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Abstract
MicroRNAs (miRNAs) are known to play a part in regulating important cellular processes.

They generally perform their regulatory function through their binding with mRNAs, ultimate-

ly leading to a repression of target protein expression levels. However, their roles in cellular

processes are poorly understood due to the limited understanding of their specific cellular

targets. Aberrant levels of miRNAs have been found in hepatocellular carcinoma (HCC) in-

cluding miR-181a. Using bioinformatics analysis, cyclin-dependent kinase inhibitor 1B

(CDKN1β) and transcriptional factor E2F7 were identified as potential targets of miR-181a.

Validation analysis using surface plasmon resonance (SPR) showed a positive binding be-

tween miR-181a and the 3’UTRs of these two potential mRNA targets. In vivo luciferase

assay further confirmed the positive miR-181a:mRNA bindings, where a significant de-

crease in luciferase activity was detected when HepG2 cells were co-transfected with the

3’UTR-containing reporter plasmids and miR-181a. The potential impact of miR-181a bind-

ing to its specific targets on the general cellular behavior was further investigated. Results

showed that miR-181a significantly activated the MAPK/JNK pathway which regulates cell

proliferation, supporting our recently reported findings. Inhibition of miR-181a, on the other

hand, abolished the observed activation. Our findings open up a new approach in designing

targeted functional analysis of miRNAs in cellular processes, through the identification of

their cellular targets.

Introduction
Cancer is one of the top leading causes of mortality in the world today, accounting for approxi-
mately 7.6 million deaths in 2008 [1]. Its progression is usually a multistep process, involving
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complex genetic changes that gradually transform a cell from a pre-malignant state into inva-
sive cancer and finally metastasis. What makes cancer cells so resilient to current therapies is
its ability to proliferate in an autonomous manner, avoid inhibitory growth signals, escape apo-
ptosis pathways, stimulate and sustain angiogenesis and spread to other parts of the body.
Often, genes implicated in cell proliferation, differentiation and apoptosis are involved in can-
cer initiation and subsequent progression [2].

Apart from the classic protein coding genes, the recent discovery of miRNAs has also
highlighted the roles they play in the development of cancer. MiRNAs form a subclass of small
RNAs and are single-stranded, non-coding RNAs of 19–25 nucleotides in length, and are usual-
ly found in the intergenic regions or introns of the genome [3]. They are able to regulate various
physiologically important processes in the body such as cellular proliferation, differentiation,
cell cycle, angiogenesis, metabolism, immune response and apoptosis, making them a key player
in cancer [4]. Studies have shown that different miRNA expression profiles are often seen asso-
ciated with the different stages of cancer. Like any gene, miRNAs (in a specific tissue and/or
differentiation state) may act as an oncogene or a tumor suppressor, depending on the down-
stream effect in has in the cell. MiRNAs may post-transcriptionally regulate gene expression by
either cleavage or translational repression of mRNA through binding to the 30-untranslated re-
gion (30-UTR) of the target genes [3]. MiRNAs are able to regulate different cellular processes
because a single miRNA is able to negatively regulate multiple target proteins through direct in-
teraction with the corresponding mRNAs. Approximately 3% of the entire human genome en-
codes for miRNAs and they regulate up to 30% of human protein coding genes [5]. Because
they are able to regulate a large number of proteins, their abnormal expression often disrupts
the functioning of the cell, either by activating oncogenes or deactivating tumor suppressor net-
works. This contributes to the initiation and progression of many human cancers.

Although the importance of miRNAs can be seen through the myriad of cellular functions
they are involved in, a lot is still unknown about their mechanism of action and gene targets. In
this study, we investigate the involvement of miR-181a in HCC, the third leading cause of
cancer-related deaths, and its potential mRNA binding targets in HepG2 cells. MiR-181a is not
only found to be upregulated in HCC but also in Hepatic Stem Cell-like HCC (HpSC-HCC)
[6]. These are HCC cells that are EpCAM and AFP positive (i.e. EpCAM+AFP+ HCC), which
respectively, serves as a hepatic stem/progenitor cell-specific marker and a marker indicative
for HCC [6]. MiR-181a is also involved in the activated Wnt/β-catenin signaling pathway in
HpSC-HCC [6]. This pathway has been found to be over-activated in at least 60% of HCC, as
the levels of β-catenin protein in the nucleus and/or cytoplasm was found to be increased in
these cases. Our previous study [7] on the overall effect miR-181a has on HepG2 cells showed a
significant increase in cell viability with the transfection of miR-181a. The opposite was ob-
served when miR-181a was inhibited, where cell viability dropped by 20%. Inhibiting miR-
181a also delayed HepG2 cell cycle progression to an extent more than miR-181a encouraged
cell cycle entry. These results may suggest that miR-181a enhances liver cancer cell growth
while inhibiting it represses proliferation and cell cycle. Its mechanism of action and mRNA
targets will be further studied here.

