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Abstract
With the advent of high-throughput measurement techniques, scientists and engineers are

starting to grapple with massive data sets and encountering challenges with how to orga-

nize, process and extract information into meaningful structures. Multidimensional spatio-

temporal biological data sets such as time series gene expression with various perturba-

tions over different cell lines, or neural spike trains across many experimental trials, have

the potential to acquire insight about the dynamic behavior of the system. For this potential

to be realized, we need a suitable representation to understand the data. A general question

is how to organize the observed data into meaningful structures and how to find an appropri-

ate similarity measure. A natural way of viewing these complex high dimensional data sets

is to examine and analyze the large-scale features and then to focus on the interesting de-

tails. Since the wide range of experiments and unknown complexity of the underlying sys-

tem contribute to the heterogeneity of biological data, we develop a new method by

proposing an extension of Robust Principal Component Analysis (RPCA), which models

common variations across multiple experiments as the lowrank component and anomalies

across these experiments as the sparse component. We show that the proposed method is

able to find distinct subtypes and classify data sets in a robust way without any prior knowl-

edge by separating these common responses and abnormal responses. Thus, the pro-

posed method provides us a new representation of these data sets which has the potential

to help users acquire new insight from data.
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Introduction
Over the last years, the use of high-throughput measurement data has become one of the most
exciting trends and important themes in science and engineering. This is becoming increasing-
ly important in biology. However, handling and analyzing biological data have challenges all of
their own because these data sets are typically heterogeneous, stemming from a wide range of
experiments (Fig 1) and representing the (unknown) complexity of the underlying system [1].
For instance, in molecular biology one may think of the experiment axis in Fig 1 as experimen-
tal parameters and conditions, such as cell type, chemical perturbation and genetic alteration.
Also, in cancer cells, more specifically the breast cancer that we study [2], since pathway-tar-
geted therapies lead to abnormal behaviors and different responses to external stimuli, chal-
lenges occur in analyzing inherently heterogeneous data.

With the growth of the amounts of various biological data, a general question is how to or-
ganize the observed data into meaningful structures and how to find an appropriate similarity
(or dissimilarity) measure which is critical to the analysis. Since such multidimensional spatio-
temporal (note that we refer to “spatio-” as “different species” such as different proteins or dif-
ferent neurons in this paper) data have the potential to provide new insight across multiple di-
mensions, these data can enable users to start to develop models and draw hypotheses that not
only describe the dynamic interactions between states such as genes or neurons but also inform
them about commonalities and differences across experimental conditions. A significant chal-
lenge for creating suitable representations is to continue handling large data sets and to effec-
tively deal with the growing diversity and quantity of the data sets.

A natural way of viewing these complex high dimensional data sets is to examine and ana-
lyze the large-scale features and then to focus on the interesting details. The decomposition en-
ables focusing on the precise effects of each particular feature by placing emphasis on the

Fig 1. Multi-dimensional spatio-temporal data.We consider various experiments with different
perturbations, doses, mechanism, tasks, etc.

doi:10.1371/journal.pone.0121607.g001
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commonalities or the unique behaviors. For example, the potential of clustering to reveal bio-
logically meaningful patterns in microarray data was first realized and demonstrated in an
early paper by Eisen et al [3]. Thereafter, in many biological applications, different methods
have been used to analyze gene expression data and characterize gene functional behavior.
Among various data-driven modeling approaches in biological systems, clustering methods are
widely used on various biological data to categorize them with similar expression profiles.
However, until recently, most studies have focused on the spatial, rather than temporal, struc-
ture of data. For instance, neural models are usually concerned with processing static spatial
patterns of intensities without regard to temporal information [4]. Since many existing data-
driven modeling approaches such as clustering or classification using biological data focus on
static data, they have limitations in analyzing multi-dimensional spatio-temporal data sets.

Recently, much research has focused on time series high-throughput data sets. These data
sets have the advantage of being able to identify dynamic relationships between genes or neu-
rons since the spatio-temporal pattern results from the integration of regulatory signals
through the gene regulatory network or electrochemical signals through the neural network
over time. For example, time series gene expression data sets with various drug-induced pertur-
bations provide the distinct possibility of observing the cellular mechanisms in action [5].
These data sets help us to unravel the mechanistic drivers characterizing cellular response and
to break down the genome into sets of genes involved in the related processes [6]. Also, several
recent studies focus on the temporal complexity and heterogeneity of single-neuron activity in
the premotor and motor cortices [4] [7] [8]. Therefore, instead of concentrating on steady state
response, monitoring dynamic patterns provides a profoundly different type of information.
Moreover, since many current and emerging cancer treatments are designed to inhibit or stim-
ulate a specific node (or gene) in the networks and alter signaling cascades, advancing our un-
derstanding of how the system dynamics of these networks is deregulated across cancer cells
and finding subgroups of genes and conditions will ultimately lead to the more effective treat-
ment strategies [2].

In this paper, we propose a Robust Principal Component Analysis (RPCA)-based method
for analyzing spatio-temporal biological data sets over various experimental parameters and
conditions. Since we consider multidimensional spatio-temporal biological data sets, we note
this goes beyond the results in either clustering steady state gene expression data across various
experimental conditions or analyzing the dynamic behavior of the system for a particular ex-
perimental condition. To demonstrate that our method helps users acquire insight efficiently
and to emphasize that the proposed method can be applicable to various domains, we consider
two different systems 1) neural population dynamics and 2) a gene regulatory network. The
proposed method is intended to aid analysis of dynamic behavior of the system under various
experimental parameters or conditions, by retrieving common dynamical information and fo-
cusing on the interesting details with a new perspective on the problem. The ultimate goal is to
use such information to learn more about the system by acquiring new insight from data.

Background

2.1 Overview: Neural Population Dynamics and Gene Regulatory
Network

2.1.1 Neural Population Dynamics. Neural ensemble activity is typically studied by aver-
aging noisy spike trains across multiple experimental trials to obtain an approximate neural fir-
ing rate that varies smoothly over time. However, if neural activity is more a reflection of
internal neural dynamics rather than response to external stimulus, the time series of neural ac-
tivity may differ even when the subject is performing nominally identical tasks [8]. In [7],
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Churchland et al. showed that neural activity patterns in the primary motor cortex and dorsal
premotor cortex of the macaque brain associated with nearly identical velocity profiles can be
very different. This is particularly true of behavioral tasks involving perception, decision mak-
ing, attention, or motor planning. In these settings, it is critical not to average the neural data
across trials, but to analyze it on a trial-by-trial basis [4]. Moreover, stimulus representations in
some sensory systems are characterized by the precise spike timing of a small number of neu-
rons [9] [10] [11], suggesting that the details of operations in the brain are embedded not only
in the overall neural spike rate, but also in the timings of spikes.

