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Abstract

Vitamin D deficiency and adipocytokines have been implicated in the etiology of aging-related 

diseases such as cancer, osteoporosis, and diseases of the cardiovascular system. The association 

between elevated parathyroid hormone (PTH) and low 25-hydroxyvitamin D(25-OH-VitD) in 

plasma is used to define vitamin D deficiency, yet their associated mechanistic pathways are 

unclear. Utilizing plasma samples from women in a previous intervention study, we measured 

plasma 25-OH-VitD, leptin, adiponectin, PTH, and lipid levels. We observed strong positive 

associations for leptin with PTH, γ-tocopherol, and body mass index (BMI) and inverse 

associations with 25-OH-VitD and adiponectin. Although commonly accepted that vitamin D 

deficiency causes hyperparathyroidism, we observed this association primarily in individuals with 

elevated leptin levels, suggesting that leptin may be an important modifier of this effect consistent 

with 25-OH-VitD-mediated inhibition of leptin. Leptin was highly correlated with the BMI/25-

OH-VitD ratio (r = 0.80; P < 0.0001), consistent with a model in which BMI (adiposity) and 25-

OH-VitD are the primary determinants of circulating leptin and PTH levels. This model may 

explain the failure of some studies to observe elevated PTH in vitamin D deficient adolescents and 

provides important insight into epidemiological studies exploring the associations of these 

individual biomarkers with chronic disease risk and mortality.

INTRODUCTION

Epidemiological studies have suggested a relation for vitamin D with reduced risk for cancer 

(1–3), cardiovascular disease (4), and all-cause mortality (5), whereas obesity is associated 

with increased heart disease (6), mortality (7), and cancer risk, particularly for breast, colon, 

and prostate cancers (8–10). Obesity in turn is associated with the production of 

adipocytokines, such as leptin, a hormone secreted by adipose tissue (11,12) that is 
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positively associated with cancer risk (13,14) and adiponectin, which is secreted by 

adipocytes and is associated with reduced risk of developing cancer (15,16).

Vitamin D, derived from a pro-vitamin produced in human skin or obtained from 

supplements is best known for its ability to prevent osteoporosis and in extreme cases, 

rickets, through its effects on bone metabolism [reviewed in (17)]. The bioactive forms of 

vitamin D, 1,25-dihydroxyvitamin D2 and 1,25-dihydroxyvitamin D3 (1,25(OH)2VitD), are 

characterized as regulators of calcium and bone metabolism (18) and stimulate absorption of 

calcium and increase bone mineral density (BMD) without causing hypercalcemia (19). 

Circulating levels of their precursors, 25-hydroxyvitamin D2 and D3 (25-OH-VitD) are 

believed to be the best biomarker for vitamin D status in humans. Because low 25-OH-VitD 

levels are associated with elevated parathyroid hormone (PTH) in humans (4,20), this 

association has been used to define vitamin D deficiency as levels of 25-OH-VitD less than 

30 ng/ml (80 nM). Below this concentration, PTH levels are observed to rise (4,20) with the 

effect of regulating plasma calcium and phosphorus levels and stimulating bone growth, 

thereby partially compensating for the effects of vitamin D deficiency on bone metabolism. 

In recent years, in addition to its clear association with osteoporosis, vitamin D deficiency 

has been increasingly linked to many other diseases (21) including cardiovascular disease 

(4,22), chronic liver disease (23), cancer (24), and decreased immune function (25, 26), 

suggesting that its regulation and interactions with other micronutrients and proteins may 

have significant implications for understanding the etiology of many aging-related diseases.

