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Abstract

Aims—The study of rare variants, which can potentially explain a great proportion of heritability, 

has emerged as an important topic in human gene mapping of complex diseases. Although several 

statistical methods have been developed to increase the power to detect disease-related rare 

variants, none of these methods address an important issue that often arises in genetic studies: 

false positives due to population stratification. Using simulations, we investigated the impact of 

population stratification on false-positive rates of rare-variant association tests.

Methods—We simulated a series of case-control studies assuming various sample sizes and 

levels of population structure. Using such data, we examined the impact of population 

stratification on rare-variant collapsing and burden tests of rare variation. We further evaluated the 

ability of two existing methods (principal component analysis and genomic control) to correct for 

stratification in such rare-variant studies.

Results—We found that population stratification can have a significant influence on studies of 

rare variants especially when sample size is large and the population is severely stratified. Our 

results showed that principal component analysis performed quite well in most situations while 

genomic control often yielded conservative results.

Conclusions—Our results imply that researchers need to carefully match cases and controls on 

ancestry in order to avoid false positive caused by population structure in studies of rare variants, 

particularly if genome-wide data are not available.
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Introduction

Genome wide association studies (GWAS) have successfully identified 7817 associations 

between common variants and 743 traits as of November of 2012 (http://www.genome.gov/

gwastudies/). However, the majority of these common SNPs have very small effect sizes 

(odds ratio between 1.1-1.5) and no apparent causal effects on the disease or trait of interest 
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[1]. As GWAS are primarily designed to detect associations with common variants, an 

intuitive explanation of the missing heritability is that many common diseases are actually 

caused by rare variants [2,3]. Published literatures show that the odds ratios of rare variants 

are often much larger than those of common variants [4]. Furthermore, rare variants are 

more likely to have causal effects than common variants in that they are expected to change 

amino acids and further influence interactions among proteins [4]. From an evolutionary 

point of view, rare variants are rare either because they are selected against or because they 

are new and have not been under selection for a long time [5]. The above arguments suggest 

a role for rare variants in common disease and, with developments in cost-effective 

sequencing technology (which can obtain thousands of sequences in parallel), widespread 

search for rare susceptibility variants is now feasible. Sequencing studies have already 

identified several rare variants associated with common diseases, including type 2 diabetes 

[6] and asthma [7].

Using the popular case-control design, many studies are attempting to identify rare causal 

variants that increase risk for complex diseases. However, such studies require robust and 

powerful statistical tools for rare variant analysis that are somewhat distinct from those used 

previously to analyze common variants. As power to detect association with an individual 

variant is lower for less frequent variants, existing analytic methods typically used for 

GWAS are not powerful when applied to studies of rare variants. To avoid this power loss, 

most rare variant methods collapse less frequent variants in a region together into a 

composite variable, and then test the association between the composite variable and the 

disease. For example, the “Combined Multivariate and Collapsing” (CMC) method of Li 

and Leal [8] collapses the rare variants in a region into a composite variable (according to 

predefined criteria) and then constructs a multi-marker test of association between disease 

status and multiple composite variables (each composite variable corresponding to a 

different region). Another commonly used method is the “burden test” [9], in which the 

composite variable is calculated as the number of rare variants in a region. Simulation 

studies show that the burden test has higher power compared to other methods [9].

Although simulations suggested that these novel methods successfully increased the power 

to detect rare variants compared to standard tools used for the analysis of common variants, 

none of the available methods address an important issue that often arises in genetic studies: 

the potential for false positives due to population stratification. Population stratification is a 

systematic difference in allele frequencies between cases and controls caused by different 

subpopulation structures. It is well established that stratification, if not properly modeled, 

can lead to an increased number of spurious associations and further can reduce the power to 

detect true associations [10]. Several methods have been developed to correct the inflated 

false positive rate caused by population stratification, among which genomic control [11] 

and principal component analysis [12] are two popular approaches. The genomic control 

method assumes that population stratification will inflate the test statistics Y2 from the 

distribution expected under the null hypothesis into a  distribution, where λ is estimated 

as the mean value of Y2 or the median value of Y2 divided by 0.4549 (the expected median 

of a variable from the  distribution). The disadvantage of the genomic control method is 

that it assumes all genetic variants are influenced to the same degree by population 
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stratification (i.e., λ is constant across different loci). In contrast, principal component 

analysis aims to infer differences in individuals' ancestry by summarizing genomic variation 

via the eigenvectors of the sample genotypic covariance matrix, and can in turn allow the 

influence of population stratification to differ across variants.