The motor and premotor cortices have been extensively studied but their dynamic response
properties are poorly understood [4]. Moreover, the role of motor cortex in arm movement
control is still unclear, with experimental evidence supporting both low-level muscle control as
well as high-level kinematic parameters. We can define the motor cortical activity, which repre-
sents movement parameters as per eq (1), and the dynamical system that generates movements
as per eq (2) [4]:

xiðtÞ ¼ hiðparam1 ðtÞ; param2 ðtÞ; param3 ðtÞ; . . .Þ ð1Þ

_xðtÞ ¼ f ðxðtÞÞ þ uðtÞ ð2Þ

where xi(t) is the firing rate of neuron i at time t, hi is its tuning function, and each paramj may
represent a movement parameter such as hand velocity, target position or direction. In (2), x 2
R
n is a vector describing the firing rate of all neurons where n is the number of neurons, _x is its

derivative, f is an unknown function, and u is an external input. In (2), neural activity is gov-
erned by the underlying dynamics f(�), so the characteristics of dynamical system should be
present in the population activity. Since we will align spatio-temporal neural activity with the
same temporal condition as shown in Fig 2(b), we may be able to extract these characteristics.

2.1.2 Gene Regulatory Network. In microarray data, missing and corrupted data are
quite common and not uniform across samples, which include arbitrary corruptions by mea-
surement noise, improper use of biomarker or human error during biological experiments.
Two strategies for dealing with missing values are either to modify clustering methods so that
they can deal with missing values, or impute a “complete” data set before clustering [12].

Consider collections of time series gene expression of breast cancer cell lines or microarray
data sets from pathway-targeted therapies involving drug-induced perturbation experiments.
When a specific gene is perturbed as shown in Fig 2(c), the broad gene expression levels of
other genes might be perturbed over time. Thus, comparing gene expression levels in the per-
turbed system with those in the unperturbed system reveals the extra information that is the
different cellular mechanisms in action. A dynamical system of the gene regulatory network
can be modelled as follows:

_xðtÞ ¼
f ðxðtÞÞ ðwithout perturbation or wild� typeÞ

f ðxðtÞÞ þ gf�gðxðtÞÞ ðperturbed or mutant � specific partÞ
ð3Þ

8<
:

where x(t) 2 R
n denotes the concentrations of the rate-limiting species, _xðtÞ represents the

change in concentration of the species over time t, n is the number of species, f(�) represents
the vector field of the typical dynamical system (or wild-type) and g{�}(�) represents an addition-
al perturbation or mutant-specific vector field (blue and red edges in Fig 2(c)). For example,
small molecule inhibitors such as Lapatinib and AKT inhibitor can be modeled as additional
vector fields such as gLAP(x(t)); gAKTI(x(t)) which are assumed to be sparse because small mole-
cule inhibitors only affect a single gene expression. Also, even some mutations such as kinase
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domain mutation, we can simply add a single vector field such as gM(x(t)). In other words, we
have a unified model for wild-type cell line, _xðtÞ ¼ f ðxðtÞÞ and in the mutant or perturbation
case, we invoke a single change to the network topology or add a single influence for a specific
gene (g{�}(�)). Here, additional vector fields such as gLAP(�), gAKTI(�) and gM(�) are assumed to be
sparse (i.e., affect only a single gene expression). Although these additional vector fields affect
only a single gene expression at time t, their influence can be propagated through the network
over time.

2.2 Motivation
Extracting meaningful dynamic features from a heterogenous data set such as spatio-temporal
neural activities or time series gene expression data with different perturbations is often intrac-
table for methods sensitive to outliers or noise. In this paper, we consider the task of retrieving
such common dynamic features under the presence of inherent outliers, incorporating for ex-
ample, task-irrelevant neural activities or aberrant responses of gene expression caused by
drug-induced perturbation.

The key idea is that despite the inherent heterogeneity of these data, these common dynam-
ics may lie on a lower dimension as compared to the overall heterogeneous dynamics. For

Fig 2. Conceptual representation. (a) RPCA applied to computer vision. A typical example of video surveillance where the low-rank component represents
the unchanging background and the sparse component represents the movements in the foreground. (b) RPCA applied to neural systems. The low-rank
component putatively represents (submovement relevant) neural signatures and the sparse component represents neural activity unrelated to submovement
onset. (c) Collections of drug-induced perturbation experiments and mutant-specific part representations (breast cancer signaling pathway) withwild-type,
Lapatinib treatment,AKT inhibitor andmutant cell lines where solid black edges represent common network topology, and blue and red edges represent a
single change of the network topology for perturbations or mutant cell lines.

doi:10.1371/journal.pone.0121607.g002
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example, although gene regulatory network may respond differently to drug-induced treat-
ments, these dynamics still share a fair part of their dynamics and thus the common dynamic
behavior should be present in their dynamic responses. Similarly, for spatio-temporal neural
activities, some portion of the variability may reflect key features in neural activities corre-
sponding to a specific task even though the responses of each neuron may be corrupted by
task-irrelevant neural responses which may vary significantly across many trials. By under-
standing the shared dynamic properties across different experiments, we can extract the com-
mon responses and by isolating the common dynamic behavior, the aberrant responses show
how the gene regulatory network operates differently or represent task-irrelevant neural re-
sponses. Note that we do not need any a priori information about the underlying system. Our
method is inspired by advances in computer vision, which we briefly discuss in the
following section.

2.3 Robust Principal Component Analysis (RPCA)
In the computer vision literature [13], an interesting separation problem is introduced where
the observed data matrix can be decomposed into an unseen low-rank component and an un-
seen sparse component. The method called Robust Principal Component Analysis (RPCA) is a
provably correct and efficient algorithm for the recovery of low-dimensional linear structure
from non-ideal observations, incorporating for example, occlusions, malicious tampering, and
sensor failures.

In video surveillance, we need to identify activities that stand out from the background
given a sequence of video frames [13]. Fig 2(a) shows that if we stack the video frames as rows
of a matrixM 2 R

q×Px�Py where q is the number of frames for a given time window, and Px and
Py represent the number of pixels of 2-D images respectively, then across each row ofM, there
exists a common component that is the stationary background and a changing component
which is the moving object in the foreground at each image frame. Here, the data matrixM is
an input for RPCA and the output is both the stationary background represented as a matrix L
2 R

q×Px�Py and the moving objects in the foreground represented as a matrix S 2 R
q×Px�Py. Intui-

tively, with only one video frame (i.e., a single static image), the moving objects cannot be iden-
tified from the stationary background. However, by stacking all the vectorized frames such that
all the frames align across the column direction as shown in Fig 2(a), we can identify the sta-
tionary backgrounds which are common variations, and then capture the moving objects
which are sparse components for each frame.