The study of miRNA:mRNA interaction and binding will be carried out both under in vitro
and in vivo conditions. Surface plasmon resonance (SPR) is a real-time platform for detecting
the binding of specific molecules to a partner. Protein interactions, small molecules, nucleic
acids, cells and viruses and carbohydrates are some of the compounds that can be studied with
SPR [8]. It typically takes place on the sensor surface of a chip, and its working principle is
based on the change in refractive index of the interface when the surface condition changes.
When positive binding occurs, the sensorgram registers a change in angle due to the increase in
mass bound at the surface. A real-time profile of binding followed by subsequent dissociation
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can be generated, and the kinetics of the binding characterized. This provides a quick yet precise
method of screening potential mRNA targets of miR-181a. Following successful identification
of possible targets in vitro, in vivo experiments via luciferase assays were performed to validate
the binding interactions within the cellular environment.

Materials and Methods

Cell Culture
HepG2 cells (American Type Culture Collection) were maintained in monolayer culture in
Minimal Essential Medium Eagle (MEM) (Gibco, Invitrogen), supplemented with 10% FBS in
a 5% CO2 incubator at 37°C. Subculturing of cells was carried out using 0.25% trypsin-EDTA
(Life Technologies, Invitrogen).

Bioinformatics Study of mRNA Target Prediction
Human miRNA target predictions for miRNA families were obtained from TargetScan 6.2
(http://www.targetscan.org/) as well as miRanda (http://www.microrna.org/microrna/home.
do) database. miRò, the miR-ontology database was also used as a convenient source of catego-
rizing miRNAs and their targets by diseases, functions or processes that they are involved in.
Relevant targets predicted by both TargetScan and miRanda were chosen for wet lab experi-
mentation. Putative miRNA:mRNA interaction, in TargetScan, was based on the total context
score and probability of conserved targeting (PCT). The more negative the context score and
the higher the PCT, the higher the probability of miRNA:mRNA binding.

Surface Plasmon Resonance (SPR) assay
All SPR experiments were run with HBS-EP buffer (10 mMHEPES, 150 mMNaCl, 3.4 mM
EDTA and 0.005% P20 at pH 7.4) on a Biacore 3000 (BIAcore AB, GE Healthcare) with a car-
boxymethylated dextran coated sensor chip (CM5) at 25°C. Two surfaces were activated for 7
min with 1:1 mixture of 0.2 M N-ethyl-N’-[3-(diethylamino)propyl]carbodiimide (EDC) and
50 mMN-hydroxysuccinimide (NHS), before immobilization of 1500 RU of Neutravidin
(Pierce, USA) in 10 mM sodium acetate at pH 6.0 at the flow rate of 10 μl/min by standard
amine coupling procedure. The surfaces were then blocked with 0.5 M ethanolamine-HCl at
pH 8.5 for 7 min. Biotin-labeled single-stranded RNA harboring 31 bp 3’UTR of CDKN1β
mRNA (5’- GGGAGUUUUGAAUGUUAAGAAUUGACCAUCUGC -3’) and 34 bp 3’UTR of
E2F7 mRNA (5’- GGGUAUGACGACUUGAAUGUUUAUACUUUUAUUC -3’) were captured on
sensor chip surface to 200 RU and 430 RU, respectively. Another two empty channels serve as
reference. A 2-fold serial injection of miR-181a (180 nM, 359 nM, 719 nM, 1.44 μM, 2.88 μM,
5.75 μM, 11.5 μM, and 23 μM) was injected at 10 μL/min across all the surfaces for 2 min, and
was then allowed to dissociate for 15 min. All the sensorgrams were corrected by subtraction of
the responses of analytes on the empty channel and buffer blanks [9]. Processed data were
globally analyzed and fit into 1:1 interaction model to yield the affinity.

Transformation
Mammalian expression vectors (Firefly/renilla duo-reporter vector system) with the 3’ UTR of
CDKN1β and E2F7 cloned downstream of the secreted firefly luciferase reporter gene were ob-
tained from GeneCopoeia. These have been sequenced and quality checked before subsequent
usage. 1μl of DNA plasmid was mixed with 50 μl competent cell Ecoli strain TOP10 in a micro-
centrifuge tube. The tube was stored on ice for 10min. It was next heat shocked at 42°C for 90s
and returned to ice immediately for 2min. 450μl fresh LB was added and the cells incubated at

Cellular Targets of MicroRNA-181a in HepG2 Cells

PLOS ONE | DOI:10.1371/journal.pone.0123167 April 22, 2015 3 / 17

http://www.targetscan.org/
http://www.microrna.org/microrna/home.do
http://www.microrna.org/microrna/home.do


37°C in a shaking incubator at 250 rpm for 1 h. LB/kanamycin agar plate (1% Tryptone, 0.5%
yeast extract, 171mMNaCl, 1.5% agar, PH 7.0) was prepared and 100μl of transformed bacteri-
al cells was spread on top and incubated at 37°C overnight in an inverted position.

Mini-prep Purification of Plasmids
A single colony was incubated in 5ml sterile LB medium with 100ng/ml Kanamycin in a 15 ml
falcon tube at 37°C with agitation at 250 rpm overnight. Bacteria were harvested directly by
centrifuging at 2500 rpm for 15min. Plasmid extraction was carried out using QIAprep Mini-
prep plasmid kit (Qiagen) according to the manufacturer’s instructions. The eluted DNA was
quantified by a nanodrop spectrophotometer and stored at -20°C until further use.