Although it is clear that population stratification is a severe problem in association studies of 

common variants, little is known about the effect of population stratification on case-control 

studies of rare variants [13,14]. Without correctly accounting for confounders such as 

population stratification, sequencing studies could potentially be plagued by false positive 

results. Here, we use simulated sequence data based on coalescent models to examine 

whether population stratification affects studies of rare variants and whether existing 

methods can adequately adjust for this stratification.

Materials and Methods

1. Study Design and Notation

We assume a case-control study where N participants are sequenced for a region comprised 

of M variants. We define Nd and Nc as the number of cases and number of controls 

respectively with N=Nd+Nc. Let D be an N × 1 column vector that denotes the disease status 

for N research subjects, where Di=1 if subject i is a case while Di=0 if the subject is a 

control (i=1,2,….N). Define G as a N×M matrix comprised of the genotypes for the N 

subjects, where the (i,j)th element of the matrix, gij, denotes the genotype of the ith subject 

on the jth locus (j=1,…,M). We code gij to take the values 0, 1, or 2 representing the number 

of copies of the rare variant that the subject possesses at the locus. We define rare variants as 

those alleles with minor allele frequencies ≤1% within the population.

2. Associations between rare variants and disease

2.1 Collapsing Methods—Many statistical methods for rare-variant analysis collapse 

rare variants in a region together and analyze them as a group in order to improve the power 

to detect disease-associated alleles. In this paper, we consider two ways to form composite 

variables: the Combined Multivariate and Collapsing (CMC) method is based on the 

presence or absence of rare alleles in a region [8] while the burden test is based on the total 

number of rare alleles in a region [9]. Assuming A regions under study, we let Cia denote the 

composite variable in region a (a=1,…,A) for the ith subject. For Li and Leal's collapsing 

method [8], Cia=1 if person i possesses rare variants in region a and Cia=0 if there are no 

rare variants in the region. For the burden test [9], Cia= total number of rare variants in 

region a (a=1,…,A).

2.2 Test of association—We used Pearson chi-square tests and logistic regression to test 

whether the composite variables are significantly associated with the disease. When 

collapsing based on presence or absence of the rare variants in the region, we can apply the 

Pearson chi-square test statistic. Assuming equal number of cases and controls, the Pearson 

chi-square statistics for the ath region, , is defined as follows,
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where  and  represent proportions of cases and controls with rare 

variants in the ath region, while  and  represent proportions of cases 

and controls without rare variants in the ath region. When performing a burden test that 

counts the number of rare variants in a region, we use the score test based on logistic 

regression. The logistic regression model is defined as follows,

where Ci =(Ci1, Ci2,…, CiA)′ are the composite variables for the ith subject. The logistic 

regression can accommodate non-binary independent variables but is equivalent to the 

Pearson chi-square test shown above when the independent variable is binary.

3. Correction method

We examined whether two methods that correct for population stratification in case-control 

studies of common variation (genomic control [11,15] and principal component analysis 

[12,16]) were as effective for rare-variant analyses using the collapsing and burden methods 

described earlier. We describe each method in more detail below.