With this notion, suppose we are given a large data matrixM, which has principal compo-
nents in the low-rank component and may contain some anomalies in the sparse component.
Mathematically, it is natural to model the common variations as approximately the low-rank
component L, and the anomaly as the sparse component S. In [13], Candès et al. formulate this
as follows:

min
L;S

k L k� þ lk S k1 s:t: M ¼ Lþ S ð4Þ

where kLk� denotes the so-called nuclear norm of the matrix L, which is the sum of the singular
value of L, and kSk1 = ∑ijjSijj represents l1-norm of S. A tuning parameter λmay be varied to
put more importance on the rank of L or the sparseness of S. Since choosing the tuning param-

eter λ to be l ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxðq; Px � PyÞ

q
, works well in practice [13], in the computational results

we will present here, we choose the parameter λ based on this criteria. However, for practical
problems, it is often possible to improve performance by choosing λ according to prior
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knowledge about the solution. Thus, we can also use λ as a tuning parameter to trade off more
importance between L and S.

2.4 Key Contributions
In [14], Liu et al. proposed an RPCA-based method of discovering differentially expressed
genes using steady state response. Since they use the static data with different perturbation sig-
nals, they only treat the differentially and non-differentially expressed genes for gene identifica-
tion and thus focus on the spatial structure of data. However, since we focus on the spatio-
temporal gene expression data sets with various perturbations, we include the temporal axis as
shown in Fig 1. Instead of concentrating on the steady state response [14], analyzing time series
gene expression data sets is more relevant to understanding biological systems since it has the
distinct possibility of identifying dynamic relationships. With only one time point (i.e., steady
state), RPCA may be able to identify outliers or differentially expressed genes at the steady state
but it is very limited in its ability to identify drug-specific responses or aberrant responses. By
including dynamics, we consider the disentanglement of low-rank and sparse component
which results in not only extracting common dynamic features but also detecting specific re-
sponses or heterogeneity. As an example, for a gene expression time series data set, when a tar-
get protein is perturbed by a specific drug, there are immediate effects on the target protein and
compensatory responses on other proteins over time. We can reveal the extra information by
comparing protein levels in the perturbed system with those in the unperturbed system. Since
abnormal behaviors or different responses to external stimuli or different cell lines can be ex-
tracted from the original data using the information available in the data set, we could classify
data and reveal biological meaningful patterns, for example, observing distinct cellular mecha-
nisms in action.

Since we treat the spatio-temporal gene expression data set and focus on the relationship be-
tween gene regulatory network and dynamics of each regulatory signal, we note this goes be-
yond the results in [14] [15]. In order to handle multidimensional spatio-temporal responses
properly, we propose the strategy for arranging the input data matrix and incorporate with
Random Projection (RP) for the preprocessing step. In the following section, we will show why
this preprocessing step is necessary for this analysis and present that by using RP, we can han-
dle either a sparse data set (i.e., neural activity) or data sets with eccentric distribution (i.e.,
proteomic data), which are common in biological data sets. Through numerical and biological
examples, we will demonstrate that we can improve the identifiability of the common dynamic
features by using RP. Also, we will demonstrate that the proposed method provides us a new
representation of biological data which has the potential to acquire new insight from data.

Methods

3.1 How to Construct the Data MatrixM
In the video surveillance example shown in Fig 2(a), each row ofM represents the vectorized
2-D images at each time frame. Since each image consists of the stationary background (Li,:)
and the moving objects in the foreground (Si,:) at each time i, we denoteM as follows:

M ¼

M1;:

M2;:

. . .

Mq;:

2
66666664

3
77777775
¼

L1;:

L2;:

. . .

Lq;:

2
66666664

3
77777775
þ

S1;:

S2;:

. . .

Sq;:

2
66666664

3
77777775

¼ Lþ S ð5Þ
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whereMi,:, Li,: and Si,: represent the i-th row ofM, L and S respectively. If there were no moving
object in the foreground and no variation for a given video sequence (i.e., 8i, Si,: = 0), Li,: (= Lj,:
(i 6¼ j)) would represent the common stationary background. On the other hand, if not (i.e., Si,:
6¼ 0),M represents the aligned corrupted measurementsMi,:. Although the measurements are
corrupted by moving objects in the foreground, we are able to separate L and S under certain
conditions [13].

3.1.1 Neural Population Dynamics. Recall eq (2) and consider an experiment involving a
non-human primate subject instructed to make visually-guided planar reaches with its hand.
During the experiment, hand position and velocity, as well as the discharge of neurons from
primary motor cortex and dorsal premotor cortex were recorded. See reference [15] for details
on the data sets. All procedures were conducted in compliance with the National Institute of
Health Guide for Care and Use of Laboratory Animals and were approved by the University of
California, Berkeley Institutional Animal Care and Use Committee. Then, hand velocity data
were decomposed into a sum of minimum-jerk basis functions where a submovement repre-
sentation is a type of motor primitive; for example, the hand speed profile as a function of time
resulting from arm movements can be represented by a sum of bell-shaped functions as shown
in Fig 2(b), each of which is called a submovement [15] and denoted as different trials. In Fig 2
(b), each red bar denotes submovement onset, i.e., when the subject triggers submovement.

Suppose we align the spatio-temporal neural activity xi½t�≜ xiðt0Þ;xiðt1Þ; . . . ;xiðtNT�1Þ
� � 2

R
n�NT governed by (2) with submovement onset where the superscript i represents the i-th trial

and NT represents the number of time points for the chosen time window. Then,Mmay be
represented as follows:

M ¼

x11½t� x12½t� . . . x1n½t�

x21½t� x22½t� . . . x2n½t�

. . . . . . . . . . . .

xq1½t� xq2½t� . . . xqn½t�

2
66666664

3
77777775
¼ ½X 1 X 2 . . . X n �≜X 2 R

q�n�NT ð6Þ

where X i≜ e>
i x

1½t�; e>
i x

2½t�; . . . ; e>
i x

q½t�½ � 2 R
q�NT represents the temporal neural activity of

the i-th neuron, ei 2 R
n is a unit vector, and q is the number of trials or submovements. Thus,

each row of X represents the vectorized spatio-temporal neural response for the each trial.
Note that we align each spatio-temporal data set xj[t] with the same temporal condition (sub-
movement onset) as shown in Fig 2(b) but we do not separate different types of submovement.
For example, submovements with different reach directions, or with different ordinal positions
in an overlapped series of submovements, are combined in our input matrix X. With the simi-
lar notion of the stationary background in video surveillance, some portion of the variability
may reflect common dynamic features (L) corresponding to triggering submovement even
though the responses of each neuron are corrupted by task-irrelevant neural responses (S) and
may vary significantly across many trials.