Co-Transfection of Plasmids and miRNAs
The co-transfection of DNA plasmids and miRNAs was carried out via electroporation. Briefly,
1x106 of overnight starved HepG2 cells were resuspended in 100ul nucleofection solution and co-
transfected with 4ug DNA plasmid and either 10nM or 100nMmiR-181a. An additional control
vector was also used such that the sequence cloned downstream of the firefly luciferase reporter
gene is of a random, non-specific targeting sequence. 100K transfected cells were seeded in each
well of a 24-well plate and incubated with 500ul complete growth media at 37°C overnight.

Luciferase Assay
The luciferase assay was carried out using GeneCopoeia Luc-Pair miR Luciferase Assay kit. 24h
after co-transfection of plasmids and miRNAs, growth media was aspirated and 300μl Solution
1 was added to each well and incubated at room temperature for 3 minutes. 80μl of cell lysate
was removed and transferred into a new 1.5ml microcentrifuge tube. Working Solution I and
Working Solution II are prepared according to the manufacturer’s instructions. Prior to lucifer-
ase activity measurement, the GloMax 20/20 Luminometer (Promega) was set to measure lu-
minescence for 2s. 20μl of Working Solution I was added to each of the 80μl sample and firefly
luminescence measured (M1). 100μl of Working Solution II was subsequently added and
renilla luminescence measured (M2). The values obtained were normalized by taking M1/M2.

Western Blot
SDS-PAGE was performed on the Bio-Rad mini-protean electrophoresis system. 30μg of total
protein was extracted per sample and mixed with 6 X SDS sample buffer and heated at 90°C
for 5 min. Novex Sharp Protein Standard (Life technologies, Invitrogen) was used to verify pro-
tein size. Proteins were transferred onto Polyvinylidene Fluoride (PVDF) membrane and sub-
jected to blocking in 5% non-fat milk in 1 X PBS for 1h at room temperature. Following
blocking, the membrane was allowed to incubate with the respective primary antibodies in 5%
non-fat milk / 1 X PBS solution overnight at 4°C. The membrane was washed with 0.5% PBST
3 times before incubating with secondary antibody tagged with Horseradish Peroxidase (HRP)
in 5% non-fat milk / 1 X PBS solution for 1h. The membrane was washed again another 3
times and incubated in chemiluminescence (ECL) using SuperSignal West Pico chemilumines-
cent substrate (Pierce). The antibodies used in this study were as follows: (1) p27 (SC 528,
Santa Cruz), (2) E2F7 (AB56022, Abcam, Biomed Diagnostics), (3) β-actin mouse monoclonal
IgG (Sigma A5441).

Cellular Targets of MicroRNA-181a in HepG2 Cells

PLOS ONE | DOI:10.1371/journal.pone.0123167 April 22, 2015 4 / 17



Cignal Reporter Assay Analysis of Cancer Pathways Affected by miR-
181a
The Cancer 10-pathway Reporter Luciferase Kit (Qiagen) in plate format was used in the study
of ten cancer-related signaling pathways. Briefly, 2pmol of miRNA was diluted in 25μl of pure
Opti-MEM (Life Technologies) growth media and added to each well of the plate to resuspend
the plasmids. 0.6μl Attractene (Qiagen) was diluted in 25μl pure Opti-MEM in a separate
microcentrifuge tube, incubated at room temperature for 5min and added to each well of the
resuspended plasmids. The Attractene/plasmids-miRNA complex was allowed to form for
20min at room temperature. HepG2 cells growing in complete MEMmedia with 10% FBS
were washed in PBS and trypsinized, centrifuged and supernatant discarded. The cell pellet
was resuspended to 4X105 cells/ml in Opti-MEM containing 5% FBS. After 20 minutes of com-
plex formation, 100μl of the prepared cell suspension was added to each well containing the
constructs-miRNA-Attractene complexes, making up to a final volume of 150μl per well of a
96-well plate. The plate was mixed gently with a rocking motion and then incubated at 37°C in
a 5% CO2 incubator for 16-24h. After 16-24h of transfection, the media was aspirated and
changed to 75μl complete growth media (MEM with 10% FBS and 1% antimycotics) and fur-
ther incubated at 37°C for another 24h. The cells were checked with the positive control for
GFP fluorescence using a fluorescent microscope. Following successful transfection validation,
the luciferase assay was developed by using Dual-Luciferase Reporter Assay System (Promega).

Developing Luciferase (Plate) Assay
Briefly, the Dual-Glo Luciferase buffer was added to Dual-Glo Luciferase Substrate to make up
the Dual-Glo Luciferase Reagent. A calculated amount of Dual-Glo Stop & Glo Reagent was
prepared by diluting the Dual-Glo Stop & Glo Substrate to the Dual-Glo Stop & Glo Buffer in a
ratio of 1:100. 75μl Dual-Glo Luciferase Reagent was added to each well with a multichannel pi-
pette and firefly luminescence was measured after 10min (M1). 75ul of Dual-Glo Stop & Glo
Reagent was added to each well and the renilla luminescence measured after 10min (M2). The
ratio of luminescence (M1/M2) of firefly to renilla gives the normalized luminescent values per
well. Luminescence was measured in a Tecan microplate reader with a Magellan Data Analysis
Software.

