally accepted that C_4 plants possess a mechanism for concentrating CO_2 at the site of the Ru-P₂ carboxylase-oxygenase and that this mechanism leads to a diminished rate of photorespiration (3, 14). Oxygenase activity is not completely eliminated, however, as judged from ¹⁴CO₂ fixation experiments and ¹⁸O incorporation into glycine and serine (8, 14). Thus, some of the O_2 uptake in C_4 plants may be due to photorespiration and the remaining O₂ uptake may be associated with a Mehler reaction. The ATP requirements of C4 photosynthesis are greater than those for C_3 photosynthesis (14) so that the need for a mechanism to balance ATP formation to NADPH use may be more essential in C_4 plants than in C_3 plants. Recent experiments (7) show that the rate of O_2 uptake in isolated bundle sheath cells of maize is too low to provide for the pseudocyclic generation of the additional ATP requirements. Thus, direct O₂ uptake in C₄ plants may also only fulfill a role of "poising" the reduction state of the electron transport chain as has been proposed for C_3 plants (16).

Capacity of O₂ and CO₂ as Acceptors. At low light intensities, O_2 uptake at the CO₂ compensation point supports the same rate of O₂ evolution observed at CO₂ saturation (Fig. 1). With increasing light intensity, O₂ evolution is severely limited by low CO₂ concentration (Figs. 1 and 3). O_2 evolution is stimulated by increasing CO_2 concentration up to that required to saturate CO_2 uptake. At near full sunlight intensity (1800 μ E m⁻² s⁻¹), O₂ alone supports only 25 to 35% of the O₂ evolution observed at saturating CO_2 (Fig. 3). A similar dependence of O_2 evolution upon CO_2 concentration has been found in Chlamydomonas at 400 μ E m⁻ s^{-1} and at ambient O₂ concentration (Fock and Badger, in preparation), in isolated spinach chloroplasts (4, 21), and in spinach cells (21). Studies with Scenedesmus (25, 26) show that O_2 was able to substitute completely for CO₂ as an electron acceptor. With higher plants, however, such substitution appears to be only complete at low light intensities.

Effect of CO₂ Concentration on O₂ Uptake. As shown previously (11), O₂ uptake at low light intensities was suppressed by increased CO₂ concentration (Figs. 1 and 2). Studies of Ru-P₂ carboxylase-oxygenase *in vitro* show that the oxygenase activity is competitively inhibited by CO₂ (2, 5). The CO₂ concentration for half-inhibition of O₂ uptake by intact leaves in 21% O₂ was about 450 μ l l⁻¹ (Fig. 2), which is similar to that for half-inhibition of the oxygenase *in vitro* (2). At 900 to 1000 μ l l⁻¹ CO₂, O₂ uptake was 28 to 35% of that which occurred at the compensation point.

Based on *in vitro* kinetic properties of the oxygenase (2), O_2 uptake by this means would still be expected at that CO_2 concentration and ¹⁸O incorporation into glycine was also observed at the same CO_2 levels (Lorimer, Badger, and Berry, in preparation). Of course, the Mehler reaction may also be suppressed by CO_2 because, if it depends on the NADP⁺ level (25), CO_2 fixation would be expected to alter the level of that compound. It appears, though, that if CO_2 is affecting both reactions, the response of each reaction to increased CO_2 concentrations would appear to be similar.

If the inhibition of O_2 uptake *in vivo* by increased CO_2 concentration is due to inhibition of $Ru-P_2$ oxygenase, we would expect it to be correlated with a decrease in CO_2 evolution. The data available indicates that photorespiratory CO_2 release is insensitive to CO_2 concentrations (6). Although there is some contradiction here, we point out that, at high light intensities (Fig. 3), the response of O_2 uptake to increasing CO_2 concentration is complex