3.1.2 Gene Regulatory Network. Recall eq (3) and consider Fig 2(c). In (3), the vector
field (g{�}) represents a single influence for a specific gene, yet this single influence can be prop-
agated through the network over time. For example, when we inhibit xj, the j-th gene in x, the
gene expression levels of other genes can be affected indirectly; if xj is connected with only few
genes, this perturbation may only affect a small fraction of the total number of gene
expression levels.

Disentangling MST Data into Their Common and Aberrant Responses
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Similar to eq (6), we construct X using gene expression time series data with q different per-
turbations and/or different cell lines. Here, each row of X 2 R

q×n�NT represents the vectorized
time series gene expression xi[t] 2 R

n×NT (n: the number of genes, NT: the number of time
points and q: the number of different perturbation conditions including the number of differ-
ent cell lines) and different rows represent spatio-temporal responses of different perturbations
or different cell lines.

Since time series gene expression results from integration of regulatory signals constrained
by the gene regulatory network, the input matrix Xmay reflect common dynamic response
corresponding to the characteristics of the network structure. Intuitively, in video surveillance,
if someone stays motionlessly in all the frames, the RPCA algorithm discriminates him as a low
rank component. Unless he moves, we could not see the background because he always blocks
the background. Similarly, in order to extract common response of gene regulatory network ex-
actly, we should perturb the entire network arbitrarily and uniformly.

3.2 Random Projection (RP) and Identifiability
In [13], Candès et al. discuss the identifiability issue. To make the problem (4) meaningful, the
low-rank component Lmust not be sparse. Another identifiability issue arises if the sparse ma-
trix S has low-rank. In many computer vision applications, practical low-rank and sparse sepa-
ration gives visually appealing solutions.

However, for neural activity data, only a small subset of the whole ensemble of neurons is
active at any moment as shown in Fig 3(left). Since the input matrix X is sparse, the low-rank
component Lmight be sparse or the sparse matrix Smight have low-rank. In addition, the
original distributions of the amplitude of individual neuronal activities or gene expressions are
highly skewed. For example, neural activities often form very eccentric clusters shown in Fig 3
(left); some neurons are highly activated (30-40 spikes/sec) but others typically have only a few
spikes per second. Similarly, gene expressions form very eccentric clusters since each gene ex-
pression shows different scales in practice. Also, for the pathway targeted therapies, since gene
regulatory networks are known to be sparse, a large subset of the whole ensemble of genes
might be deactivated at any moment and thus Xmay be sparse.

These imply that practical low-rank and sparse separation seems to be ambiguous and
might present a challenge to achieve biologically meaningful solutions in both neural activity
data sets and drug-induced perturbation experiment data sets. To remedy this identifiability

Fig 3. The low-rankmatrices from both RPCA and RP-RPCA.X = [X1 X2 . . . Xn] 2 R
q×n�NT is an input matrix and we choosem = n = 64 for the comparison

(contrast represents activity of neuron. i.e., high contrast represents highly modulated neural activity and white color represents zero neural activity). (left)
raw-data (center) low-rank component using RPCA and (right) low-rank component using RP-RPCA.

doi:10.1371/journal.pone.0121607.g003
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issue, we propose the RPCA-based method in conjunction with RP; RP can not only de-spar-
sify the input data set but also make a highly eccentric distribution more spherical, thus making
the singular vectors of the low-rank matrix reasonably distributed. Thus, RP is able to make the
input data amenable to this analysis. Moreover, for the gene regulatory network, we can design
experiments by perturbing each gene uniformly well.

3.2.1 Random Projection(RP). Recent theoretical work has identified RP as a promising
dimensionality reduction technique. In [16], Dasgupta showed that even if the original distri-
bution of data samples is highly skewed (having an ellipsoidal contour of high eccentricity), its
projected counterparts will be more spherical. Since it is conceptually much easier to design al-
gorithms for spherical clusters than ellipsoidal ones, this feature of random projection can sim-
plify the separation into the low-rank and sparse components, and thus we can reduce the
computational complexity of the non-smooth convex optimization, in particular l1 and nuclear
norms minimization, used in (4).

By incorporating RP, many speedup methods were developed in optimization by avoiding
large-scale Singular Vector Decomposition (SVD). For example, in [17], Mu et al. demonstrat-
ed the power of the projected matrix nuclear norm by reformulating RPCA and in [18], Zhou
et al. presented the effectiveness and the efficiency of Bilateral Random Projections. However,
both methods [17] [18] consider a dense matrix X and use projection only for reducing
computational effort, while in this paper we consider the case in which the input matrix X is
not applicable to the problem (4) directly due to sparsity or eccentric distribution in X. In
other words, we are not interested in computational efficiency here, but focus on the issues in
the input matrix X in order to make the problem (4) meaningful. Otherwise, the result of
RPCA may provide the mis-identified result since the input is improper for the problem (4).

As we mentioned earlier, the neural activity data in Fig 3(left) are sparse and for the proteo-
mic data, if the negative perturbation has an effect on down regulation of signaling at the im-
mediate target and other proteins, the corresponding spatio-temporal data set can be sparse.
Or, the proteomic data often shows different scales in the measurement across different pro-
teins (i.e., eccentric distribution). Thus, the original input data are not applicable to RPCA
analysis directly due to the nature of the input data. For example, with eccentric distribution of
the scales in biological data, the low-rank component Lmay be biased since the optimization
problem (4) may focus on large scale components in X. Also, if the input data is sparse, the
problem (4) cannot be meaningful due to the identifiability issue [13]. Therefore, we use RP for
preprocessing step in order to handle this issue properly, and make the input data amenable
for RPCA analysis.

The idea of RP is that a small number of random linear projections can preserve key infor-
mation. Projecting the data onto a random lower-dimensional subspace preserves the similari-
ty of different data vectors, for example, the distances between the points are approximately
preserved. Theoretical work [16] [19] [20] [21] guarantees that with high probability, all pair-
wise Euclidean and geodesic distances between points on a low-dimensional manifold are well-
preserved under the mappingC:Rn ! R

m,m� n. Also, RP can reduce the dimension of data
while keeping clusters of data points well-separated [16]. Consider a linear signal model

yðtÞ ¼ CxðtÞ ¼
Xn

i¼1

xiðtÞci 2 R
m ð7Þ

whereC = [ψ1 ψ2 . . . ψn] is anm × n projection matrix whose elements are drawn randomly
from independent identical distributions. First, note that the dimensionality of the data x is re-

duced sincem� n. Also, if we define Y i≜ �e>
i y

1½t�; �e>
i y

2½t�; . . . ; �e>
i y

q½t�½ � 2 R
q�NT where �ei is

m-dimensional unit vector and Y≜½Y1 Y2 . . . Ym �, then Y
> = (C� INT

)X> or Y = X
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(C> � INT
) where� represents the Kronecker product: if A is anm × nmatrix and B is a p × q

matrix, then the Kronecker product A� B is themp × nq block matrix

A�B ¼

a11B . . . a1nB

..