Since the discovery of leptin in 1994 (27), there has been growing interest in its possible role 

in the etiology of cancer and other obesity-related diseases. Leptin exhibits both mitogenic 

and antiapoptotic properties, which may explain its ability to stimulate tumor growth (28–

30). The function of leptin in human osteoporosis is less clear, and it remains an open 

question as to whether leptin enhances or inhibits bone formation (31,32). Although leptin 

has been shown to lower bone formation in mice and sheep (33,34), Matsunuma et al. (35) 

found that leptin administration in mice increases circulating levels of PTH. Although it is 

generally accepted that BMI is inversely associated with osteoporosis (36), the molecular 

mechanism for this relationship has not been established. With an in vitro tissue culture 

model, Menendez et al. (37) found that leptin secretion by human adipose tissue is 

negatively and powerfully controlled by 25-OH-VitD. Leptin, therefore, may be crucial in 

elucidating the relationships between 25-OH-VitD, PTH, and obesity with aging-related 

diseases such as cancer, cardiovascular disease, decreased immune function, and 

osteoporosis.

The implications for a leptin 25-OH-VitD displacement in human plasma, if any, could 

suggest that despite prolonged exposure to UV radiation, obese individuals could be at a 

disadvantage in producing active vitamin D and/or that high vitamin D levels could in turn 

suppress leptin formation in an individual with relatively high body mass, thereby 

ameliorating the deleterious consequences associated with higher BMI. Obesity-induced 

leptin production could conceivably lead to a corresponding decrease in conversion of 

vitamin D to 25-OH-VitD as well as decreased conversion of 25-OH-VitD to 

1,25(OH)2VitD; whereas vitamin D deficient individuals with low BMI and corresponding 

lower leptin production may not exhibit the classic pattern of enhanced PTH secretion and 
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therefore be at higher risk for bone loss due to lower formation of 1,25-(OH)2-VitD. Bone 

mineral density is positively correlated with obesity, giving weight gain a strong protective 

effect against osteoporosis (36). Although it is commonly hypothesized that this association 

is related to increased weight-bearing effects on bone mass, definitive evidence is lacking, 

and other mechanisms may play a role. Recently, it was reported that nearly 50% of young 

study subjects living in Hawaii and exposed to significant levels of UV were deficient in 25-

OH-VitD, suggesting confounding regulatory mechanisms independent of sun exposure 

(38). This study also curiously failed to observe a significant association between 25-OH-

VitD deficiency and elevated PTH.

Lipid levels, including triglycerides, cholesterol, and lipid-soluble antioxidants such as the 

tocopherols, carotenoids, retinoids, and coenzyme Q10, have also been commonly 

associated, both positively and negatively, as markers of risk for many aging-related 

diseases. Few studies, however, have considered the interactions of these molecules with 

one another, or the lipid-soluble vitamin D, in relation to regulation of their plasma levels 

and function. Suzuki et al. (39) did, however, note an inverse relationship between plasma 

α-tocopherol and β-carotene with BMI. Because of their potential interactive effects as 

mediated by signaling pathways such as the retinoid, deltanoid, and pregnane receptors 

(40,41), it is possible that plasma levels of one lipid may affect levels of another. 

Observations of seasonal changes in plasma retinol that vary inversely to seasonal changes 

vitamin D levels have been postulated to occur as partial compensation for seasonal 

deficiencies in the latter vitamin (42). Seasonal variations in mammographic breast density, 

a marker of risk for breast cancer, have also been linked to seasonal changes in 25-OH-VitD 

(43).

Because of the importance of defining the potential interactive relationships between these 

important dietary and physiologic molecules, we conducted a secondary analysis of 

previously collected blood samples from a nutritional intervention study among women. 

Circulating plasma levels of 25-OH-VitD, leptin, adiponectin, PTH, lipids, and lipid-soluble 

antioxidants were analyzed in order to better characterize their interactions in normal 

women and increase their utility as potential biomarkers of risk for cancer and osteoporosis 

as well as other aging-related diseases.

MATERIALS AND METHODS

Blood Collection

Stored samples (kept at −80°C) from a nutritional intervention study as described previously 

(44) were used in the present study. In brief, 29 women were randomized to a diet of 9 daily 

servings of fruits and vegetables or a control group who maintained their regular diet. A 

total of 57 samples drawn after 3 and 6 mo were available for study from 29 women; all 

baseline samples had been expended. The study population consisted of healthy women who 

were at least 35 yr of age and who were not taking high-dose vitamin supplements. 