RNA Extraction and Quantification
RNA isolation was carried out using RNeasy mini kit (Qiagen). Briefly, cell pellets were resus-
pended in 350ul buffer RTL. (10ul β-Mercaptoethanol (β-ME) was added to 1ml buffer RTL).
A 20-gange needle (0.9mm diameter) fitted to an RNase-free syringe was used to homogenize
the sample, 1 volume 70% ethanol added and mixed well. Samples were transferred to RNeasy
mini column placed in a 2ml collection tube, centrifuged and washed repeatedly and finally
eluted with RNase-free water. The flow-through containing total RNA was quantified with a
nanodrop spectrophotometer and stored at -80°C until further use.

Reverse Transcription
Reverse transcription was carried out using the RT2 First Strand Kit (Qiagen). 0.5ug total RNA
was added to the genomic DNA elimination mix, incubated at 42°C for 5min and placed on
ice. 10ul of reverse-transcription mix was added to 10ul of genomic DNA elimination mix, pi-
petted to mix and incubated at 42°C for 15min, followed by a 95°C incubation for 5min. 91ul
RNase-free water was added per reaction and the mixture either stored at 20°C or immediately
used for real-time PCR.
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Real Time PCR
25ul of the PCR mix was added to each well of the custom made RT2 Profiler PCR Array using
an 8-channel pipettor. The array was sealed with optical thin-wall 8-caps strips. The platform
used to carry out real-time PCR was Applied Biosystems 7500, with the following cycling con-
ditions: 95°C for 10min (1 cycle); 95°C for 15s, 60°C for 1min (40 cycles). An automated base-
line was used and the following calculation was used in the analysis of results: Sample ΔCt = Ct

Sample-Ct Housekeeping gene; ΔΔCt = Sample ΔCt-Control ΔCt; Fold change = 2 –ΔΔCt

Statistical analysis
All data are presented as mean ± SD. A 2-tailed Student’s t-test was used for the statistical anal-
ysis of raw data obtained. Statistical significance was accepted at p< 0.05.

Results and Discussion

Bioinformatics Screening of Putative mRNA Targets
Three online software and databases, namely, TargetScan 6.2, miRanda and miRò, were used
in the first step to elucidate potential mRNA targets of miR-181a. Putative targets that were
predicted in at least two of the software were chosen for further study. Additionally, among the
many possible targets predicted and listed, those that are involved in important cancer-related
processes were selected for subsequent wet lab analysis. Two such targets of interest are cyclin-
dependent kinase inhibitor 1B (CDKN1β) and transcription factor E2F7 (E2F7). According to
TargetScan 6.2, the more negative the context score of an interaction, the more favorable it is
for binding to occur. The context score is based on six types of interactions found both at the
seed region and around the seed region. Fig 1 shows the putative binding sites and binding
scores of miR-181 family to the 3’ UTRs of CDKN1β and E2F7. It seems that there is a more
extensive base pairing between miR-181a and E2F7 as compared to CDKN1β due to the pres-
ence of predicted base interactions beyond the seed region, leading to a more negative context
score. Using this information as the first step, we proceeded to test for actual binding between
the two RNAs.

In vitro Binding of miR-181a to the 3’UTR of CDKN1β and E2F7
Based on the results of the bioinformatics analysis, we proceeded to use surface plasmon reso-
nance (SPR) to monitor miR-181a:mRNA interactions, if any. Single-stranded RNA nucleo-
tides carrying the putative binding 3’UTR seed regions and flanking nucleotides were
immobilized in separate flow channels. Synthesized miR-181a at different concentrations was
subjected in a single run. Kinetic binding constants were determined. Sensorgrams for the two
flow channels containing the binding portions of the 3’UTR of CDKN1β and E2F7 shows that
they both interacted significantly with miR-181a. As shown in Fig 2, the experimental curves of
the binding between miR-181a and CDKN1β and E2F7 fit closely to a 1:1 binding model. The
slight discrepancy between the theoretical and experimental curves is likely to be due to the ag-
gregation of miR-181a at high concentrations. The dissociation constants (KD) for the binding
between miR-181a and CDKN1β and E2F7 are 272.5 ± 0.008 nM and 1.186 ± 0.009 uM respec-
tively, indicating that the binding between miR-181a and CDKN1β is stronger than that with
E2F7, although a more extensive binding was predicted between miR-181a and E2F7.

The successful detection of interaction between miR-181a and the two seed regions (and the
sites flanking them) of the 3’UTRs of CDKN1β and E2F7 mRNAs in vitro next led us to study
if the interactions are also positive in the cellular environment.
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In vivo Binding Confirmation of miR-181a to the 3’UTR of CDKN1β and
E2F7
As the cellular environment is much different from that in vitro, in order to ensure that positive
binding occurs between the miR-181a and the mRNAs in cells, we investigated the binding via
a luciferase assay. Fig 3 shows the plasmid used. The plasmid is a firefly/Renilla Duo-Luciferase
reporter vector, with the Renilla Luciferase reporter gene acting as the control reporter in
which firefly luciferase is normalized against. Two different variations of the plasmids were
used, corresponding to the different 3’UTRs of the mRNAs cloned downstream of the firefly
luciferase reporter gene. An additional control vector (C1) was used that incorporated a ran-
dom sequence downstream of the firefly luciferase reporter gene.

