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Abstract

Ambient light affects multiple physiological functions and behaviors, such as circadian rhythms, 

sleep-wake activities, and development from flies to mammals [1–6]. Mammals exhibit a higher 

body temperature when exposed to acute light compared to when they are exposed to dark, but the 

underlying mechanisms are largely unknown [7–10]. The body temperature of small ecotherms, 

such as Drosophila, rely on the temperature of their surrounding environment and these animals 

exhibit a robust temperature preference behavior [11–13]. Here, we demonstrate that Drosophila 

prefer a one-degree higher temperature when exposed to acute light rather than dark. This acute 

light response, light dependent temperature preference (LDTP), was observed regardless of the 

time of day, suggesting that LDTP is regulated separately from the circadian clock. However, 

screening of eye and circadian clock mutants suggests that the circadian clock neurons, posterior 

dorsal neurons 1 (DN1ps) and pigment-dispersing factor receptor (pdfr) play a role in LDTP. To 

further investigate the role of DN1ps in LDTP, pdfr in DN1ps was knocked down, resulting in an 

abnormal LDTP. The phenotype of the pdfr mutant was sufficiently rescued by expressing pdfr in 

DN1ps, indicating that pdfr expression in DN1ps is responsible for LDTP. These results suggest 

that light positively influences temperature preference via the circadian clock neurons, DN1ps, 

which may result from the integration of light and temperature information. Given that both 

Drosophila and mammals respond to acute light by increasing their body temperature, the effect of 

acute light on temperature regulation may be conserved evolutionarily between flies and humans.
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RESULTS

Acute light positively influences temperature preference in Drosophila

Drosophila exhibit robust temperature preference behavior. Not only do flies avoid noxious 

temperatures [11, 12, 14–17], they also exhibit a temperature preference rhythm (TPR) in 

which preferred temperature is lower in the morning and higher in the evening [18]. We 

previously observed that flies entrained with light and dark (LD) cycles prefer a higher 

temperature than flies in free-run (constant darkness (DD)) during the daytime [18], 

suggesting that acute light may affect the temperature preference in flies.

To determine whether acute light influences the selection of preferred temperature in 

Drosophila, we performed behavioral experiments to compare their preferred temperatures 

when ambient light was ON verses when ambient light was OFF. We found that wild type 

(w1118: WT) flies preferred ~1 °C higher temperature in the light compared to their 

temperature preference in the dark (Fig. 1A), suggesting that acute light positively 

influences the selection of preferred temperature. We refer to this behavior as light-

dependent temperature preference (LDTP) and investigated the neural circuits that regulate 

this behavior.

LDTP is controlled separately from the circadian clock

To determine whether LDTP is observed regardless of the time of day, we tested the 

temperature preference behavior at different time points throughout the day (Fig. 1A and B). 

We found that the flies consistently preferred a higher temperature throughout the day when 

the behavioral assays were performed in the light (Fig. 1A and B). In the same way, the flies 

consistently preferred a lower temperature throughout the day when the behavioral assays 

were performed in the dark, although preferred temperatures at ZT 19–21 were similar (Fig. 

1B). These data suggest that LDTP occurs irrespective of the circadian clock.

To confirm that LDTP is independent of circadian clock function, we examined LDTP in 

mutants for period (per) and timeless (tim), which disrupt the circadian clock. If LDTP is 

independent of the circadian clock, per01 and tim01 mutants should still exhibit LDTP. We 

found that per01 and tim01 mutants exhibited a normal LDTP and preferred a higher 

temperature in the light than in the dark at all time points throughout the daytime (Fig. 1C 

and D), with the exception of the tim01 mutants at ZT4-6. At this time point, the tim01 

mutants preferred a slightly higher temperature in the light, but the difference was not 

statistically significant. Thus, we concluded that LDTP is regulated separately from the 

circadian clock and is dependent solely on light.

glass is required for LDTP

To investigate the neural circuits that regulate LDTP, we first examined the effect of eye 

components on LDTP. Flies have seven eye components: two compound eyes, three ocelli, 
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and two Hofbauer-Buchner (H-B) eyelets [19]. Subsets of eye components are abnormal in 

the mutant fly strains eyes absent (eya1), sine oculis (so1), histidine decarboxylase 

(hdcJK910), and glass (gl60j), and in flies in which the proapoptosis gene hid is expressed 

under the control of a glass multimer response element (GMR-hid) [20, 21] (Fig. 2G). We 

found that eya1, so1, hdcJK910, and GMR-hid mutants all showed normal LDTP, preferring a 

higher temperature in the light compared to the dark (Fig. 2A). These data suggest that 

abnormalities in the compound eyes, ocelli and H-B eyelets do not disrupt LDTP and thus, 

these eye components are not essential for LDTP.