Effect of O₂ Concentration on O₂ Uptake. O₂ uptake by Ru-P₂ oxygenase has a K_m (O₂) of 20 to 33% O₂ in vitro (2), whereas the Mehler reaction of isolated chloroplasts is half-saturated by less than 5% $O_2(1, 15)$. In principle, it should be possible to distinguish between the two mechanisms by studies of the O₂ concentration dependence of O₂ uptake by intact leaves. In the studies presented here, O_2 uptake of C_3 and C_4 plants was saturated by 20 to 30% O_2 (Figs. 5-8). The response was, in fact, similar to the O_2 uptake that was observed in algae (26) and attributed to a Mehler reaction. The O_2 uptake observed here might be attributed to either or both mechanisms on the basis of the O₂ concentration dependence alone. It would seem that a comparison of in vivo and in vitro O₂ uptake responses to O_2 concentration is not possible because of constraints in vivo that may alter the responses. Constraints such as ATP turnover, if the Mehler reaction is coupled to complete electron transport, or light intensity, which could limit the supply of Ru-P₂ would alter the O₂ uptake response pattern to reflect these factors rather than allowing the O₂ uptake to be purely a response to O₂ concentration, as would occur when these other factors were nonlimiting.

Effects of O₂ and CO₂ Concentration. Two responses observed here are difficult to fit into the general conceptual framework of O₂ exchange and should be commented upon. At normal concentrations of CO₂, CO₂ uptake increased when the O₂ concentration was decreased from 21 to 4% (Fig. 7). Over the same O2 concentration change, however, O₂ production decreased (Fig. 7) and the increase in net CO₂ uptake was less than that anticipated from the decrease in O₂ uptake. It seems that, at normal CO₂ levels, O₂ may be required for maximum O₂ production.

The other response that was unusual was the complex pattern of O₂ exchange at high light intensities (Figs. 3 and 10). As the CO₂ concentration was increased from the CO₂ compensation point, O_2 uptake was first stimulated and then inhibited (Fig. 3). The increase in the CO₂ concentration also greatly stimulated O₂ production (Fig. 3). A stimulation of O₂ uptake by CO₂, observed previously (23), was attributed to a CO₂-dependent increase in substrate for O_2 uptake. The capacity for O_2 to act as an acceptor may also be stimulated, however, because increased CO₂ may activate Ru-P₂ oxygenase in vivo. The concentration of activating sites in the chloroplast is in excess of 3 mm and, at the CO_2 compensation point in C₃ plants, intercellular CO₂ concentration is only 2 μ M. In these circumstances, less than fully active enzyme is at least feasible. The effect of inactivation would be most pronounced at high light intensities when O₂ exchange and CO₂ uptake is carboxylase-oxygenase-limited, rather than electrontransport-limited.

Yet another alternative is that increased uptake follows from increased O₂ production as it is known from studies with isolated chloroplasts that CO₂ will stimulate PSII activity (12), but this seems less likely as there is no effect of CO₂ observed at low light intensity.