3.1 Genomic Control—As discussed in Devlin and Roeder [11] and Marchini et al.[15], 

genomic control is a popular method to adjust for population stratification in GWAS, though 

it has not been widely applied to studies of rare variants. This method is typically used when 

testing for association with a chi-square test with 1 degree of freedom such as the Pearson 

chi square test described above or a Cochran-Armitage trend test. The Cochran-Armitage 

test statistic for tests of common variants is defined as follows,

where NdAa and NdAA are the number of SNPs in cases with one minor allele and two minor 

alleles respectively, and NAa and NAA are the total number of subjects with one minor allele 

and two minor alleles respectively. Without stratification, under the null hypothesis, the test 

statistic follows a chi-square distribution with 1 degree of freedom. The genomic control 

method assumes that, in the presence of stratification, test statistics will be inflated by a 

constant inflation factor λ, so that . In a GWAS, the genomic control factor λ can be 

estimated as either the median of all observed chi-square statistics divided by 0.4549 (the 

median of the  distribution) or as the mean value of all observed chi-square statistics. In 

our simulated rare variant analyses (described below) we estimate λ as the median test 
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statistic from GWAS data on common variants divided by 0.4549. To apply genomic control 

to the CMC and burden tests, we calculate the inflation factor λ from the Cochran-Armitage 

trend tests and then divide the observed CMC/burden test statistic by λ. For λ≤1, no 

adjustment is needed. We then calculate the p-value of the adjusted CMC/burden test 

assuming that the genomic-control adjusted test follows a chi-square distribution with 1 

degree of freedom.

3.2 Principal Component Analysis—Principal component analysis aims to summarize 

the variation in a dataset as a sequence of uncorrelated components, which are linear 

combinations of the variables in the original dataset. The pth component can be summarized 

as follows:

where Bp = (bp1,bp2,…,bpM)′ is a M×1 vector and g.j represents the jth column of G. The 

principal components are ordered by their ability to summarize the data. As a result, the first 

component, P1, accounts for as much of the variation in G as possible for a linear 

combination of the variables; the second component, P2, accounts for as much as possible of 

the remaining variation of G, and so on. To calculate the principal-components coordinates 

for each subject, we first subtracted the empirical column mean μj, calculated as , 

from each column j of G. We then divided each entry by its empirical column standard 

deviation, SDj. We use S to denote the standardized G matrix with Sij=(Gij-μj)/SDj. As 

discussed in Price et al. [12], Bp is the coordinate of the pth eigenvector of the variance-

covariance matrix of S. We define V as the M×M variance matrix of S, where element Vjj, 

represents the covariance between locus j and locus j′. We used the singular value 

decomposition method to compute the eigenvector of V. The singular value decomposition 

method can decompose S into the product of three matrices: S=UΣWT, where U is a matrix 

whose columns are eigenvectors of the matrix SST, Σ is a N × M diagonal matrix with the 

values on the diagonal be the singular values of S, and columns in W are eigenvectors of the 

matrix STS. As SST is equivalent to the variance-covariance matrix V, the pth column of U 

contains the coordinates of the pth principal component for the subjects in the sample. To 

use the principal component method to correct for population stratification in our 

simulations described below, we include the top principal components as additional 

covariates in the logistic regression model:

where Di denotes the disease status for the ith subject, Ci =(Ci1, Ci2,…, CiA)′ are the 

composite variables for the ith subject and Pi denotes the vector of the top principal 

components.
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4 Simulations

4.1 Type-I Error—To test the performance of the methods described above, we simulated 

case-control resequencing datasets subjected to confounding due to population stratification. 

To generate realistic resequencing data, we used cosi [17] to generate 250 kb haplotypes for 

20,000 European and 20,000 African individuals. As discussed in Schaffner et al. [17], cosi 

can simulate haplotypes with high resemblance to empirical data collected by the 

International HapMap Project [18]. We first used cosi to generate the haplotypes under the 

“best-fit model” as described in Schaffner et al. [17]. We also simulated haplotypes under an 

exponential growth model where we assume that from the 50th to 1000th generation, the 

European population increased in size from 8,000 to 100,000 people while the African 

population increased from 10,000 to 100,000 people, based on common assumptions about 

effective population size [19]. We used R to simulate case-control studies with population 

structure as follows: we set the number of European versus African individuals to be 1:1 in 

controls and held this constant for all studies. However, we allowed the proportion of 

European and African individuals to vary in cases. We simulated across cases in four 

different proportions: 1) 50% European vs. 50% African, 2) 40% European vs. 60% African, 

3) 25% European vs. 75% African, 4) 10% European vs. 90% African. Three different 

sample sizes were used: 100 cases/100 controls, 500 cases/500 controls, or 1000 cases/1000 

controls. For each scenario considered, we performed 500 simulations. For all analyses, we 

assumed a significance threshold of α=0.05.