Results (Fig 4) show that miR-181a binds to both the 3’UTRs of CDKN1β and E2F7 in
HepG2 cells, confirming the previous findings of in vitro binding. A tenfold dilution of miR-
181a was studied and in general, it seems that miR-181a does bind to the control plasmid to an
extent, because the normalized firefly luciferase activity was lowered as the concentration of
miR-181a increased from 10nM to 100nM. However, comparing data within the same miR-
181a concentration shows that miR-181a binds to a larger extent to the 3’ UTRs of CDKN1β
and E2F7 mRNAs as compared to the control plasmid, evident from the significant decrease in
firefly luciferase activity detected. Not only that, but it seems that in vivo, miR-181a binds more
strongly to the 3’UTR of E2F7 than of CDKN1βmRNA. This is in contrast with the results of
the in vitro SPR experiment, which demonstrated positive miR-181a binding to both seed re-
gion sequences of the two mRNAs, but more strongly towards that of CDKN1β instead of
E2F7. It could be that the cellular environment is able to facilitate further, the binding of the

Fig 1. Targetscan’s [10] predicted binding sites of miR-181a to the 3’UTRs of CDKN1β and E2F7. The total context score is based on six features: site-
type contribution, 3' pairing contribution, local AU contribution, position contribution, TA (target site abundance) contribution and SPS (seed-pairing stability)
contribution. The more negative the context score, the higher the probability of mRNA binding. The probability of conserved targeting, PCT, refers to the
likelihood of the sequence being conserved so as to allow regulation by the miRNA. The higher the PCT, the higher the chance of miRNA:mRNA binding.

doi:10.1371/journal.pone.0123167.g001
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miRNA to the 3’UTR of E2F7, due to the presence of various enzymes and RNA-induced si-
lencing complex (RISC) that could aid strengthening the bond between miR-181a and the
3’UTR of E2F7. A more extensive binding between miR-181a and E2F7 was also previously
predicted as compared that of CDKN1β by our bioinformatics analysis. In any case, miR-181a
seems to target both mRNAs significantly, with p values = 0.0022 and 0.0008 for 100nMmiR-
181a targeting the 3’UTRs of CDKN1β and E2F7 respectively, and p values = 0.0057 and
<0.0001 for 10nMmiR-181a targeting the 3’UTRs of CDKN1β and E2F7 respectively.

Fig 2. Experimental curves of the bindings betweenmiR-181a and CDKN1β and E2F7 (Panels A and
B). A positive 1:1 binding is observed between both miR-181a and CDKN1β and E2F7 with dissociation
constants 272.5 ± 0.008 nM and 1.186 ± 0.009 uM respectively.

doi:10.1371/journal.pone.0123167.g002
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Western Blot Verification
Binding of miR-181a to the 3’UTRs of CDKN1β and E2F7 in vivomay result in either the deg-
radation of the mRNAs, the translational inhibition of the mRNAs to proteins or the tempo-
rary storage of the mRNAs in processing bodies (P-bodies) of cells and ultimately either
degraded or released for delayed translation [11]. To study whether the protein levels of
CDKN1β and E2F7 are affected by the transfection of miR-181a, we performed a western blot
analysis. Figs 5 and 6 show that the transfection of 10nMmiR-181a downregulates the protein
levels of CDKN1β and E2F7. These two proteins were chosen in this study because our previ-
ous findings indicate that miR-181a, a miRNA found upregulated in HCC, causes a significant
increase in HepG2 cell viability and may also play a part in cell cycle. These two proteins have
been predicted by bioinformatics to be potential targets of miR-181a, and both partake in the
negative regulation of the cell cycle and proliferation. CDKN1β is a well-known protein that
prevents the activation of cyclin E-CDK2 and cyclin D-CDK4 complexes, thereby leading to a
G1 cell cycle arrest [12]. E2F7 is a relatively newly discovered member of the E2F family of
transcription factors that are highly involved in cell cycle progression, DNA repair and mitosis.
In contrast to other well-studied E2F transcription factors (e.g. E2F1, E2F2 and E2F3), E2F7
acts in the cell cycle by being a transcriptional repressor and negatively regulates cell prolifera-
tion [13]. The downregulation of these two proteins by miR-181a could have been one of the
reasons that led to the increase in HepG2 cell growth as seen in our previous study.

MiR-181a Significantly Activates the MAPK/JNK Signaling Pathway in
HepG2 Cells
The identification of direct targets of miR-181a led us to further investigate the overall molecu-
lar effects it has in HepG2 cells. In order to do so, we carried out an analysis on important can-
cer pathways using the Cancer 10-pathway Reporter Luciferase Kit (Qiagen). Ten important
cancer-related pathways can be studied using this assay simultaneously. The signaling path-
ways included are Wnt. Notch, p53/DNA damage, TGFβ, Cell cycle, NFκB, Myc/Max, Hypox-
ia, MAPK/ERK and MAPK/JNK. Positive and negative controls were also included for quality
control purposes. The assay came in a 96-well plate format, with each column being distinct
from the next, distinguishable by the different transcription factor reporters dried down in
each well. HepG2 cells were reverse co-transfected with the transcription factor reporters and
various miRNAs and subsequently assayed for luciferase activity. The normalized firefly:

Fig 3. Schematic diagram of the firefly/renilla duo-luciferase reporter vector. The 3’UTRs of CDKN1β
and E2F7 are cloned downstream of the firefly luciferase reporter gene, while a random sequence is cloned in
the case of the control vector. Renilla luciferase activity is used as the internal control, and the firefly
luciferase activity is normalized against that measured of renilla luciferase.

doi:10.1371/journal.pone.0123167.g003
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Renilla luciferase activity was then plotted for three independent experimental repeats. Fig 7
shows the effects of the transfection of miR-181a and its inhibitor in the various cancer-related
signaling pathways, normalized with readouts obtained from the transfection of HepG2 cells
with a control miRNA. Among the ten pathways analyzed, miR-181a caused the activation of
activating protein 1 (AP-1) transcription factor most significantly (p value = 0.029), by approx-
imately two folds, while inhibiting it abolished this observation. AP-1 is a transcriptional factor
involved in the mitogen-activated protein (MAP) kinase signaling pathway. It contains two
components, c-Jun and c-Fos, which are both crucial regulators of liver tumor development.

Fig 4. In vivo luciferase assay study of HepG2 cells co-transfected with the reporter plasmids and
different concentrations of miR-181a. HepG2 cells were electroporated with 4ug of reporter plasmids and
10nM or 100nMmiR-181a and seeded on 24 well plates. They were harvested after a 24h incubation and
assayed for firefly and renilla luminescence using a manual luminometer. Results show that miR-181a binds
to some extent, to the control vector, because of its dose dependent reduction in firefly luciferase activity
upon transfection with the control vector. However, as compared to the control, miR-181a shows a
significantly stronger binding to both the plasmids containing the 3’UTRs of CDKN1β and E2F7, with a further
decrease in firefly luciferase activity by about two times when transfected with 10nMmiR-181a and up to six
times when transfected with 100nMmiR-181a, as compared to when transfected with the control
reporter plasmid.

doi:10.1371/journal.pone.0123167.g004
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C-Jun has been shown to promote the growth of tumor through the positive regulation of cell-
cycle (e.g. Cyclin D1) or through the repression of its negative regulators (e.g. p16) [14]. It is
also able to antagonize apoptosis in liver tumors. In addition to the increase in activity or ex-
pression levels of AP-1, other transcriptional factors were also shown to be affected by miR-
181a in HepG2 cells. Transcription factors involved in NFκB, Myc, Hypoxia and MAPK/ERK
also showed an increase in activity, albeit of lowered significance. These are signaling pathways
often found activated in cancers that lead to increased cell proliferation, angiogenesis and eva-
sion of apoptosis. Overall, miR-181a appears to activate most oncogenetic pathways.

One interesting observation though, is that the transfection of miR-181a also leads to the ac-
tivation of TGF-β and Notch pathways, albeit of lowered significance. This translates to an in-
crease in SMAD2/3/4 and RBP-Jk transcriptional activities, which, has a cell cycle inhibition

Fig 5. CDKN1β and E2F7 protein expression levels detection via a western blot analysis. HepG2 cells
were starved, electroporated with 10nMmiR-181a and harvested after 24h incubation. 30ug total protein
extract was loaded onto each well of an SDS-PAGE and probed with various selected primary antibodies
overnight at 4°C. MiR-181a reduced the protein expression levels of both CDKN1β and E2F7; with the
reduction of E2F7 to a greater extent. β-actin served as a loading control.

doi:10.1371/journal.pone.0123167.g005

Fig 6. Protein levels of CDKN1β and E2F7in HepG2 cells followingmiR-181a transfection.
Quantification of protein levels was analyzed using Image J software.

doi:10.1371/journal.pone.0123167.g006
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effect and growth arresting effect respectively [15–16]. It is the overall balance of these different
reinforcing and contradicting pathways that leads to the overall phenotype of the cell. Indeed,
our previous study showed that cell viability was significantly increased when HepG2 cells
were transfected with miR-181a.

In contrast to the increase in hypoxia-inducible factor s (HIF) transcriptional activity by
miR-181a, inhibiting it caused a corresponding significant decrease by approximately 40%
(p value = 0.027). Hypoxia is a condition in cells where oxygen concentration becomes low,
leading to a massive transcription of genes by HIF proteins involved in angiogenesis, metabo-
lism, cell proliferation and survival [17]. This is often seen in the case of many cancers, where
oxygen concentration within cancer cells drop due to the spurt of cancer cell growth and HIF
protein is overexpressed to accommodate this increase in cell proliferation. The lowered activi-
ty or expression levels of HIF in HepG2 cells transfected with miR-181a inhibitor could poten-
tially decrease cell viability due to the reduction of this protective layer. Apart from the
decrease in HIF, inhibiting miR-181a also caused a significant increase in SMAD protein activi-
ty (p value = 0.0024). This protein is involved in TGF-β signaling, which can act as a tumor
suppressor by causing a G1 cell cycle arrest [15]. Also, the increase and decrease in p53 and
E2F protein activities respectively may further contribute to the lowered cell proliferation and
viability of HepG2 cells when miR-181a is inhibited. Overall, inhibiting miR-181a appears to