. . .
. ..

.

am1B . . . amnB

2
66664

3
77775

and INT 2 R
NT × N

T is an identity matrix. Intuitively, Y represents the mixture of Xi across spa-
tial directions (i.e., different proteins or neurons) with projection matrixC in order to make
the singular vectors of the low-rank matrix reasonably distributed. Note that since we are inter-
ested in extracting the common dynamic behavior, we keep the temporal order of each experi-
mental data set by the Kronecker product and INT

(i.e.,� INT
). Thus, RP is only used for

transforming data in the space domain.

3.2.2 Identifiability. Suppose our input X in eq (6) can be decomposed as X ¼ Lþ S ¼PdL
i¼1 siuiv

�
i þ

PdS
i¼1 liaib

�
i where σi are the positive singular values, ui 2 R

q×1, v�
i 2 R

1�n�NT are
the left- and right-singular vectors of L, and dL represents the rank of the matrix L. dS is the
number of sparse components in S, and ai 2 R

q×1, bi 2 R
q×1 are sparse with only one nonzero

entry respectively. By using RP, we have for Y,

Y ¼ XðC> � INT
Þ≜XR ¼ LRþ SR

¼
XdL
i¼1

siuiðR>viÞ� þ
XdS
i¼1

liaiðR>biÞ�

¼
XdL
i¼1

siui~v
�
i þ

XdS
i¼1

liai
~b�
i

ð8Þ

where we denote (C> � INT
) by R. As we mentioned above, our input X is sparse or has eccen-

tric distribution, so the singular vectors of the low-rank matrix Lmight not be reasonably
spread out. However, by using RP (multiplying by R), the singular vectors ~v i of the resulting
matrix become reasonably spread out.

Results

4.1 Numerical Example
To illustrate the issue of identifiability and how RP can alleviate this issue, we consider a simple
example: we generate a sparse low-rank input matrix X 2 R

50×2�10 (q = 50, n = 2, NT = 10)
where the rank of X is 6 as shown in S1 Fig. (a). Note that in this example we choose the same
dimension for the input X and Y (refer to (7) and (8), no dimension reduction). This is done
so thatC 2 R

m×n in eq (7) is invertible (we choosem = n and a nonsingular matrixC), allow-
ing us to compare the outputs of RPCA and RP-RPCA directly, which will be described below.
Here, by using RP, we take advantage of de-sparsifying our input data and reducing the eccen-
tric distribution. In general, choosingm< nmakes Ymuch denser because information is
compressed by RP.

To evaluate the performance of separation into a low-rank and a sparse component, we add
sparse corruption for X: Xcorruption = X + Scorruption and Ycorruption = Xcorruption R = XR + Scorrup-
tion R where R = (C> � INT

) is the projection so Ycorruption is the projected corrupted input Xcor-

ruption. To compare the performance of RP-RPCA with RPCA, we first decompose Ycorruption
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into its low-rank and sparse components by solving Eq (4). Then, we invert the projection:

Xcorruption ¼ Lrpca þ Srpca
ðorginal RPCAÞ

¼ YcorruptionR
�1 ¼ ðLrpca

Y
þ Srpca

Y
ÞR�1

≜ �Lrpca þ �Srpca
ðRP�RPCAÞ

where we define �Lrpca≜Lrpca
Y

R�1 and �Srpca≜Srpca
Y

R�1.
Fig 4 shows statistics of both RPCA and RP-RPCA (in which RPCA is applied to the matrix

X and Y respectively) as a function of the tuning parameter λ in equation (4). In this example,

l� ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxðq; n � NTÞ

p ¼ 1=
ffiffiffiffiffi
50

p
. Since our input is still sparse in this example, the rank of

both Lrpca; �Lrpca is 15 for λ� = 0.141 (rank(X) = 6). If we choose λ = 0.113 (20% discounting the
penalty for sparse component), the ranks of Lrpca; �Lrpca are approximately 6, which is the same
as the rank of the original input X. With this choice of λ, for RPCA we find that kSrpcak is
much bigger than the original corruption signal kXcorrpution − Xk = kScorruptionk. On the other

hand, for RP-RPCA, we have k�Srpcak 	 kScorruptionk. Therefore, for RP-RPCA, the separation of

the low-rank component and sparse component is close to the true solution; for the original

Fig 4. Statistics of a numerical example.We run RPCA for Xcorruption andYcorruption (we added sparse
corruption to X). Left y-axis represents the norm of sparse component and the right y-axis shows the rank of L
(more detailed information in S1 Fig. and S2 Fig.)

doi:10.1371/journal.pone.0121607.g004
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RPCA, there is mis-identification in both low-rank and sparse components due to the identifia-
bility issue (more detailed information is provided in S2 Fig.: we compare the original data ele-
ment by element with the reconstruction result).

4.2 Application to Neural Data
Fig 3(left) shows the recorded neural activity aligned with submovement onset. The aligned
neural activity shows that the ratios between units’mean firing rates are fairly constant from
the salient vertical striations in the plots and that temporal patterns exist across all the sub-
movements. Also, as mentioned previously, the neural population activities are sparsely active
(white color represents 0 spikes/sec) and show eccentric behavior; for example, some neurons
have a much higher spiking rate than others.

Fig 3 shows the low-rank matrix from both RPCA (middle) and RP-RPCA (right) respec-
tively (for simple comparison, we choosem = n). Since X is sparse and has an eccentric distri-
bution, the singular vectors may not be reasonably spread out. Thus, applying RPCA directly
toX results in the low-rank component being composed of only highly modulated neural activ-
ity in Fig 3(middle). On the other hand, RP-RPCA can extract the low-rank component from a
more distributed set of neural dimensions than RPCA alone can. Therefore, the result of
RP-RPCA gives a more visually appealing solution than the result of RPCA.