4.2 Power—To evaluate power, we generated case-control datasets prospectively assuming 

the odds of disease is a function of ancestry (European/African) and rare causal variants:

where β0 is the prevalence of disease, θ is the odds ratio of disease risk between African and 

European subjects, I is an indicator function, and η is the odds ratio of causal rare variants. 

For each model considered, we performed 300 simulations. For all analyses, we assumed a 

significance threshold of α=0.05.

4.3 Generating Additional Markers for Stratification Adjustment—We next 

generated SNP data for use in stratification adjustment of the collapsing and burden tests in 

the presence of population stratification. Since genomic control and principal component 

analysis require far more SNPs for an accurate correction than those found in a 10 kb region, 

we instead generated genome-wide SNP data using HapMap markers found on the 

Affymetrix 6.0 array SNPs. We used such HapMap SNP data from the Yoruban (YRI) and 

CEPH (CEU) populations to represent African and European populations respectively. We 

performed LD-based pruning in PLINK [20] to filter out SNPs in strong linkage 

disequilibrium (R2 ≥0.5). We used the minor allele frequencies of the remaining SNPs to 

generate genotype data under the assumption of Hardy-Weinberg Equilibrium. We used the 

minor allele frequencies from the HapMap CEU samples to generate genotypes for 

European subjects and used the minor allele frequencies from the HapMap YRI samples to 
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generate genotypes for African subjects. We assumed that these SNPs follow Hardy-

Weinberg Equilibrium and simulated the genotypes based on the binomial distribution.

We next used the SNP genotype data to correct for population structure in our case-control 

study. In each simulation, we randomly selected a simulated GWAS genotype for each 

subject in our simulated case-control study, selecting from the set of African or European 

genotypes depending on the ancestry of each subject. Using the simulated data, we analyzed 

the GWAS data to calculate the inflation factor λ and to construct principal components 

using the methods discussed above. As there are only two populations (African and 

European) in our simulation, we only included the first and the second principal components 

in our logistic regression models; as a result, P is an N × 2 matrix.

We then evaluated the type I error rates and power of the CMC method [8] and burden test 

[9] when adjusting for population stratification with genomic control or principal 

components.

Results

We first performed simulation studies under the null hypothesis of no association between 

rare variants and disease to assess whether population stratification can lead to spurious 

associations in resequencing studies. We simulated case-control studies subject to different 

stratification levels for various sample sizes (as described in Methods). We first used the 

“best fit model” of cosi [17] to simulate 20,000 European and 20,000 African haplotypes 

that have high resemblance to HapMap data. For each simulation, we randomly selected a 

10kb region as the targeted region to study the association between genetic variants in the 

region and disease status. As described in Methods, we fitted logistic regression models 

using both the CMC method [8] and the burden method [9] in each of 500 simulations, and 

estimated the rate of type I error as the proportion of simulations with a significant 

association (P<.05). The type I error rates at different sample sizes and different 

stratification levels are shown in Figure 1. Type 1 error rate increases as stratification level 

increase. When there is no stratification (50% African vs. 50% European in both cases and 

controls), the type I error rate is around 0.05; however, when population stratification exists, 

the type I error rate is inflated up to 0.56 for the CMC method and 0.59 for the burden 

method. The inflation of type I error rate becomes larger as sample size increases. For large 

samples (1000 cases/1000 controls), even modest stratification (60% African vs. 40% 

European in cases) leads to an inflated type I error rate around 0.2. This is because the type I 

error rate under the null hypothesis is actually the power to detect any association with the 

disease, even a spurious association due to population stratification. As a result, the type I 

error rate goes up as the sample size goes up. The CMC method and the burden method have 

similar performance, although the burden test has systematically higher type 1 error rate 

compared to the CMC method.

