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Abstract

Phenotypic heterogeneity of depression has been cited as one of causes of the limited success to 

detect genetic variants in genome-wide studies. The 7-item Hospital Anxiety and Depression Scale 

(HADS-D) was developed to detect depression in individuals with physical health problems. An 

initial psychometric analysis showed that a short version (“HADS-4”) is less heterogeneous and 

hence more reliable than the full scale, and correlates equally strong with a DSM-oriented 

depression scale. We compared the HADS-D and the HADS-4 to assess the benefits of using less 

heterogeneous phenotype measures in genetic analyses. We compared HADS-D and HADS-4 in 

three separate analyses: (1) twin- and family-based heritability estimation, (2) SNP-based 

heritability estimation using the software GCTA, and (3) a genome-wide association study 

(GWAS). The twin study resulted in heritability estimates between 18 and 25%, with additive 

genetic variance being the largest component. There was also evidence for assortative mating and 

a dominance component of genetic variance, with HADS-4 having slightly lower estimates of 

assortment. Importantly, when estimating heritability from SNPs, the HADS-D did not show a 

significant genetic variance component, while for the HADS-4, a statistically significant amount 

of heritability was estimated. Moreover, the HADS-4 had substantially more SNPs with small p-

values in the GWAS analysis than did the HADS-D. Our results underline the benefits of using 

more homogeneous phenotypes in psychiatric genetic analyses. Homogeneity can be increased by 

focusing on core symptoms of disorders, thus reducing the noise in aggregate phenotypes caused 

by substantially different symptom profiles.
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Introduction

Major Depressive Disorder (MDD) and its symptoms are both widespread and heritable 

[Flint and Kendler 2014]. Since the mid-20th century, dozens of studies have found that 

genetic variation explains between 30% and 40% of the variance in depression [Sullivan, et 

al. 2000]. The explosive growth of genotyping technology has made it possible to search for 

the specific genetic variants that underlie this heritability. To date, variants that reliably 

predict depression have been largely elusive [Hek, et al. 2013]. The most likely explanations 

include lack of statistical power to detect the small effects of individual variants and the 

heterogeneity of depression [Levinson, et al. 2014]. To achieve sufficient power to detect 

the weak associations of individual variants, research groups have formed consortia to reach 

the required extremely large sample sizes [Pedersen, et al. 2013; Psaty, et al. 2009; Ripke, et 

al. 2012]. However, heterogeneity of the phenotype counteracts these efforts as it reduces 

power [Levinson, et al. 2014; Lubke, et al. 2014]. Heterogeneity of depression refers to the 

presence of different subgroups that are characterized by different depression profiles on the 

symptoms [Lamers, et al. 2013]. It can also refer to the fact that when depression scales are 

factor-analyzed often multiple factors emerge, showing that these scales are 

multidimensional rather than unidimensional [Jang, et al. 2004; Straat, et al. 2013], and 

individuals can have different profiles on these factors. In this study we focus on the second 

type of heterogeneity. Genetic analyses of depression most commonly use aggregate scores 

of a depression scale (i.e., sum scores, total scores). In principle, aggregate scores that are 

computed from a unidimensional scale (i.e., scales that have a single underlying factor) are 

more reliable than when computed from a multidimensional scale that also measures 

additional factors. More reliable aggregate scores lead to more consistent results when 

applied under similar conditions [Jöreskog 1971; Mellenbergh 1996]. This is due to the fact 

that the additional factors can introduce heterogeneity because of differences in profiles on 

these additional factors. Stated more simply, there are many different possible combinations 

of the factors that lead to the same sum score on a multidimensional scale, and this 

introduces noise in statistical analyses. In our study we show that using a more reliable 

unidimensional version of a depression scale can contribute to improving statistical power in 

genetic analyses.

GWA studies have increasingly been supplemented with heritability estimation using the 

software Genome-wide Complex Trait Analysis [Lango-Allen, et al. 2010; Lubke, et al. 