Participants donated 10 ml blood samples in Li-heparin vacutainers that were immediately 

stored on ice and centrifuged within 1 h after collection. Plasma was aliquoted under yellow 

light into 2-ml aliquots and stored at −80°C. Each sample was assayed in duplicate and 

averaged. Samples from the same woman taken at different time points were averaged, and 
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the mean value for each of the 29 women used in the statistical analyses. Body mass index 

(BMI) was determined at the time of entry into the study for each subject with 

measurements of height and weight and then calculated as the weight in kg/height in 

meters2.

Plasma Analyses

Enzyme-linked immunosorbent assays—Plasma 25-hydroxyvitamin D (as the sum of 

25-hydroxyvitamin D2+ 25-hydroxyvitamin D3) was measured according to the 

manufacturer’s directions utilizing an immunoassay kit purchased from Immunodiagnostic 

Systems, Ltd. (Fountain Hills, AZ; enzymatic kit AA-35F1). Human leptin and human 

adiponectin (adipocyte complement-related protein of 30 kDa) were measured according to 

the manufacturer’s directions utilizing immunoassay kits purchased from R & D Systems, 

Minneapolis, Minnesota (Catalogue #DLP00 and #DRP300 for leptin and adiponectin, 

respectively).

PTH was measured utilizing a two-site enzyme-linked immunosorbent assay (ELISA) 

specific for the biologically intact 84 amino acid chain of PTH. A kit from MD Biosciences 

Inc. (St. Paul, MN; Catalogue #PTH.96) was utilized in the analysis, which employs two 

different purified goat polyclonal antibodies, one biotinylated antibody specific for the mid 

region and C-terminal end of PTH (amino acids 39 to 84) and a second antibody bound with 

horseradish peroxidase targeting the N terminal region of PTH (1 to 34).

In all assays, color development was stopped with the addition of acid as specified by the 

manufacturer and the ELISA assay microplate then read at 450 nm and also at 590 nm as a 

background control. Plots of concentration vs. absorbance for standards were prepared using 

a 4 parameter fit and concentrations of unknown samples extrapolated from the standard 

curve and adjusted for any dilution of plasma.

Lipid-soluble antioxidants—Plasma levels of lipid-soluble antioxidants tocopherols and 

carotenoids were quantified from hexane extracts by HPLC/PDA analysis as described 

previously (44) by high pressure liquid chromatography with diode array detection.

Statistical Analysis

Although the values for within to between variance were low, indicating a single sample is 

sufficient to characterize an individual with respect to the group, values for the two time 

points for each subject were combined for statistical analysis. Means and standard deviations 

were calculated for control and intervention subjects separately; the difference between 

groups was assessed with a 2-sample Student’s t-test. To examine the association of BMI, 

adiponectin, lipids, PTH, and carotenoids with leptin, we created tertiles for leptin, applied 

ANOVA, estimated means per tertile, and used the Tukey test to find out if the means 

differed significantly. In addition, we computed Spearman correlation coefficients between 

leptin and all other variables. Circulating levels of PTH and leptin were computed after 

stratification by quintile of plasma 25-OH-VitD level for all 57 samples and plotted against 

the median 25-OH vitamin D level for each quintile.
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RESULTS

Mean values for micronutrients in the control and intervention group did not vary 

significantly between the two groups (Table 1), with the exception of nonprovitamin A 

carotenoids and overall carotenoid levels, which were significantly increased in the 

intervention group, as described previously (44). Notably, 25-OH-VitD, leptin, and PTH 

levels between groups were not significantly different, indicating no apparent effect of 

increased fruit and vegetable consumption on the parameters of interest in the current study. 