To examine population stratification's effect on rare variation under different population-

genetics models, we next simulated the European and the African haplotypes under the 

exponential growth model as described earlier. Overall, we observed no marked difference 

in the results generated under the exponential growth model compared to the results 
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generated under the “best fit” model [17]. For the exponential growth model, when there are 

900 African and 100 European in cases (500 African and 500 European in controls), the type 

1 error rate is 0.55 for the CMC method and 0.57 for the burden method. These results are 

quite similar to the ‘best-fit’ results under the same stratification model. Thus, our results 

appear to be consistent under different population genetics models.

To examine how type 1 error rate is influenced by number of variants in a region, we also 

preformed simulations for 1kb and 50 kb regions. As the region size increased, we found 

that the behavior of the rare-variant tests depended on the collapsing method used. (Table 1). 

Interestingly, when stratification existed but was not adjusted for, we observed that the CMC 

method demonstrated less type-I error inflation for a 1kb region or a 50kb region compared 

to a 10 kb region. On the other hand, the burden test demonstrated greater type-I error 

inflation with increasing region size. While counterintuitive, we believe the reason the type-I 

error for CMC is the most inflated for a 10kb region is because the CMC method is based on 

presence/absence of the rare variants in a region. As the region size increases, more 

individuals will have at least 1 rare variant in a region even when stratification exists. 

Supplementary Table 1 demonstrates that in our simulations, the majority of individuals 

have 0 rare variants in a given 1kb region, while the majority of individuals have >0 rare 

variants in a given 50kb region. In contrast, the average number of individuals with 0 vs. >0 

variants is roughly evenly distributed for regions of 10kb. Consequently, our ‘power’ to 

detect population stratification is greatest for the 10kb regions, while the effect of 

stratification is attenuated for the 1kb and 50kb regions. The burden test, on the other hand, 

is based on the total number of rare variants in a region and can take a larger range of 

values. Thus, we expect the type-I error inflation of this test to be exacerbated with 

increasing region size.

We next examined whether genomic control and principal components can correct for the 

confounding due to population stratification in the samples. For the genomic control method 

(Figure 1, purple line), the results are very conservative. When the stratification level is a bit 

more severe (75% African vs. 25% European), use of genomic control will lead to a type I 

error rate close to 0. This can seriously reduce the power in the presence of true association. 

However, the principal components method performed very well (Figure 1, red line): the 

type I error rates generally are distributed around 0.05 although there is a slight type-I error 

elevation under the extreme stratification model. We examined the same pattern for the 1kb 

region and the 50kb region (Table 1). In general, principal component correction works 

better for the CMC method compared to the burden method, especially when the region size 

is large (Figure 1, Table 1). As a comparison, we also applied these two correction methods 

to a simulated common variant of similar frequency. For each simulation, we calculated the 

average frequency of the composite variable after collapsing the rare variants in the region 

using the CMC method. In each simulation we then selected the common variant with allele 

frequency most similar to the composite variable, and computed type I error based on these 

common variants. In the presence of population stratification, the common variant has a 

much higher type I error rate than either the CMC or burden tests of rare variants (Table 2). 