2012; Pedersen, et al. 2013]. In this approach to heritability estimation, a genetic 

relationship matrix calculated from single nucleotide polymorphism (SNP) data is used to 

estimate how much of the variance of the phenotype is due to SNPs [Speed, et al. 2012]. 

However, standard errors of the variance estimates in these studies are often large, leading to 

wide confidence intervals [Lubke, et al. 2012]. As shown by Lubke et al. for Borderline 

Personality Disorder, this lack of power can at least partially be due to using aggregate 

phenotype measures that are heterogeneous [Lubke, et al. 2014]. The effects of reliable 

versus unreliable phenotype measures have been the subject of much research in 

psychometrics. An important result is that unreliably measured phenotypes lead to decreased 

power in statistical analyses [Kaplan 1990].
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The present study focuses on the benefits of a reliable measure of depression in: 1) twin and 

family-based heritability estimation; 2) SNP-based heritability estimation; and 3) a genome-

wide association study (GWAS). In all three parts, the Hospital Anxiety and Depression 

Scale (HADS-D, [Zigmond and Snaith 1983]), is compared to more reliable short version of 

this scale that we selected in this study.

The HADS-D was developed to identify non-somatic depressive symptoms in patients 

undergoing general medical care, and therefore only assesses part of the DSM depression 

symptoms. Factor-analytic studies of depression scales commonly discriminate between 

somatic and non-somatic factors [Jang, et al. 2004; Lux and Kendler 2010]. Still, although 

focusing exclusively on non-somatic depressive symptoms, the HADS-D has been shown in 

psychometric analyses to be multi-dimensional, featuring several correlated factors 

[Mykletun, et al. 2001; Straat, et al. 2013]. These results imply a decreased utility of the 

HADS-D total score in genetic analyses because of phenotypic heterogeneity [Bollen and 

Lennox 1991]. In other words, the HADS-D score is as a less reliable measure of depression 

because it sums correlated but different dimensions. In order to increase reliability in 

measuring depression, we constructed a total score derived from a unidimensional subset of 

HADS-D items. We compared the performance of this subscale score (“HADS-4”) to that of 

the HADS-D total score in three separate genetic analyses.

Our study consisted of: 1) an investigation of the psychometric properties of the HADS-D 

using item factor analysis, resulting in the construction and validation of a unidimensional, 

more reliable short version, the HADS-4; 2) heritability estimation based on nuclear families 

of twins (twin pairs, their siblings, and parents); 3) heritability estimation based on SNPs 

collected on essentially unrelated individuals using the software GCTA, an increasingly 

common approach in psychiatric genetics to test if twin-based heritability estimates can be 

recovered with SNP data; and 4) a GWAS. In parts (2)-(4), we compared the performance of 

the HADS-D and HADS-4. For all analyses we used data collected in the Netherlands Twin 

Register (NTR) [Willemsen, et al. 2013]. Note that based on the sample size with available 

HADS-D and SNP data in the NTR (N=5777) we did not expect significant results in the 

GWAS. This part was included to assess the difference in statistical power between the two 

versions of the HADS in a GWAS.

Materials and Methods

Subjects & Materials

Individuals who participated in the eighth wave of data collection by the NTR supplied data 

on depression from multiple instruments. The NTR is a longitudinal twin-family study of 

mental and somatic health. A detailed description of the data collection and methods used, 

including IRB approval, measurements taken, genotyping procedures, and quality control is 

provided in [Willemsen, et al. 2013].

We analyzed phenotypic data from a sample of 15,997 individuals in 7,078 families. The 

depression phenotype data consisted of responses to Dutch translations of the HADS-D and 

the ASEBA Adult Self Report Depressive Problems Scale (ASR) [Reef, et al. 2009; 

Spinhoven, et al. 1997]. The ASR is an instrument for which a scoring algorithm based on 
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DSM symptomology was developed, and which also records somatic symptoms that are 

omitted from the HADS-D [Achenbach, et al. 2005]. We used ASR scores as a criterion to 

validate that the HADS-4 performs similarly to the full HADS-D as a measures of 

depression. We used maximum-likelihood estimation with the EM algorithm, which enabled 

us to use individuals missing a small number of responses. Individuals missing more than 

30% of responses to HADS-D, HADS-4, or ASR items were excluded in order to ensure 

convergence.