However, we found that a null allele of glass, gl60j, had abnormal LDTP, preferring a higher 

temperature in the dark than in the light. Even the weak loss-offunction alleles of glass, gl1, 

gl2 and gl3 [22], had abnormal LDTP, in which the flies preferred a similar temperature in 

the light and dark (Fig. 2A). To determine whether glass is responsible for LDTP, we used 

the 10 KB genomic glass mini-gene to rescue the glass mutants [22]. Both of the gl(10kb); 

gl3 and gl(10kb); gl60j flies preferred significantly higher temperatures in the light than in 

the dark, indicating that the normal LDTP was restored and that glass function is required 

for LDTP.

Interestingly, the gl60j mutants not only have abnormal eye components but also lack a 

subset of circadian clock cells, the posterior dorsal neurons 1 (DN1ps) (Fig. 2G). Previous 

studies show that glass is expressed in DN1ps but not in the anterior dorsal neurons 1, 

DN1as [21, 23]. To confirm that glass is expressed in DN1ps, we used the DN1ps driver, 

Clk4.5F-Gal4 [24, 25], to label DN1ps in the brain (Fig. 2B). We performed 

immunostaining on the UAS-mCD8::GFP;Clk4.5F-Gal4 (Clk4.5FGal4>UAS-mCD8::GFP) 

flies using the Glass antibody and confirmed that Glass is expressed in the DN1ps (Fig. 2B). 

Conversely, we found that Clk4.5F-Gal4>UASmCD8:: GFP signals were not detected in 

gl60j/ gl60j mutants (Fig. 2D) but were still present in the gl60j /+ heterozygous control (Fig. 

2C), indicating that DN1ps were ablated in the gl60j mutants. If DN1ps are key neurons for 

LDTP, DN1ps should be restored in the gl(10kb); gl60j flies given that gl(10kb); gl60j flies 

exhibit a normal LDTP (Fig. 2A). To determine this, we performed immunostaining using 

the Timeless (TIM) antibody and found that DN1ps were restored in gl(10kb); gl60j (Fig. 

2E). In addition, as a control, we confirmed that DN1ps were present in GMR-hid flies (Fig. 

2F). These data suggested that the DN1ps may be critical for LDTP.

TrpA1 and Rhodopsin 1 are not necessary for LDTP

Transient receptor potential A 1 (TrpA1) is important for temperature preference behavior as 

flies use TrpA1 to detect and avoid warm temperatures. TrpA1 is not only a warm sensor in 

both larvae and adult flies [12, 26], but also is involved in light-sensing behavior in the body 

wall of larvae [5]. Furthermore, Rhodopsin 1 (Rh1), encoded by the neither inactivation nor 

afterpotential E (ninaE) gene, is a molecular light sensor and has been suggested to regulate 

temperature-sensing behavior in larvae [27]. Therefore, we sought to determine whether 

TrpA1 and Rh1 were involved in LDTP by using strong loss-of-function mutants for TrpA1 

(TrpA1ins)[12] and null mutants for Rh1 (ninaE17)[28](Fig. 3A). However, both mutants 

showed normal LDTP, indicating that TrpA1 and Rh1 are not necessary for LDTP.
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LNvs are dispensable for LDTP

The clock neurons, small ventrolateral neurons (sLNvs), project to DN1s [29, 30]. sLNvs not 

only contact DN1ps but also receive information from the light sensors, large ventrolateral 

neurons (lLNvs)[31–33], and receive light inputs from the optic lobe [34]. To determine 

whether LNvs are involved in LDTP, we used a mammalian inward rectifier K+ channel 