Significant positive associations for leptin were observed with body mass index (BMI), 

triglycerides, cholesterol, PTH, and γ-tocopherol (Table 2). Significant inverse associations 

were observed for leptin with 25-OH vitamin D, adiponectin, and the ratio of α- to γ-

tocopherol. No statistically significant associations for carotenoids with leptin, PTH, BMI, 

or 25-OH-vitD were observed.

As shown in Fig. 1, plasma PTH and leptin exhibited similar profiles, with each showing 

elevated levels in association with 25-OH-VitD deficiency (<80 nM 25-OH-VitD). When 

values were stratified by plasma leptin concentration (> vs.<10 ng/ml) and data plotted for 

plasma PTH as a function of plasma 25-OH-VitD utilizing the mean values of the 29 

subjects (Fig. 2), the elevation in PTH associated with 25-OH-VitD deficiency was 

predominantly found in individuals in the high leptin group (r = −0.515, P = 0.034). 

Individuals with low leptin levels showed similar PTH levels across a broad range of plasma 

25-OH-VitD (slope not significantly different from zero). Multiple regression analysis 

indicated that approximately 44% of the variance in plasma PTH could be explained by a 

model involving plasma leptin and 25-OH-VitD, with leptin providing the most significant 

contribution.

As seen in Fig. 3, BMI (kg/m2) was found to be strongly positively correlated with plasma 

leptin level (Spearman r = 0.58, P = 0.001); however, no significant association between 

BMI and 25-OH-VitD was observed. The ratio of α-tocopherol to γ-tocopherol was, 

however, inversely associated with BMI (Spearman r = 0.463, P = 0.01). The primary factor 

in this latter association appears to be related to γ-tocopherol, which was significantly 

positively associated with BMI (Spearman r = 0.443, P = 0.016), whereas α-tocopherol was 

weakly inversely associated with BMI (r = −0.281, P = 0.14). When plasma leptin was 

plotted three-dimensionally as a function of tertile of BMI and tertile of plasma 25-OH-VitD 

(Fig. 4), a strong additive interaction was observed, indicating that plasma leptin may be 

largely determined by these 2 factors, with BMI positively and 25-OH-VitD negatively 

associated (Pearson correlation coefficient for linear association between leptin and the ratio 

of BMI/25-OH-VitD: r = 0.80, P < 0.0001). Multiple regression analysis indicated that a 

linear model comprising BMI and plasma 25-OH-VitD levels could explain 53.2% of the 

variance observed for plasma leptin. Although both components significantly contributed to 

the observed variance, BMI was the most important factor in this model.

DISCUSSION

In agreement with past studies, we observed that plasma PTH is elevated in association with 

inadequate 25-OH-VitD.We also observe a strong positive association between plasma 

Maetani et al. Page 5

Nutr Cancer. Author manuscript; available in PMC 2015 April 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



leptin and elevated PTH. Classification of vitamin D sufficiency and insufficiency is 

typically based on the observance of elevated PTH (20,45–47), at or around circulating 25-

OH-VitD concentrations of less than 80 nM (30 ng/ml). The higher PTH levels observed 

with increasing deficiency of 25-OH-VitD in the current study are consistent with previous 

studies (45,48,49). Interestingly, circulating levels of leptin exhibited a similar pattern, 

increasing sharply below the deficiency level for 25-OH-VitD. Although leptin was reported 

to be positively associated with PTH in mice (35), our data suggest that vitamin D 

deficiency may be an important component, affecting both circulating leptin and PTH levels. 

Given the previously identified links between leptin and PTH (28, 50, 51), it is conceivable 

that leptin mediates, in part, the increase in PTH associated with low levels of 25-OH-VitD. 

Consistent with this hypothesis, we observe that after stratification for leptin, the elevation 

of PTH associated with vitamin D deficiency was significantly greater in individuals with 

leptin levels greater than 10 ng/ml (Fig. 3). Individuals with leptin concentrations less than 

10 ng/ml did not show a significant association between plasma 25-OH-VitD level and PTH. 