Figure 1 provides a flowchart showing the available data on the different scales, as well as 

which parts of the data were used for which part of the analyses. For the psychometric 

analyses, all individuals of each family were included, and analyses were carried out with 

statistical corrections for relatedness [Savalei 2014]. In the twin and family analyses, within-

family covariance matrices were based on the data of two twins, their parents, and two 

siblings. Many families did not have data from the complete set of six individuals; due to 

this incomplete data, the EM algorithm was used to estimate the covariance matrix 

[Jamshidian and Jennrich 1997]. Table S1 in the Supporting Information gives percentages 

of families by structure; for example 44.6% of families had maternal data and 29.8% had 

paternal data, and 21.7% had data from both parents. The lower percentage of subjects with 

parent data reflects the presence of older subjects in the data. SNP-data were available for 

N=5777 with HADS-D, and for N=5665 with HADS-4. The difference in N was due to 

missing two of the HADS-4 items, which exceeded the 30% missingness criterion for the 

HADS-4 but not the HADS-D. The sample sizes for essentially unrelated individuals were 

N=3174 (HADS-D), and N=3136 (HADS-4). All individuals with SNP data were included 

in the GWAS whereas the GCTA analysis was based on essentially unrelated individuals. 

For individuals who had been genotyped, four additional covariates were defined: three 

principal component (PC) scores representing geographic origin in the Netherlands and a 

fourth representing genotyping platform [Boomsma, et al. 2014]. These PCs were used in 

the GCTA analysis as well as the GWAS.

In the next four sections, we outline the methods for (1) analyzing the measurement 

properties of the HADS-D and for choosing the first four items as the most reliable, 

homogeneous subset, (2) the twin-based heritability analyses, (3) the SNP-based heritability 

analyses with GCTA, and (4) the GWAS which was done in Plink [Purcell, et al. 2007].

Analysis 1: HADS-D and its Psychometric Properties—The HADS-D is a 7-item 

scale. Each HADS-D item has ordered responses that are coded from 0 to 3, with the total 

score ranging from 0 to 21. The individual items and their responses are listed in Table S2 of 

the Supporting Information.

We analyzed the dimensionality of the HADS-D and the reliability of its items using factor 

analysis. To avoid unnecessary capitalizing on chance, we split the data into a smaller set for 

the exploratory factor models (data from 2,986 families, 2,418 males and 4,342 females), 

and a larger set for the confirmatory factor models (data from the remaining 4,092 families, 

3,338 males and 5,899 females). Model fitting was done using Mplus 7 [Muthén and 

Muthén 1998–2012]. Since we included related individuals in the factor analyses, we used 

maximum likelihood estimation with robust standard errors [Savalei 2014]. The EFA 
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showed that the first four HADS-D items loaded on a single factor, whereas the remaining 

items also loaded on additional factors, thus replicating previous findings [Mykletun, et al. 

2001; Straat, et al. 2013]. We therefore performed item selection in the confirmatory sample, 

creating a short version of the HADS-D consisting of the first 4 items (abbreviated as 

“HADS-4”). Details concerning item selection and the derivation of the reliability of the 

HADS-D and HADS-4 scores are provided in the Supporting Information. The derivation 

shows that large item-specific variances can lead to a total score that is less reliable than a 

score based on only a few items [Bollen and Lennox 1991].

In addition to reliability, our initial psychometric analyses also evaluated the convergent 

validity of the HADS-D and HADS-4 items. This was done by regressing the ASR total 

score on the HADS-D and HADS-4, respectively, The resulting R2’s were used as a validity 

coefficient [Lord, et al. 1968]. The validity coefficient for the HADS-4 indicates its ability 

to measure the same non-somatic aspects of depression that are targeted by the full HADS-

D. In our sample, N = 15,018 individuals with HADS-D scores also had ASR scores. As in 

all analyses, age, sex, and their interaction were used as covariates, and sandwich-type 

covariance estimates were used to correct standard errors for familial clustering.