LITERATURE CITED

- 1. ASADA K, Y NAKANA 1978 Affinity for oxygen in photoreduction of molecular oxygen and scavenging of hydrogen peroxide in spinach chloroplasts. Photochem Photobiol 28: 917-920
- 2. BADGER MR, TJ ANDREWS 1974 Effects of CO₂, O₂, and temperature on a highaffinity form of ribulose diphosphate carboxylase/oxygenase from spinach. Biochem Biophys Res Commun 60: 204-210
- 3. BERRY JA, GD FARQUHAR 1978 The CO2 concentrating function of C4 photosynthesis: a biochemical model. In DO Hall, J Coombs, TW Goodwin, eds, Proc 4th Int Congr Photosynthesis. Biochemical Society, London, pp 119–131 4. BERRY JA, CB OSMOND, GH LORIMER 1978 Fixation of ¹⁴O₂ during photorespir-
- ation. Plant Physiol 62: 954-967
- 5. BOWES G, WL OGREN 1972 Oxygen inhibition and other properties of soybean ribulose 1,5-diphosphate carboxylase. J Biol Chem 247: 2171-2176
- 6. BRAVDO BA, DT CANVIN 1979 Effect of carbon dioxide on photorespiration. Plant Physiol 63: 399-401
- 7. CHAPMAN KBR, JA BERRY, MD HATCH 1979 Synthesis and utilization of ATP and NADPH during photosynthesis by bundle sheath cells of the C_4 species Zea mays. Arch Biochem Biophys In press
- 8. DIMON B, R GERSTER, P TOURNIER 1977 Photoconsommation d'oxygene et biosynthese de la glycine et de la serine chez Zea mays. CR Acad Sci Paris 284: 297-299
- 9. EGNEUS H, U HEBER, U MATHIESEN, M KIRK 1975 Reduction of oxygen by the electron transport chain of chloroplasts during assimilation of carbon dioxide. Biochim Biophys Acta 408: 252-268
- 10. GAASTRA P 1959 Photosynthesis of crop plants as influenced by light, carbon dioxide, temperature and stomatal resistance. Meded Landbouwhogesch Wageningen 59: 1-68
- 11. GERBAUD A. M ANDRE 1979 Photosynthesis and photorespiration in whole plants of wheat. Plant Physiol 64: 735-738
- 12. GOVINDJEE, JJS VAN RENSEN 1978 Bicarbonate effects on the electron flow in isolated broken chloroplasts. Biochim Biophys Acta 505: 183-213
- 13. HALL DO 1976 The coupling of photophosphorylation to electron transport in isolated chloroplasts. In J Barber, ed, The Intact Chloroplast. Elsevier/North Holland, Amsterdam, pp 135-170
- HATCH MD. CB OSMOND 1976 Compartmentation and transport in C₄ photo-synthesis. In CR Stocking, U Heber. eds. Encyclopedia of Plant Physiology. New Series, Vol 3. Springer-Verlag, Heidelberg, pp 144-184 15. HEBER U, CS FRENCH 1968 Effects of oxygen on the electron transport chain of
- photosynthesis. Planta 79: 99-112
- 16. HEBER U, H EGNEUS, U HANCK, M JENSEN, S KÖSTER 1978 Regulation of photosynthetic electron transport and photophosphorylation in intact chloro-plasts and leaves of *Spinacia oleracea* L. Planta 143: 41-49
- 17. JACKSON WA. RJ VOLK 1969 Oxygen uptake by illuminated maize. Nature 222: 269-271
- 18. JACKSON WA, RJ VOLK 1970 Photorespiration. Annu Rev Plant Physiol 21: 385-432
- 19. KRAUSE GH, U HEBER 1976 Energetics of intact chloroplasts. In J Barber, ed, The Intact Chloroplast. Elsevier Scientific, Amsterdam, pp 172-214
- 20. LORIMER GH, KC WOO, JA BERRY, CB OSMOND 1978 The C2 photorespiratory carbon oxidation cycle in leaves of higher plants: pathway and consequence. In DO Hall, J Coombs, TW Goodwin, eds, Proc 4th Int Congr Photosynthesis. Biochemical Society, London, pp 311-322
- 21. MARSHO TV, PW BEHRENS, RJ RADMER 1979 Photosynthetic oxygen reduction in isolated intact chloroplasts and cells from spinach. Plant Physiol 64: 656-659
- 22. MEHLER AH 1951 Studies on the reaction of illuminated chloroplasts. II. Stimulation and inhibition of the reaction with molecular oxygen. Arch Biochem Biophys 34: 339-351
- MULCHI CL, RJ VOLK, WA JACKSON 1971 Oxygen exchange of illuminated leaves at carbon dioxide compensation. In MD Hatch, CB Osmond, RO Slatyer, eds. Photosynthesis and Photorespiration. Wiley-Interscience, New York. pp 35-50
- 24. OZBUN JL, RJ VOLK, WA JACKSON 1964 Effects of light and darkness on gaseous exchange of bean leaves. Plant Physiol 39: 523-52
- 25. RADMER RJ, B KOK 1976 Photoreduction of O₂ primes and replaces CO₂ assimilation. Plant Physiol 58: 336-340
- 26. RADMER R, B KOK, O OLLINGER 1978 Kinetics and apparent Km of oxygen cycle under conditions of limiting carbon dioxide fixation. Plant Physiol 61: 915-917
- 27. VOLK RJ, WA JACKSON 1964 Mass spectrometric measurement of photosynthesis and respiration in leaves. Crop Sci 4: 45-58
- 28. VOLK RJ, WA JACKSON 1972 Photorespiratory phenomena in maize. Oxygen uptake, isotope discrimination and carbon dioxide efflux. Plant Physiol 49: 218-223