Since we extract neural features which represent common dynamic patterns across many
experimental trials, we can use these features to detect and predict the onset of submovements.
Here, we simply use the correlation between the extracted neural features from the training
data set and the neural signals in the test data set [15]. For a practical purpose, we choose a cor-
relation threshold and if the correlation is over the chosen threshold, we label a submovement
onset as detected. In Fig 5, we vary thresholds for correlation score and show the receiver oper-
ating characteristic (ROC) curve of the prediction result. Since we consider different subjects
and tasks, each curve shows the prediction performance for the corresponding subject and task
respectively. To accurately predict submovement onset times found by submovement decom-
position, the correlation function should peak around the movement onset time. The following
observations suggest the potential application of RP-RPCA to predict movement execution in a
closed-loop Brain Machine Interface (BMI) system:

• (observation 1) Fig 5(a) represents the ROC curve of the prediction of submovement onset
time. Since RP-RPCA can handle the identifiability issue, we can see that the overall predic-
tion performance based on RP-RPCA is better than the performance based on RPCA; we can
reduce the false positive rate while increasing the true positive rate.

• (observation 2) Fig 5(b) shows the ROC curves of the prediction of submovement onset for
different subjects or various tasks including center-out task and random-pursuit. This pre-
diction could allow correction of movement execution errors in a closed-loop BMI system.
Note that instead of applying the proposed method to only one subject [15], we apply it for
different subjects including various tasks to generalize the use of our method.

In this section, we applied the proposed method to neural data which are naturally sparse and
have eccentric distribution. We explored the benefits of using RP while preserving certain sta-
tistical characteristics of aggregate neural activity, and showed the improvement of the overall
submovement prediction performance by identifying neural features properly.

4.3 Application to drug-induced perturbation experiments
In this section, we consider multidimensional spatio-temporal data sets from gene regulatory
networks with various perturbation experiments. Since in the previous section, we evaluated
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Fig 5. Receiver Operating Characteristic (ROC) curve of the prediction of submovement onset. (a)
comparison between RPCA and RP-RPCA (target jumps task) (b) different monkeys or tasks where we
prefiltered certain submovements with small amplitude in order to avoid artifacts of overfitting.

doi:10.1371/journal.pone.0121607.g005
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the performance of the RP-RPCA method and demonstrate advantages over the RPCA method
by properly handling identifiability issue caused by sparsity or eccentric distribution on the
simulated and neural data, we directly apply the RP-RPCA method here and focus on explana-
tions of some biological findings, which are consistent with biological knowledge from
the references.

We consider drug-induced perturbation experiments using SKBR3 cell line [5] which has
been used in studies of Human Epidermal Growth Factor Receptor2 (HER2) positive breast
cancer. We choose this data set because it has 16 perturbations using a single cell line and con-
tains 15 gene expressions with 4 time points as shown in Fig 6(top row). The middle row repre-
sents the low-rank component L and the bottom row represents the highly aberrant sparse
component S. In raw data (top row), nearly all treatments show differential responses and thus,
visually comparing gene expressions and searching the featured responses may not be obvious
tasks, especially without any a priori information about the underlying system. However, the
result of the proposed method shows that the low-rank component (middle row) can be

Fig 6. Drug-induced perturbation experiments [5] (16 perturbations×15 gene expressions×4 time points [0, 1, 48, 72h]): (upper) raw data (middle)
low-rank component and (lower) highly aberrant sparse component using threshold, where TORC1,mTOR, S6K,MEK(1),MEK(2), HER2, PI3K(α +
γ, α + δ, all, β, α> β), PDK1, AKT2(1), AKT2(2), AKT1/2(1) and AKT1/2(2) represents various perturbations andHER3, pHER3, IRS-1, pAKT(308),
pAKT(473), pTSC(1462), pTSC2(1571), pGSK, pPRAS, DEPTOR, pS6, p4EBP1, pPKCa, pNDRG1 and pMAPKare the measured expressions.

doi:10.1371/journal.pone.0121607.g006
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categorized into approximately 3-4 featured responses as shown in Fig 6(middle row), and the
sparse component (bottom row) shows specific genomic aberration responses which are con-
sistent with biological understanding where the details will be described below. Note that we
do not use any prior knowledge about the underlying system to separate these data sets into the
low-rank component and the sparse component. Also, since we solve the optimization problem
(4), this decomposition is not subjective and it enables us to focus on the precise effects of each
particular features by placing emphasis on the commonalities.

Also, the following observations suggest mechanisms of response and resistance which may
inform unanticipated biological insight.

• (Observation 1, A in Fig 6)mTOR inhibition shows aberration responses inDEPTOR,
pHER3, IRS-1 and pAKT(308, 473) across other drug-induced perturbation results.
However, it is unclear as how to distinguish these responses by visual inspection in the
raw data matrix (i.e., Fig 6, top row) without any a priori information.
Also, in [22],DEPTOR is identified as anmTOR-interacting protein whose expression is
negatively regulated bymTORC1 andmTORC2. Also, Peterson et al. found thatDEP-
TOR overexpression suppresses S6K1 but it activates AKT by relieving feedback inhibi-
tion frommTORC1 to PI3K signaling. Therefore, formTOR inhibition, highDEPTOR
expression is necessary to maintain PI3K and AKT activation as shown in Fig 6A which
is consistent with the result [22].

• (Observation 2, B in Fig 6)HER2 inhibition results in aberration responses ofHER3,
pAKT(473) andDEPTOR. S3 Fig. [23] represents an abstract model ofHER2 overex-
pressed breast cancer where PHLPP isoforms are a pair of protein phosphatases,
PHLPP1 and PHLPP2, which are important regulators of AKT serine-threonine kinases
(AKT1, AKT2, AKT3) and conventional protein kinase C (PKC) isoforms. PHLPPmay
act as a tumor suppressor in several types of cancer due to its ability to block growth fac-
tor-induced signaling in cancer cells [24]. PHLPP dephosphorylates SER473 (the hydro-
phobic motif) in AKT, thus partially inactivating the kinase [25].
HighDEPTOR expression indicates lowmTORC1 andmTORC2 [22], and according to
the model in S3 Fig., the amounts of the activatedHER3 and AKT are increased by reliev-
ing inhibition reactions. The more interesting fact is that PHLPP is known to dephos-
phorylate SER473 in AKT (i.e., partially inactivating the kinase) which is captured in the
sparse component pAKT(473) in Fig 6B.

• (Observation 3, C in Fig 6) S6K inhibition results in aberration responses of pAKT(473).
Since S6K is located downstream of the AKT-TSC2-mTORC pathway and fed back to
pAKT(473), S6K inhibition captures only activation of pAKT(473). Specifically, our re-
sult is consistent with the partial inactivating characteristics of PHLPP (i.e.,mTOR!
PHLPP a pAKT(473))[25].

• (Observation 4,D in Fig 6) PI3K inhibition leads to increase more phosphorylation of
MAPK compared to other perturbations.