Leptin is secreted by adipose tissue; consequently, body fat content would be predicted to be 

a major determinant of circulating leptin levels. The observation by Donahue et al. (52) that 

in bears, PTH is responsible for maintaining bone integrity during long periods of inactivity 

associated with hibernation, further supports the hypothesis that fat/leptin-induced increases 

in PTH are physiologically important for bone health and may explain the association 

between increased BMI and decreased incidence of osteoporosis. This would imply that the 

increased risk for osteoporosis is greater for vitamin D deficient individuals that are thin and 

therefore have lower levels of leptin and PTH. Although others have reported weak 

associations between BMI and 25-OH-VitD, we did not observe a significant relationship in 

the current study, suggesting that any relationship may be indirect and secondary. A more 

likely hypothesis, supported by in vitro data with human adipose tissue, suggests that 25-

OH-VitD acts as a negative regulator of leptin secretion (37). This is consistent with our 

observations that individuals with levels of 25-OHVitD > 100 nM showed relatively lower 

leptin levels across a broad range of BMI (Fig. 4). The strongest correlation predicting 

plasma leptin was found for the ratio of BMI to 25-OHVitD (Pearson r = 0.80, P < 0.0001), 

and three-dimensional analysis shows an additive interaction between BMI and decreasing 

25-OH-VitD levels on leptin concentration in plasma. The model suggested by our data 

proposes that increased adipose tissue associated with higher BMI leads to increased leptin 

secretion, which is antagonized by plasma 25-OH-VitD levels. Leptin in turn mediates 

increased PTH secretion, an effect that may also be antagonized in part by 25-OH-VitD. 

Leptin may also affect vitamin D metabolism because leptin attenuates gene expression for 

two hydroxylases that are critical in converting vitamin D to its bioactive form 1,25-(OH)2-

VitD in mice models (53), whereas PTH activates the 25-OH-VitD–1α-hydroxylase 

promoter (50,51).

Despite studies (33, 34) that have shown that leptin reduces bone mineral density in mice 

and sheep models, the effects of leptin administration in humans are unclear. Various studies 

seem to have disagreed as to whether leptin increases or decreases bone mineral density in 

humans (54, 55), whereas Ghazali et al. (56) reported that leptin administration 

experimentally has a positive effect on bone mass intravenously but a negative effect on 

bone mass after intercerebroventricular administration. The observations by Matsunuma et 
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al. (35, 53) that leptin attenuates gene expression for two hydroxylases that are critical for 

converting vitamin D to its bioactive form in mice models would suggest that leptin might 

enhance vitamin D deficiency in tissue by restricting its conversion to 1,25-(OH)2-VitD. 

However, Menendez et al.’s (37) observation that leptin secretion by human adipose tissue is 

negatively and powerfully controlled by vitamin D suggests a vitamin D-controlled change 

in circulating leptin levels, potentially leading to reduced PTH at higher 25-OH-VitD 

concentrations, consistent with the observations reported here. The conflicting evidence 

between human and mice models provides support for Cunningham’s (57) explanation of 

species differences, and stresses the need for a more critical approach in drawing human-

based conclusions from animal studies. Our data suggests that some of the paradox and 

conflict in the literature may be the result of studying PTH, leptin, and 25-OH-VitD as 

independent agents when in fact, their plasma levels may be interrelated. Clearly the strong 

contribution of leptin to elevated PTH levels that we observe in association with 25-OH-

VitD inadequacy raises significant questions with respect to the mechanism of PTH 

regulation in vivo and its relation to vitamin D deficiency.