(UAS-Kir) to genetically inhibit sLNvs with R6-Gal4 [34] as well as sLNvs and lLNvs with 

Mz520-Gal4 [35, 36]. Because R6-Gal4/UAS-Kir flies did not survive to adult, we used a 

temperature dependent conditional repressor of Gal4, tubGal80ts, to transiently inhibit the 

LNvs depending on the permissive temperature (18°C) and the restrictive temperature 

(29°C). However, at both permissive and restrictive temperatures, the R6-Gal4 and Mz520-

Gal4 with UAS-Kir; tub-Gal80ts flies exhibited normal LDTP (Fig. 3B), suggesting that 

LNvs are not important for LDTP. As positive control using locomotor activity, we showed 

that Mz520-Gal4 with UAS-Kir; tub-Gal80ts flies exhibited abnormal rhythmicity at 29°C 

but normal rhythmicity at 18°C (Supplemental Figure S1 and Table S1).

PDFR acts in DN1ps to control LDTP

Our data suggest that DN1ps are critical for LDTP. Although the persistence of LDTP in per 

and tim mutants indicates that this behavior does not require a functional circadian clock 

(Fig. 1C and D), the DN1ps participate in circadian clock function and thus, express many 

clock genes. To determine which molecules might act within the DN1p cells to control 

LDTP, we examined the involvement of additional clock genes, including cryptochrome 

(cry), Clock (Clk), and pigment-dispersing factor receptor (pdfr), and tested LDTP of 

mutations in these genes: cryb, cry01, cry02, ClkJrk, pdfr5304 and pdfr3369 (Fig. 4A). Like 

per01 and tim01 mutants, cryb, cry01, cry02 and ClkJrk mutants all preferred a higher 

temperature in the light than in the dark, although cry01 preferred a much lower temperature 

in the dark. Interestingly, we found that pdfr5304 and pdfr3369 mutants displayed abnormal 

LDTP, in which they preferred similar temperatures in the light and the dark, suggesting that 

pdfr is required for LDTP (Fig. 4A). PDFR is a G-protein coupled receptor and is critical for 

locomotor activity and synchronization of the circadian clock [37–40].

To determine whether pdfr expression in DN1ps is necessary for LDTP, we knocked down 

pdfr in DN1ps by using UAS-pdfr-RNAi with Clk4.5F-Gal4, which is selectively expressed 

in subsets of DN1ps (Fig. 4B). Clk4.5F-Gal4/UAS-pdfr-RNAi flies, the flies exhibited an 

abnormal LDTP, showing similar preferred temperatures in the light and the dark. However, 

each Gal4 and UAS control fly line exhibited a normal LDTP, indicating that pdfr 

expression in DN1ps is necessary for LDTP (Fig. 4B).

To determine whether PDFR expression in DN1ps is sufficient to rescue the pdfr5304 

mutants’ phenotype, we expressed UAS-pdfr using Clk4.5F-Gal4 in the pdfr5304 mutants. 

The pdfr5304 flies that expressed pdfr in DN1ps preferred a higher temperature in the light 

than in the dark, while the control flies did not, indicating that pdfr expression in DN1ps 

restored LDTP of pdfr5304 mutants. Thus, PDFR expression in DN1ps is necessary and 

sufficient to support pdfr’s role in LDTP (Fig. 4C).
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Because Pigment-dispersing factor (PDF) and Diuretic hormone 31 (DH31) activate PDFR 

in vitro [37], we examined whether PDF and DH31 are involved in LDTP. We used the pdf 

null mutant, pdf01, and the Dh31mutant, Dh31#51, which was generated by P-element 

excision. Dh31#51 is a strong loss-of-function mutation, as it contains a deletion of the entire 

active peptide of DH31 (Supplemental Figures S2 and S3). Nonetheless, both pdf01 and 

Dh31#51 and even the double mutant of Dh31#51; pdf01 exhibited a normal LDTP, indicating 

that PDF and DH31 are not required for LDTP. These results suggest that LDTP mediated 

by PDFR in DN1ps is not due to the pathway activated by these known neuropeptides.

DISCUSSION

Here, we show that acute light positively affects temperature preference in Drosophila. 