We separate the common response from the heterogeneous responses using the proposed
method without any prior information and the observations from the sparse components in-
form biological insights. We validate these insights compared with biological understanding
from the references. One may argue that in some cases, we may draw these observations by the
visual inspection of the raw data. However, since visual inspection is often subjective, we can-
not convince ourselves, especially without any prior knowledge. In addition, as the dimension
of high-throughput data increases, analysis based on visual inspection is not possible in
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practice. On the other hand, the proposed method helps us examine and analyze the large-
scale features and then focus on the interesting details such as theObservation 1-4 here. Since
the proposed method does not use any prior information, it can provide us a more un-biased
and objective way to interpret biological multi-dimensional data sets. Thus, we can also use the
proposed method parallel to visual inspection with prior knowledge in order to validate our
understanding based on the visual inspection more convincingly.

Also, since abnormal behaviors or different responses to external stimuli or different cell
lines can be extracted from the information available in the data set, we could cluster data cor-
rectly and reveal biological meaningful subtypes (see Supplementary Information: Cluster
Analysis for details). Fig 7(top) shows the clustered result of these drug-induced perturbation
experimental data set using existing hierarchical clustering (left figure, using raw data X with
dissimilarity measure, dxy in (S1) where the dissimilarity measure can effectively remove
changes in the average measurement level or range of measurement from one sample to the
next and it is widely used for biological applications) and the proposed method (right figure,
using [L S] with dϕψ in (S2)) respectively. Also, Fig 7(bottom) represents schematic overview of
time series gene expression data set as shown in Fig 6(top, raw data) with known graph struc-
ture. Thus, these diagrams summarize time series gene expressions such as the immediate ef-
fects of drug-induced perturbation that establish the new steady state and the compensatory
responses. For example, negative perturbations (red dash bar) show the immediate effects on
down regulation of signaling at the immediate target and other proteins (these are shown in
red). The compensatory responses such as upregulation occur at later time points (these are
shown in green). In order to compare the clustered result with each other, we arrange these
schematic overviews with respect to our cluster results. We can easily see that our clustered re-
sult (right) is more consistent with the known gene regulatory network structure and responses

Fig 7. Clustered group. (left) hierarchical cluster and (right) the proposed method. Both clustered results compare with schematic overview of time series
gene expression data set generated by M. Moasser.

doi:10.1371/journal.pone.0121607.g007
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than the result of existing hierarchical clustering (left). For example, hierarchical clustered re-
sult (left) shows thatHER2 andmTOR assigned to substantially different clusters.

4.4 Application to RPPA (Reverse Phase Protein Arrays) data set
Breast cancers are comprised of distinct subtypes which may respond differently to pathway-
targeted therapies as shown in Fig 8A; collections of breast cancer cell lines show differential re-
sponses across cell lines and show subtype-, pathway-, and genomic aberration-specific re-

sponses [2]. Fig 8A shows the raw data X> ¼ X>
1 ;X

>
2 ; . . . ;X

>
n

� � 2 R
n�NT�q, Fig 8B represents

the common response and Fig 8C represents the aberrant responses. These observations sug-
gest mechanisms of response and resistance which differ across cell lines. Here, we use a data
set generated in the Gray Lab using Reverse Phase Protein Arrays (RPPA) from the Mills Lab
[26] which presents a time course analysis on 11 cell lines (allHER2 amplified: 5 wild-type and
6 PI3Kmutant cell lines) in response to Lapatinib, AKT inhibitor and combination of the two.
The time course for RPPA is at 30min, 1h, 2h, 4h, 8h, 24h, 48h and 72h post-treatment.

Since we are interested in analyzing different responses to external stimuli according to the
cell line characteristics such as wild type- and PI3Kmutant- cell lines, we average responses

Fig 8. Application to RPPA data set. x-axis represents time steps ([0.5hr 1hr 2hr 4hr 8hr 72hr] for Raw data / Low-rank (L) / Sparse (S) respectively): (A)
raw dataX

> ¼ ½X>
1 ;X

>
2 ; . . . ;X

>
n � 2 R

n�NT�q (B) low-rank component L and (C) highly aberrant sparse component S using threshold (WT: wild type,M1:
H1047R (kinase domain mutation),M2: E545K (helical domain mutation), andM3: K111Nmutation in PIK3CA).

doi:10.1371/journal.pone.0121607.g008
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based on both raw data and disentanglement results shown in Fig 8 within subtype, and the av-
eraged responses are shown in Fig 9. In Fig 9(top row), Lapatinib treatment(top row) results in
immediate down-regulation of a variety of phosphoproteins in the signaling pathway. From
the low-rank component (L), we can easily observe down-regulation and slow-recovery of the
levels of activation, but the levels of activation are higher in the PI3Kmutation cell lines
(right). Treatment with AKT inhibitor(middle row) leads to immediate down-regulation of
proteins (downstream of AKT) in allHER2 amplified cell lines, although the amplitude of
down-regulation is slightly less in cell lines with PI3Kmutations. In the PI3Kmutation cell
lines, treatment with the combination of Lapatinib and AKT inhibitor leads to further down-
regulation of the AKT signaling pathway but AKT levels are intermediate in comparison to
those observed with inhibitor alone. Although these observations are still interesting, more in-
teresting details might be in both the low-rank component L and the sparse component S:

• (Observation 1 in Fig 8) BT474 shows highly aberrant behavior as shown in Fig 8. The mu-
tation in PIK3CA has not been reported in any other samples and confers weak oncogenici-
ty, unlike the typical hotspot PIK3CAmutations in the helical and kinase domains [27].

Fig 9. Heat maps showing average response based on both raw data and disentanglement result within subtype to targeted therapeutics in Fig 8:
(left)HER2+/wild type, (right)HER2+/ PI3K mutant. Each representation consists of average responses of raw RPPA, low-rank component and sparse
component. Each row represents targeted therapeutics alone and in combination (LAP, AKTi, both). (A) In the PI3Kmutation with applying both inhibitors,
full inhibition of pS6RP is observed (B) the main difference between wild-type and PI3Kmutant is the response of pS6RP and p70S6K.

doi:10.1371/journal.pone.0121607.g009
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• (Observation 2, A in Fig 9) In the PI3Kmutation with applying both inhibitors, full inhibi-
tion of pS6RP is observed in Fig 9 (in the sparse component) and these results show the syn-
ergistic effect of Lapatinib and AKT inhibitor (in the bottom row, low-rank component).