Fig 7. Microarray analysis of the expression levels/activities of ten important cancer-related
transcription factors.HepG2 cells were reverse co-transfected with 100nMmiR-181a or 100nMmiR-181a
inhibitor, along with the dried down transcription factor reporter plasmids and incubated for 24h in 96-well
plates. Cells were assayed for luciferase activity 48h after reverse transfection using a plate luminometer.
The values plotted are that of firefly luminescence normalized against that of renilla, which was used as the
internal control. Among the ten pathways investigated, miR-181a caused a significant activation in the MAPK/
JNK pathway, as seen by the increase in expression levels/activity of AP-1 protein. Inhibiting miR-181a
significantly activated the NFκB and TGF-β pathways and lowered the HIF protein expression level/activity.

doi:10.1371/journal.pone.0123167.g007
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activate most tumor-suppressing pathways. This is supported again by our previous study,
where inhibiting miR-181a caused a significant decrease in HepG2 cell viability. However, the
simultaneous activation of the NFκB pathway (p value = 0.041), may negate some of the anti-
proliferative effects of the other tumor suppressive pathways, due to the ability of the NFκB
pathway to induce cancer-causing cellular alterations like increasing insensitivity to growth in-
hibition, self-sufficiency in growth signals, evasion of apoptosis immortalization, angiogenesis
and metastasis [18]. This may limit the therapeutic effects of inhibiting miR-181a. A combina-
tion of miR-181a inhibitor with specific siRNAs targeting undesirable tumor-promoting pro-
teins could potentially further increase the eradication of cancer cells.

MiR-181a Causes an Activation of SMAD, NFκB, and MAPK Signaling
Pathways, Possibly Through Increased Expression of BMPR2
We previously identified CDKN1β and E2F7 as targets of miR-181a in HepG2 cells. In order to
identify a larger range of targets, we made use of a custom-made array—miR-181 Targets RT2

Profiler PCR Array (Qiagen). In this array analysis, the expression of 84 hsa-miR-181a-5p tar-
get genes was profiled. This panel of 84 genes includes currently known experimentally verified
plus bioinformatically predicted target genes regulated by hsa-miR-181a-5p. Using real-time
PCR, we analyze the expression of a focused panel of genes likely to be regulated by miR-181a
with this array. HepG2 cells were treated with 100nM miR-181a or 100nMmiR-181a inhibitor
and incubated for 24h before harvesting for RNA extraction. Extracted RNA was reverse tran-
scribed and allowed to undergo PCR, with SYBR Green used as the reporter dye due to its abili-
ty to bind to double stranded DNA and its high sensitivity. Each run was done in triplicate. S1
and S2 Tables show the fold changes and p values of the test samples (i.e. HepG2 cells trans-
fected with miR-181a or miR-181a inhibitor) vs control samples (i.e. HepG2 cells transfected
with control miRNA) for all the genes probed for in the array. P values in bold indicate signifi-
cance (i.e. P value<0.05). Overall, we do see fold changes in most of the genes, both up and
down regulated. The array is custom-made to probe for predicted genes targeted by miR-181a.
Instead of downregulating most genes, we see a mix of both up and downregulation. This high-
ly supports the general consensus that most human miRNAs affect gene expression at the
translational level instead of causing mRNA degradation, since considerable amount of mRNA
could still be detected. Not only that, but evidently from our previous transcription factor array
study, the transfection of miR-181a causes a change in the expression levels or activities of tran-
scription factors in HepG2 cells that are not known to be its direct targets. This in turn means
that miRNAs are able to affect gene expression of mRNAs directly or indirectly, due to the vast
interconnectedness of biological molecules in the cell. Therefore, in the analysis of this study,
we broaden the scope of the term ‘targets’ to include not just the possible direct targets, but the
overall gene expression of HepG2 cells due to the direct or indirect effects of miR-181a and
its inhibitor.

We will discuss the effects of miR-181a and its inhibitor on genes that have shown signifi-
cant up or down regulation. Only one gene showed a consistent and significant change in ex-
pression level when miR-181a was transfected into HepG2 cells. Bone morphogenetic protein
receptor type 2 (BMPR2) mRNA expression level is shown to be significantly upregulated by a
factor of 1.64 (p value = 0.02) as compared to the control sample. The protein expressed by this
gene is a serine/threonine receptor kinase that binds to bone morphogenetic proteins (BMPs)
that leads to the transduction of cell signals involved in the SMAD, MAPK, NFκB, LIM domain
kinase 1 (LIMK) and dynein, light chain, Tctex-type 1 (TCTEX) and v-src sarcoma viral onco-
gene homolog (SRC) signaling pathway [19]. As found earlier in our previous array pathway
analysis, SMAD2/3/4, NFκB, Elk-1/SRF and AP-1 transcription factors corresponding to
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SMAD, NFκB, and MAPK signaling pathways were found to be over-activated in HepG2 cells
due to the transfection of miR-181a. The increased gene expression of BMPR2 due to miR-
181a could have led to the overall activation of these pathways as its binding to BMPs aids in
mediating these signal transductions.