LDTP is controlled by Pdfr expressing DN1ps independently from the circadian clock, 

suggesting DN1ps play an important role in integrating light and temperature information.

Although we tested several eye component mutants, abnormal light or temperature sensing 

mutants and cry mutants, these mutants still exhibited LDTP behavior. Because light sensors 

can be redundant in the eye and body wall, partial disruption of these light sensors may not 

be sufficient for abnormal LDTP (Fig. 2). In fact, the double mutants of GMR-hid/+; cry01, 

which lack the functions of the compound eye, ocelli, H-B eyelet and CRY, exhibited an 

abnormal LDTP (Fig. 4A). This result suggests that at least two pathways, such as the visual 

system and cry, act together to mediate light detection and play an important role in LDTP. 

Notably, in humans, 460nm light is important for an increase in body temperature during the 

night [10]. Therefore, it would be interesting to examine which light pathway and 

wavelengths are critical for LDTP.

While we show that LDTP is circadian clock independent, PDFR expression in DN1ps is 

critical for LDTP (Fig. 4). However, it is unclear how PDFR is activated because neither 

PDF nor DH31, the ligands of PDFR, are important for LDTP (Fig. 4). Therefore, our data 

suggest that PDFR in DN1ps is activated by other unknown mechanisms responsible for 

LDTP. One possible mechanism is CRY, because CRY is expressed in the clock cells, 

including DN1ps, and have convergent roles with PDFR for the circadian rhythm of 

locomotor activity [41]. CRY also antagonizes the temperature synchronization in the dorsal 

neurons, suggesting that CRY may be involved in the integration of light and temperature 

[42]. Therefore, it is possible that CRY and PDFR work to regulate LDTP. For example, 

DN1ps may directly receive light input via CRY, which regulates the signal cascade of 

PDFR.

Light is critical not only for entraining the circadian clock, but also for a behavior termed 

masking, in which the flies exhibit a robust increase of locomotor activity after light is 

turned ON or OFF [43]. The masking effect is controlled separately from the circadian clock 

[20, 24] and DN1ps are involved in a masking effect for locomotor activity when light is ON 

[24]. Given that light positively affects preferred temperature separately from the circadian 

clock, LDTP could be part of the masking effect. However, the light input pathways for the 

masking effect in locomotor activity and LDTP are not the same. This is demonstrated 

through evidence that shows that disruption of the compound eye is sufficient for the 
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masking effect of locomotor activity [16], but not for LDTP (Fig. 2). Furthermore, the 

molecular mechanisms controlling the masking effect in locomotor activity and LDTP are 

different, as Pdfr mutants exhibit a normal masking effect for locomotor activity [20] but an 

abnormal LDTP (Fig. 4). Therefore, our data indicate that the masking effect of locomotor 

activity and LDTP are controlled differently.

Here, we show the positive effect of acute light on the preferred temperature in flies. Given 

that Drosophila adapt their body temperature to ambient temperature [13], the flies’ body 

temperature increases in light as a result of their temperature preference behavior. In 

humans, light exposure increases body temperature during the nighttime [7–9] and is 

dependent on light intensity [10]. While humans control body temperature through the 

generation of heat, ectotherms use behavioral strategies to regulate body temperature [13]. 

Although the mechanism of heat generation is different between humans and flies, the body 

temperature of both humans and Drosophila increases when exposed to light. Thus, we 

propose that the effect of light on temperature regulation may be evolutionarily conserved 

from flies to humans.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Acute light positively influences temperature preference in Drosophila
(A and B) Comparison of preferred temperature between light (gray line) and dark (black 

line) conditions for w1118 flies during the daytime (A) or nighttime (B). w1118 flies were 

raised in LD (light (12 h)-dark (12 h)) cycles. Ambient light was either ON or OFF when the 

behavioral experiments were performed for 30 min.

(C and D) Comparison of preferred temperature between light (gray line) and dark (black 

line) conditions for tim01 (C) and per01 (D) during the daytime. tim01 (C) and per01 (D) flies 

were raised in LD. Italicized numbers represent the number of assays. ZT, Zeitgeber Time 
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(ZT0 is lights-on, ZT12 is lights-off). The same behavioral data in light (A), dark (B), light 

(C) and light (D) from [18] are used. t-test compared preferred temperature between light 

and dark conditions: ***P < 0.001, **P < 0.01 or *P < 0.05.