• (Observation 3, B in Fig 9) The main difference between wild-type and PI3Kmutant is the
response of pS6RP and p70S6K. For the wild-type cell lines, all treatments result in down-
regulated pS6RP and p70S6K. However, for PI3Kmutant cells, all treatments result in up-
regulation pS6RP and p70S6K in the short-term (red in Fig 9B) and down-regulation in the
long-term. Suppressing pS6RP relieves feedback inhibition and activates AKT. This differ-
ence makes PI3Kmutation cells more resistant toHER2 inhibitors than their wild-type
counterparts. This finding is not obvious when we take a look at the raw data, especially
Fig 8; it is really hard to differentiate common dynamic behavior from aberrant responses by
visual inspection across cell lines. Thus, our method makes our finding more convincing not
by visually searching X, but by finding these effect automatically by separating common re-
sponse (L) and aberrant behavior (S) by solving (4).

Discussion
Clustering and network inference are usually developed independently. For instance, until re-
cently, most studies of gene regulatory network inference focus on a particular data set to iden-
tify the underlying graph structure, and apply the same method to other data sets and so on.
Or, clustering methods are used on various data sets to find subgroups or classify them. How-
ever, we would argue that there are deep relationships between clustering and network infer-
ence and they can potentially cover each other’s shortcomings. For example, recent studies
[28] [29] exploit the relationship between clustering and network inference and infer regulato-
ry programs for individual genes to reveal module-level organization of regulatory networks.
Since spatio-temporal gene expression patterns result from both the network structure and the
integration of regulatory signals through the network [30], we might reveal the subtype graph
structure and understand heterogeneity across various perturbations by comparing gene ex-
pression levels in the various perturbation conditions.

In this paper, we demonstrate that the proposed method helps to find distinct subtypes and
classify dynamic responses in a robust way. In order to interpret multi-dimensional spatio-
temporal data sets, it is common to compare the responses over experiments and find differ-
ences by looking at the raw data with prior knowledge. As the dimension of high-throughput
data increases, interpreting large scale data sets is infeasible by inspection alone. For instance,
we might have to consider multi-dimensions such as positive perturbation, negative perturba-
tion, temporal response, various read-outs, mechanisms and various doses together. The pro-
posed method provides a way to interpret multi-dimensional data sets. The low-rank
representation provides the large-scale features and the sparse component shows the interest-
ing details such as genomic aberration-specific responses. The intuition behind this is that one
can recover the principal components of a data matrix even though a positive fraction of its en-
tries are arbitrarily corrupted or a fraction of the entries are missing as well [13]. Thus, the no-
tion of common dynamic feature is important for our analysis. We note this goes beyond the
results in [14], i.e., steady-state analyses. In [14], since they consider steady-state analysis (no
dynamic model), the sparse components only reflect the outliers or corruptions. However, we
can identify drug-specific responses by extracting common temporal responses across various
perturbation experiments. Hence, if there exists no common dynamic response, we may fail to
disentangle the input data into low-rank and sparse components. Also, similar to video surveil-
lance application in which the RPCA discriminates the motionless object as a low rank
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component, if drug-induced perturbations only affect a few genes, the common dynamic fea-
ture may be biased, i.e., dynamics of the unperturbed genes may be discriminated as a low rank
component which may cause bias in analysis. Therefore, we should perturb our system uni-
formly well in order to extract the common dynamic feature correctly, and this is correspond-
ing to the assumption for identifiability [13], i.e., sparse component is selected uniformly
at random.

Also, although there is a wealth of literature describing canonical cell signaling networks, lit-
tle is known about exactly how these networks operate in different cancer cells or different
drug-induced perturbations. Our method can reveal aberrant responses or drug-specific re-
sponses across various stimuli or different cell lines by isolating the common dynamic re-
sponses from the raw data. Furthermore, a possible extension of the proposed method is that
once we extract common responses, we apply inference algorithms to identify the unified struc-
ture using these common responses. Or, we can also focus on individual sparse components to
identify the heterogeneity of network structure across cells of different types. Advancing our
understanding of how these networks are deregulated across cancer cells and different targeted
therapies will ultimately lead to improve effectiveness of pathway-targeted therapies.

Moreover, for a gene regulatory network application, since the number of time points is lim-
ited with respect to the number of proteins, we chose reasonable size proteomic data. Note that
the proposed method use common dynamic features and thus we need a reasonable number of
time steps. However, many proteome-wide or genome-wide data only include one time point
(steady-state) or only a few time steps. Therefore, applying this method to large-scale real data-
sets with many time points is our current and future research and to this goal, we are currently
collaborating with the groups which generate proteome-wide data with more time points.

Conclusion
In this study, we develop a new method for clustering and analyzing multi-dimensional biolog-
ical data. We illustrate how the proposed method can be useful to extract common event-relat-
ed neural features across many experimental trials. Also, with time series gene expression data
set, we show that the proposed method helps to find distinct subtypes and classify data sets in a
robust way by separating common response and abnormal responses without any
prior knowledge.
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S1 Fig. (a) (upper) Input matrix X and singular value decomposition (SVD)
(X ¼ UxΣ xV

�
x). (lower) Randomly projected input matrix Y and SVD (Y ¼ UyΣ yV

�
y). Note

that since rank(X) = 6, Ux 2 R
q×6, Sx 2 R

6×6, V�
x 2 R

6�n�NT . In order to show how well singular
vectors are spread out, we show the absolute value of each component. White represents zero
value. (b) RPCA results. We run RPCA for sparsely corrupted Xcorruption, Ycorruption. (we added
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sparse corruption to X as shown in S2 Fig.) Left y-axis represents the norm of X − L and the
right y-axis shows the rank of L.
(TIF)

S2 Fig. The out of RPCA and RP-RPCA with two different λ values. (a) For λ = 0.113, both
Lrpca and Lrp-rpca have rank 6 (	 rank(X)) as shown in Fig 4(b). There is a big difference be-
tween Srpca and the constructed corrupted signal (X − Xcorr) (b) For λ� = 0.141, Srp-rpca is close
to X − Xcorr but the low-rank components are misidentified by both RPCA and RP-RPCA be-
cause both Lrpca and Lrp-rpca have rank 15. Therefore, for RP-RPCA, the separation of the low-
rank component and sparse component is close to the true solution but for original RPCA, we
have misidentification in both the low-rank and sparse components. We can easily see that
Srpca shows characteristics of the low-rank component in S2 Fig. (middle columns of each
panel).
(TIF)

S3 Fig. Abstract HER2 overexpressed breast cancer model. Red arrow represents activation
and blue dash bar represents inhibition.
(TIF)

S4 Fig. Simple cluster analysis. (a) green solid line with circle represents ycorr(= yL + 0) and
blue solid line with circle represents xcorr(= xL + xS) where filled circle represents corrupted
data, unfilled circle represents uncorrupted data (xL) and unfilled square represents corruption
signal (xS) (b) xcorr-ycorr plot with 1-correlation distance (dxy) without modification(left), with
disentanglement(middle), and with disentanglement/weighting factor γ.
(TIF)
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