Genomic control is also very conservative in the common variant simulations, although not 

as conservative as for rare variants. Principal component analysis, on the other hand, has 

much better performance.
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We next performed power calculations to examine the performance of these two correction 

methods in the presence of true association between rare variants and disease. Here we used 

the haplotypes generated by cosi to simulate case-control studies subjected to population 

stratification. For each simulation, we randomly selected a specified number of African and 

European haplotypes and randomly selected a 10kb region as the targeted region. We then 

generated case/control status prospectively such that the odds of having disease are a 

function of both rare causal variants and ancestry (European/African). For our simulations 

we assumed that the baseline prevalence of the disease is 0.05 and the probability that a rare 

variant is causal is 0.3. We allowed Africans to have a 4-fold increased odds of being a case 

compared to Europeans; as a comparison we also considered a separate simulation assuming 

equal disease odds for Africans and Europeans. We simulated such that the presence of the 

causal rare variants leads to a 1- to 5-fold increase in the risk of disease. The simulation 

results based on 300 simulations are summarized in Figure 2. This shows that it is necessary 

to adjust for population stratification to avoid spurious results due to an inflated false 

positive rate. Consistent with Figure 1, genomic control consistently leads to extremely 

conservative results while principal components analysis controls type I error at the target 

level. Although power increases with the odds ratio of causal rare variants, the power 

remains close to zero when using genomic control as a correction method and collapsing by 

CMC [8]. As in Figure 1, the burden method and CMC method have very similar 

performance.

Discussion

In this paper, we showed that population stratification can lead to an inflated type 1 error 

rate in rare-variant association studies. We examined two methods to correct for this 

stratification: principal component analysis and genomic control. Our simulations showed 

that principal component analysis could control the false positive rate at the desired level 

while maintaining power to identify true associations. Genomic control, on the other hand, 

leads to extremely conservative results in this setting. Using genomic control as a correction 

method in resequencing studies will lead to substantially lower power to detect association. 

Our analysis examined two methods of collapsing rare variants: the CMC method of Li and 

Leal [8] and the burden method of Morris and Zeggini [9]. Our simulation results suggested 

that the degree of inflation due to population stratification depended on the number of 

variants considered (i.e. region size) and the specific collapsing method used, and correction 

with principal components was more successful for the CMC method than for the burden 

method. A recent paper by Mathieson & McVean [21] also investigated the impact of 

confounding due to population stratification on rare-variant and common-variant tests but 

this work focused on spatially-structured, rather than discrete, populations.

Our results imply that researchers need to carefully match cases and controls on ancestry to 

avoid population stratification in studies of rare variants. Although principal component 

analysis can provide the desired correction, it effectively relies on genome wide data, which 

may not always be available, such as in targeted sequencing studies like the Dallas Heart 

Study. Consequently, the only way to ensure robustness of rare-variant association tests may 

be to use family-based studies and implement methods similar to the transmission 

disequilibrium test for analysis. We will explore such designs in a future manuscript.
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Figure 1. 
Type 1 error rate for the CMC and burden tests uncorrected or corrected by principal 

component and genomic control for a 10kb region. 1-A: 500 cases and 500 controls 

collapsed by the CMC method; 1-B: 500 cases and 500 controls collapsed by the burden 

test; 1-C: 1000 case and 1000 control collapsed by the CMC method; 1-D: 1000 cases and 

1000 controls collapsed by the burden test. Note that in all simulations, 50% of controls 

have African ancestry and 50% have European ancestry, while the proportion of cases with 

African ancestry varies across simulations (X-axis).
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Figure 2. 
The power of rare variants sequencing studies subject to population stratification, 2-A: θ (the 

odds ratio of the disease risk between African and European subjects)=1, collapsed by the 

CMC method; 2-B: θ =4 collapsed by the CMC method; 2-C: θ =1, collapsed by the burden 

test; 2-D: θ =4 collapsed by the burden test.
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Table 2

Type 1 error rate for common variants, compared to rare variants collapsed by CMC or burden tests.

Cases that are of African Ancestry, % Correction Rare (CMC) Rare (Burden) Common

50% Before 0.045 0.056 0.036

PCA 0.055 0.060 0.032

GC 0.045 0.056 0.036

90% Before 0.58 0.61 0.87

PCA 0.07 0.06 0.036

GC 0 0 0.01

Rates are presented before and after correction by principal component (PCA correction) and genomic control (GC correction). Simulations are 
based on 10-kb regions in 1,000 cases and 1,000 controls. All simulations assumed 50% of controls have African Ancestry.
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