When miR-181a was inhibited in HepG2 cells, three genes showed a significant change in
expression. GATA6, NOTCH4 and ZNF180 mRNA were found to increase by 1.89, 1.30 and
1.53 times respectively (p values = 0.0438, 0.0200 and 0.0136). A study [6] has shown that
miR-181a downregulates GATA6 protein in Hep3B cells and also binds to its mRNA. It also
showed that the inhibition of miR-181a restored the expression of GATA6 protein. Our studies
on HepG2 cells show that inhibiting miR-181a significantly increases the expression of
GATA6 mRNA. GATA6 is one of the regulators of hepatic cell differentiation. It is also be-
lieved that the loss of expression of this gene leads to the ‘stemness’ of HpSC-HCC, thereby giv-
ing hepatic cancer stem cells (CSCs) the ability to proliferate indefinitely. The increased gene
expression of GATA6 due to the inhibition of miR-181a may lead to a reduction in ‘stemness’
of HpSC-HCC, thereby making it more vulnerable to HCC therapy.

The inhibition of miR-181a caused a significant increase in NOTCH4 mRNA. While
NOTCH1 is a relatively well-studied gene that when activated, causes apoptosis and inhibition
of HCC proliferation, NOTCH4 is less understood. There are studies that have shown that
NOTCH4 expression inhibits angiogenesis, endothelial sprouting and migration through colla-
gen [20]. Other studies however, show that NOTCH4 is upregulated in neoplastic hepatocytes
with respect to normal liver cells [21]. Its functional implication, however, is still not known.
Similar to NOTCH4, ZNF180 is found to be significantly upregulated when miR-181a was in-
hibited in HepG2 cells from our array analysis. However, its role in HCC is not well under-
stood. Its plays a role mainly in the physiological and pathological processes, but their
mechanisms of actions are still not known [22].

Conclusion
MiR-181a plays a part in HCC, but its mechanism of action has yet to be elucidated. In this
study, we have shown that miR-181a binds to the 3’UTRs of CDKN1β and E2F7 in HepG2
cells, and led to a reduction in their protein expression levels. These two proteins negatively
regulate the cell cycle. Therefore, their targeting and downregulation by miR-181a may poten-
tially impact HepG2 cell proliferation. Our earlier cell viability assays support this result, as a
significant increase in cell viability was observed when HepG2 cells were transfected with miR-
181a. Inhibiting it, on the other hand, significantly decreased cell viability.

Apart from the impact on these two cell cycle genes, miR-181a is also found to affect impor-
tant transcription factors involved in cancer. These transcription factors play a part in cellular
growth, angiogenesis, apoptosis and metastasis. One pathway significantly activated by miR-
181a is MAPK/JNK, as seen from the increased transcriptional activity of AP-1. MAPK/JNK
activation has been shown to lead to proliferation and tumorigenesis. Other cancer-causing
pathways activated by miR-181a include NFκB, Myc, HIF and MAPK/ERK, albeit to a
lesser extent.

Inhibiting miR-181a leads to an inactivation of HIF as well as a simultaneous activation of
SMAD2/3/4 pathways. HIF production is a classic sign of hypoxia, a condition where oxygen
supply is low. This is a condition common in cancers due to their increased growth rate and
metabolism. The decrease in HIF activity may lead to a decrease in overall cellular metabolism,
therefore resulting in a reduction in cell viability. Furthermore, the activation of SMAD2/3/4
transcriptional factors is known to lead to a G1 cell cycle arrest, potentially causing a further
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decrease in cell viability. This phenotype was observed in our previous functional analysis,
where HepG2 cell viability significantly decreased when miR-181a was inhibited.

While miR-181a caused an activation of most tumor-promoting pathways, inhibiting it
caused an activation of most tumor-suppressing pathways. In this study, we successfully identi-
fied CDKN1β and E2F7 as cellular cell cycle targets of miR-181a, and have also shown its ef-
fects on important pathways in cancer progression. It appears to have an overall oncogenetic
effect, by activating more tumor-causing than tumor suppressing pathways, possibly through
the increase in BMPR2 gene expression. Our findings open up a new approach in designing
functional analysis of miRNAs in cellular processes, through the identification of their cellular
targets. Fig 8 summarizes our findings and potential pathways affected by miR-181a in
HepG2 cells.

Supporting Information
S1 Table. Fold change and p values of genes probed in HepG2 cells transfected with miR-
181a.HepG2 cells were transfected with 100nMmiR-181a, total RNA extracted and reverse
transcribed. PCR was done on the cDNAs in the arrays using SYBR Green as the reporter dye.
ΔCt represents Ct(Gene of interest)-AvgCt(housekeeping genes), while the fold change is rep-
resented by ΔΔCt = 2^(- Delta Ct)) in the Test Sample divided the normalized gene expression
(2^(- Delta Ct)) in the Control Sample.
(DOCX)

S2 Table. Fold change and p values of genes probed in HepG2 cells transfected with miR-
181a inhibitor.HepG2 cells were transfected with 100nMmiR-181a inhibitor, total RNA ex-
tracted and reverse transcribed. PCR was done on the cDNAs in the arrays using SYBR Green
as the reporter dye. ΔCt represents Ct(Gene of interest)-AvgCt(housekeeping genes), while the
fold change is represented by ΔΔCt = 2^(- Delta Ct)) in the Test Sample divided the

Fig 8. Illustration of possible pathways affected by miR-181a in HepG2 cells.

doi:10.1371/journal.pone.0123167.g008
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