Analysis 2: Heritability Estimates based on Twins and Relatives—In this 

approach to estimating heritability, the expected genetic relatedness between family 

members is used to decompose the phenotypic variance into genetic and environmental 

effects [Martin, et al. 1997]. Different models of inheritance allow for the estimation of 

additive and non-additive genetic effects as well as shared environment or cultural 

transmission [Posthuma, et al. 2003]. We used Mplus 7 to fit different models of inheritance 

to HADS-D and HADS-4 data from twins and their families. Details are provided in the 

online Supporting Information. We used goodness-of-fit-statistics to compare models that 

included additive genetic, non-additive genetic, family environment, gene-environment 

covariance, familial transmission, and assortative mating effects on phenotypic variance. We 

fit these models in the nuclear families of 6955 twin pairs (2364 MZ/4591 DZ) in which the 

twin(s) and family members had HADS-D data and in the 6908 (2356 MZ/4552 DZ) twin 

families with HADS-4 data.

Analysis 3: Heritability Estimates based on SNPs—The GCTA software (http://

www.complextraitgenomics.com/software/gcta/) was used to estimate the proportion of 

phenotypic variance that is due to SNPs [Davis, et al. 2013; Lubke, et al. 2012; Plomin and 

Simpson 2013]. First, a genetic relatedness matrix is calculated from the individuals’ 

genotypes at all available SNPs. Next, the genetic relationship matrix is used as a predictor 

in a constrained linear mixed model to estimate the genetic variance component. Previous 

research using the approach has shown that considerable sample sizes are needed to obtain 

heritability estimates with small confidence intervals [Visscher, et al. 2014].

We used GCTA software to estimate the heritability of depression in 3,174 individuals with 

HADS-D data and 3,136 individuals with HADS-4 data. These sample sizes are relatively 

small for two reasons: 1) fewer than half of the individuals in the sample used for the twin 

analyses had been genotyped, and 2) relatedness of participants. A pair of individuals was 

considered essentially unrelated if they had estimated relatedness coefficients under 0.025, 
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the default cutoff in applications of GCTA [Yang, et al. 2011]. GCTA estimates of 

relatedness tend to underestimate true relatedness [Powell, et al. 2010]. As a result, the 

relatedness cutoff excludes pairs that have a most recent common ancestor approximately 

four generations distant, assuming no inbreeding [Lynch and Walsh 1998]. Genetically 

unrelated but socially related individuals (spouses, adoptive children, etc.) were not 

excluded from our analysis.

Relatedness calculations were based on the genotyped SNPs in our sample that passed 

quality control requirements: MAF > 0.01, missingness on fewer than 1% of individuals, 

and a non-significant test of Hardy-Weinberg Equilibrium (p > 1e-06).

Analysis 4: GWAS—GWAS differs from the heritability estimating approaches because it 

aims at detecting specific SNPs that are associated with the phenotype. The association is 

tested between each SNP and the HADS-D and the HADS-4, respectively. The power to 

detect a significant association is affected by the reliability of the phenotype. In 

consequence, we expected that using the HADS-4 would lead to more powerful tests of 

association than using the HADS-D.

We performed a GWAS on 5,777 individuals with HADS-D data and a separate GWAS on 

5,665 individuals with HADS-4 data. As before, the difference in sample sizes occurred 

because some individuals with less than 30% missing HADS-D items had more than 30% 

missing responses on the HADS-4 items. All individuals from each family were included in 

the analysis in order to optimize power [Minica, et al. 2014]. Therefore association tests 

were based on robust standard errors.

Quality control was carried out using standard protocol, as described in detail in [de Zeeuw, 

et al. 2014]. Thresholds for allele frequency (>.01), call rate (>.99), and tests of Hardy-

Weinberg Equilibrium (p > 1e-06) were applied. After QC, 7,957,814 SNPs remained in the 

sample.