Increased fat intake associated with higher BMI also causes increased subclinical 

inflammation (58), which may explain the positive association with γ-tocopherol. γ-

tocopherol increases in response to inflammation (59,60) and acts as an anti-inflammatory 

agent (61). As a consequence of its positive association with risk factors such as BMI, 

leptin, and inflammation, epidemiological studies of γ-tocopherol may be analytically 

complex in that γ-tocopherol is thought to be an important modifier of risk for cancer 

[reviewed in (62)], yet its elevation in response to inflammation might predict a positive 

association with risk. It is likely, therefore, that the association between γ-tocopherol and 

leptin may be the result of fat-mediated induction of inflammation resulting in increased 

plasma γ-tocopherol levels and does not, in and of itself, cause elevated leptin.

Future studies addressing the causal relationships between these essential molecules is 

needed to better understand their use as biomarkers of risk for cancer and other chronic 

diseases in humans. The identification of optimal levels of 25-OH-VitD, leptin, and PTH for 

prevention of chronic diseases such as cancer and osteoporosis will depend on a better 

understanding of the interactions between these molecules and their precise function in vivo 

in humans. There is also the need to recognize that U-shaped responses may be the norm in 

human physiology and that dose-linear responses are the exception. Indeed, in humans, BMI 

exhibits a U-shaped response with respect to mortality (7), and the data presented here 

suggest that leptin may be an important mediator of some effects related to obesity as 

modulated by plasma 25-OH-VitD. Future research elucidating the molecular mechanisms 

of their interactions and their optimal levels is crucial for understanding the role of vitamin 

D, adipocytokines, and antioxidant lipids in human health and disease prevention. 

Furthermore, determining the optimal concentrations of micronutrients and/or biomarkers of 

risk requires consideration of multiple health outcomes (63) and physiological parameters as 

well as interactions between related molecules if we are to effectively define their roles in 

physiology and provide meaningful public health recommendations.
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FIG. 1. 
Association of 25-OH-VitD with PTH and leptin in plasma. Data represent means ± SEM of 

the indicated analyte in plasma relative to median 25-OH-VitD stratified in quintiles (n = 

57).
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FIG. 2. 
Effect of plasma leptin on the observed association between 25-OH-VitD and PTH. Mean 

values for the 29 subjects were stratified by plasma leptin into those with levels higher or 

lower than 10 ng/ml and mean PTH concentrations plotted as a function of median plasma 

25-OH-VitD for each quintile. Regression lines and correlation coefficients are shown for 

each subset of data.
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FIG. 3. 
Association of BMI with leptin and with the ratio of α-tocopherol to γ-tocopherol. Subjects 

(n = 29) were stratified by their BMI into hexiles and the corresponding mean values for 

leptin and the ratios of α-tocopherol to γ-tocopherol ± SEM plotted.
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FIG. 4. 
Interactive association 25-OH-VitD and BMI with leptin levels in plasma. Samples were 

stratified by tertile of 25-OH-VitD and tertile of BMI. Plasma leptin was then plotted three-

dimensionally as a function of 25-OH-VitD and BMI.
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TABLE 1

Mean plasma levels of selected analytes for control and intervention groups based on the mean value for 2 

samples taken 3 mo aparta

Micronutrient
Controlsb

Mean ± SEM
Interventionc
Mean ± SEM

P Value for Difference
Between Groups W/Bd

25-OH vitamin D (nM) 87 ± 7 90 ± 6 0.74 0.28

Leptin (ng/ml) 12.0 ± 2.0 11.7 ± 2.0 0.91 0.14

PTH (pg/ml) 58 ± 7 59 ± 7 0.90 0.18

Adiponectin (µg/ml) 14.8 ± 5.6 13.3 ± 3.6 0.82 0.32

α/γ -tocopherol ratio 21 ± 6 14 ± 3 0.28 0.05

β-carotene (ng/ml) 302 ± 47 460 ± 100 0.15 0.11

Total carotenoids (ng/ml) 1,262 ± 89 1,852 ± 189 0.002 0.11

BMI (kg/m2) 22.2 ± 0.7 22.8 ± 1.3 0.91 —

a
Abbreviations are as follows: PTH, parathyroid hormone; BMI, body mass index.

b
n = 16.

c
n = 13.

d
W/B = within to between variance.
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