Error bars are the SEM.
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Figure 2. glass is required for LDTP
(A) Comparison of preferred temperature of each genotype in light (white bar) and dark 

conditions (gray bar). The behavioral experiments were performed at ZT1-3. t-test compared 

preferred temperature between light and dark conditions: ***P < 0.001, **P < 0.01 or *P < 

0.05. Italicized numbers represent the number of assays. Error bars are the SEM.

(B) The Clk4.5F-Gal4>UAS-mCD8::GFP brains were stained with anti-GFP (green) and 

anti-Glass (red). The GFP signals, labeled by Clk4.5F-Gal4>UAS-mCD8::GFP, overlap 
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with the signals labeled by anti-Glass (B1). The cells for which anti-GFP and anti-Glass 

overlapped are shown at the arrow heads (B1-3).

(C–D) The DN1ps labeled by Clk4.5F-Gal4>UAS-mCD8::GFP with anti-GFP (green) were 

still present in the gl60j/+ heterozygous control (C) but were not detected in gl60j/gl60j 

mutants (D).

(E–F) The gl(10kb);gl60j (E) and GMR-hid (F) brains were stained with anti-TIM (red). 

DN1s are shown at the arrow heads.

(G) A summary of eye and DN1ps phenotypes for each eye mutant fly line. +: normal; −: 

abnormal.
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Figure 3. TrpA1, Rhodopsin 1 and sLNvs are not critical for LDTP
(A) Comparison of preferred temperature of each genotype in light (white bar) and dark 

(gray bar) conditions. The behavioral experiments were performed at ZT1-3. t-test compared 

preferred temperature between light and dark conditions: ***P < 0.001, **P < 0.01 or *P < 

0.05. Italicized numbers represent the number of assays. Error bars are the SEM.

(B) Comparison of preferred temperature of each genotype in light (white bar) and dark 

(gray bar) conditions. R6-Gal4 is expressed in sLNvs and Mz520-Gal4 is expressed in both 

sLNvs and lLNvs. A temperature dependent conditional repressor of Gal4, tub-Gal80ts and a 
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mammalian inward rectifier K+ channel, Kir, were used to transiently inhibit the sLNvs 

depending on permissive temperature (18°C) and restrictive temperature (29°C) as adults. 

The behavioral experiments were performed at ZT1-3. t-test compared preferred temperature 

between light and dark conditions: ***P < 0.001, **P < 0.01 or *P < 0.05. Italicized 

numbers represent the number of assays. Error bars are the SEM.
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Figure 4. PDFR in DN1ps is necessary and sufficient for LDTP
(A) Comparison of preferred temperature of circadian clock mutants in light (white bar) and 

dark (gray bar) conditions. The behavioral experiments were performed at ZT1-3. ttest 

compared preferred temperature between light and dark conditions: ***P < 0.001, **P < 

0.01 or *P < 0.05. Italicized numbers represent the number of assays. Error bars are the 

SEM.

(B) PDFR expression in DN1ps is necessary for LDTP.
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Comparison of preferred temperature for flies with UAS-pdfr-RNAi in a subset of clock cells 

using a DN1ps driver, Clk4.5F-Gal4, and its controls. The behavioral experiments were 

performed at ZT1-3. t-test compared preferred temperature between light and dark 

conditions: ***P < 0.001, **P < 0.01 or *P < 0.05. Italicized numbers represent the number 

of assays. Error bars are the SEM.

(C) PDFR expression in DN1ps is sufficient for LDTP.

Comparison of preferred temperature of pdfr5304 mutants with UAS-pdfr in a subset of clock 

cells using a DN1ps driver, Clk4.5F-Gal4, and its controls. The behavioral experiments were 

performed at ZT1-3. t-test compared preferred temperature between light and dark 

conditions: ***P < 0.001, **P < 0.01 or *P < 0.05. Italicized numbers represent the number 

of assays. Error bars are the SEM.
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