Results

Analysis 1: Psychometric Investigation of HADS-D

1. Factor analyses—Correlations between individual items and the total score were 

relatively large (as shown in Table I) and were generally stronger in females than in males. 

Inter-item correlations were moderate and also tended to be stronger in females. Items 7 (can 

enjoy mass media) and 5 (indifferent to appearance) had the weakest inter-item correlations 

overall.

In both males and females, the eigenvalues of the correlation matrices suggested that the 

first factor accounts for about 45% of the variance. These are presented in Table S3 in the 

Supporting Information. We fit EFA models with one to three factors using Mplus 7 

[Muthén and Muthén 1998–2012]. Although the three-factor model had significantly better 

fit than the two factor and single-factor models, the observed eigenvalues, the modest 

decreases in residual variances when adding more than one factor, and large correlations 

between factors all pointed to a single-factor model. Patterns of factor loadings from the 

Laurin et al. Page 6

Genet Epidemiol. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



EFA are presented in Tables S4 and S5 of the Supporting Information. Further justification 

for the single-factor model is also given in the ‘Item Factor Analysis and Item Selection’ 

subsection of the Supporting Information. The confirmatory factor analysis showed that 

when fitting a single factor model, the first four items of the HADS-D were the most reliable 

indicators as quantified by squared correlations with the factor (R2>.4). The factor loadings 

in the confirmatory model are presented in Table S6 of the Supporting Information.

2. Validity—The ASR was used as a criterion to assess the potential loss of information 

when using the HADS-4 compared to the full HADS-D. Note that this does not imply that 

the ASR has to be a golden standard. The correlation between HADS-D scores and DSM-

oriented ASR scores was .54 (SE =.008, p < .001), whereas the HADS-4 total score had r=.

59 (SE =.007, p < .001). This result demonstrates the validity of the HADS-4. Further 

support for our choice of the first 4 HADS-D items as a reliable measure of depression 

comes from regressing the ASR on the individual HADS-D items. The HADS-4 items had 

the largest partial correlations with depression as measured with the ASR. In the multiple 

regression predicting ASR, the HADS-4 items alone had multiple R2 of .354. Conditioning 

on the covariates age, gender, and their interaction increased this to R2 = .395. Adding the 

remaining HADS items to the analysis yielded R2=.401 . Given the first 4 HADS items and 

covariates, the remaining HADS items contribute little to the validity of the HADS-D.

Analysis 2: Heritability Estimates based on Twins and Relatives

Families consisted of twin pairs, their parents, and up to two siblings of the twins. Patterns 

of missingness in families are given in Supporting Information Table S1. Note that although 

fewer than 30% of families had sibling or paternal data, there were still 1,530 siblings and 

2,073 fathers providing data to these analyses. Table II shows familial correlations for 

HADS-D scores; HADS-4 scores are similar, and are shown in the online Supporting 

Information (Table S7). In all models, the sibling-sibling and DZ twin-pair correlations were 

constrained to be equal. See the Supplementary Methods section of the Supporting 

Information for more specific information concerning the fitted twin models.

We fitted models that estimated additive and dominant genetic variance components 

(denoted ‘A’ and ‘D’), the effects of shared environment (denoted ‘C’), assortative mating 

(‘μ’), and cultural transmission, which induces gene-environment covariance (‘W’). The 

variance due to non-shared environment and measurement error cannot be distinguished, 

and their joint variance was denoted ‘E’. The models that were compared are listed 

according to the parameters estimated in them: for example, the ‘ACE’ model contains 

estimates of additive genetic, shared environment, and non-shared environmental variance 

components. Model fit comparisons were based on the sample-size adjusted Bayesian 

Information Criterion [Sclove 1987].

The two HADS phenotypes showed very similar patterns of results across the twin and 

family models (see Supporting Information, Tables S8, S9). Importantly, for both 

phenotypes, estimates of the additive heritability tended to be lower than previous twin 

studies that used depression scales including somatic symptoms [Sullivan, et al. 2000]. 
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However, our results are in line with heritability estimates of non-somatic depression factors 

[Jang, et al. 2004].

The best-fitting models, both for HADS-D and HADS-4, included significant effects of 

assortative mating. Model fit comparisons made ADEμ (i.e., ADE with assortative mating) 

the model of choice.

A comparison of HADS-D and HADS-4 showed that the HADS-4 had slightly smaller 

estimates of non-shared environmental/error variance, confirming that this phenotype is 

more reliable. In addition, phenotypic assortment was slightly lower in the HADS-4 than the 

HADS-D. This suggests that the excluded HADS-D items may measure features that 

contribute to assortative mating.

Analysis 3: Heritability Estimates based on SNPs

The narrow-sense heritability estimate that was calculated using GCTA in essentially 

unrelated individuals was significant for the HADS-4 phenotype but not for the HADS-D. 

The heritability estimates were .13 for the HADS-D and .21 for the HADS-4 (Table III). 

This result shows that the HADS-D is indeed a more heterogeneous phenotype measure that 

is associated with less variance explained by genetic similarity between participants. Note 

that again, the estimates were somewhat lower than previously published SNP-based 

heritability estimates of other, alternative depression measures. For instance, for an MDD 

case/control phenotype estimates were .32, [Lubke, et al. 2012] and .21 [Lee, et al. 2013], 

for antidepressant response this was .42 [Tansey, et al. 2013]; and for age at depression 

onset 0.51 [Power, et al. 2012]. As noted before, the HADS differs from other depression 

measures in that it does not take into account somatic symptoms, which are likely 

contributing to estimates of heritability [Mykletun, et al. 2001; Zigmond and Snaith 1983]. 

However, the additive genetic variance estimate of 21% using the HADS-4 as phenotype 

agrees with previous twin-based heritability estimates of non-somatic depression factors 

[Jang, et al. 2004], and also with our twin-based estimate of additive variance in the ADEμ 

model. The standard errors of the estimates were still relatively large even for the HADS-4 

(i.e., 0.10), due to the small sample size of N=3136 in the GCTA analyses.

Analysis 4: GWAS

The HADS-4 showed a larger number of strong GWAS associations than did the HADS-D. 

This is illustrated in Figure 2, which shows the heavier right tail of the distribution of 

negative, log-transformed HADS-4 p–values. This result shows that on average, the 

HADS-4 had more powerful tests than did the HADS-D.

Note that this result does not imply that for any given SNP, the HADS-4 phenotype 

provided a more powerful test. To illustrate, we ranked SNPs by their p-values under both 

phenotypes and correlated the rankings. The top-ranked HADS-D SNPs did not have the 

same p-value rankings under the HADS-4 phenotype, and vice-versa. For instance, the p-

values of the top 1000 SNPs using the HADS-D correlated only 0.352 with the p-values 

resulting from using the HADS-4. The low correlations might be due to noisier GWAS 
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results of the HADS-D, which would again suggest that the HADS-4 is a preferable measure 

in a GWAS.

Finding genetic markers associated with depression is challenging since depression is highly 

polygenic—caused by many mutations of small effects [Gratten, et al. 2014]. Furthermore, 

depression is characterized by a diverse set of symptoms. As a consequence, a sum score of 

all symptom endorsements can be due to quite different symptom profiles. Our result that 

the HADS-4 had a larger number of strong associations compared to the HADS-D shows 

that power can be gained by focusing on core symptoms, and that more homogeneous 

depression measures should be preferred in association analyses.

Discussion

Our analyses showed that the sum of responses to the first four HADS-D items (“HADS-4”) 

provides a more homogeneous measure of non-somatic depression, and that HADS-4 

performed as well as or better than the full HADS-D scale. Generally, the HADS-4 yielded 

more powerful tests in different genetic analyses. The GCTA and GWAS analyses 

confirmed that the increased homogeneity of the HADS-4 led to increased statistical power. 

The twin and family analyses were consistent with these results as the estimate of non-

shared environment/error variance was smaller for the HADS-4 than for the HADS-D.

More specifically, our twin analyses suggested that additive genetic variance is responsible 

for approximately 20% of the variability in HADS-D and HADS-4 scores. This is lower than 

has been observed for depression in general, and is likely due to the content of the HADS. 

The HADS was designed to measure the non-somatic symptoms of depression in the 

hospital setting, where unrelated medical complaints could easily confound self-reports of 

somatic depression symptoms (e.g., lethargy, changed appetite, sleep problems, etc.). Our 

estimate is consistent with estimates of twin-based heritability of non-somatic depression 

factors [Jang, et al. 2004]. Our finding that shared environment was not a significant 

contributor to depression is consistent with previous results [Flint and Kendler 2014]. 

Further research might focus on investigating the heritability of the somatic symptoms. For 

instance, Trzaskowski et al. [2013], observed low SNP-based heritability estimates both for 

somatic and non-somatic depressive symptoms in children, which they attributed to non-

additive inheritance. We observed some evidence that non-additive effects are associated 

with HADS scores in our twin-and-family analyses.

Both our SNP-based heritability analyses and the GWAS supported our claim that genetic 

analyses benefit from using homogeneous phenotype measures. Specifically, the HADS-4 

provides a more homogenous depression phenotype that should be preferred by consortia 

researching depression using the HADS [Bjerkeset, et al. 2008; Deary, et al. 2013; Zammit, 

et al. 2012]. To illustrate, if the true heritabilities of the HADS phenotypes were equal to our 

SNP-based estimates, then a replication study testing heritability of the HADS-4 would have 

statistical power of .76, while one using the HADS-D would have power of .37 [Visscher, et 

al. 2014, http://spark.rstudio.com/ctgg/gctaPower/]. This comparison is based on strong 

assumptions, but if our results are representative, using the HADS-4 is nevertheless likely to 

yield considerably more powerful tests. In the GWAS analyses, the HADS-4 phenotype had 
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a larger number of strong associations than did the HADS-D. The HADS-D and HADS-4 

samples were nearly identical, which implies that using the HADS-4 results in more 

powerful tests of association on average, making it more desirable as a depression 

phenotype. The relationship between SNP association coefficients and polygenic risk scores 

implies that using HADS-4 are also likely to yield increases in power in polygenic risk score 

analyses of depression [Dudbridge 2013].

Increases in power as well as consistency of results across different cohorts should be 

expected more generally in genetic analyses when phenotypic heterogeneity is reduced. 

Homogeneity can be increased by focusing on core symptoms, thus reducing the noise in the 

aggregate scores that is due to substantially different symptom profiles.

The main limitation of our study is that all analyses were conducted in a single data set, and 

with a specific depression measure. The next step is to conduct similar analyses with 

different phenotype measures and with simulated data in order to generalize the results and 

conclusions. We expect that using homogeneous phenotypes in genetic studies will 

generally be beneficial, but also that there will be a lower limit to the number of items that 

need to be included when summing a scale. As shown in Lubke et al., using individual items 

is clearly not optimal as they contain too much error [2014]. The challenge in deriving 

homogeneous phenotype measures is therefore to select individual scale items that measure 

the characteristic symptoms of a unidimensional trait.
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Figure 1. 
Flowchart of study participants with non-missing genotypic and phenotypic data.
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Figure 2. 
A quantile-quantile plot of -values from the HADS-D and the HADS-4 shows a trend 

toward more significant associations for the HADS-4 (p-values are log-transformed)
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Table III

SNP-based heritability of depression as measured by HADS-D and HADS-4

Phenotype A(SE) logLik -value

HADS-D 0.13(0.10) 2.06 0.15

HADS-4 0.21(0.10) 4.98 0.026

Note: “A” denotes the estimated additive variance, “SE” denotes standard error, and logLik is twice the difference in log likelihood between the 
models with and without the additive variance component.
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