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Abstract

To confirm associations with a large number of single nucleotide polymorphisms (SNPs), each 

with only a small effect sizes, as hypothesized in the polygenic theory for schizophrenia, the 

International Schizophrenia Consortium (2009, Nature 460:748-752) proposed a polygenic risk 

score (PRS) test and demonstrated its effectiveness when applied to psychiatric disorders. The 

basic idea of the PRS test is to use a half of the sample to select and up-weight those more likely 

to be associated SNPs, and then use the other half of the sample to test for aggregated effects of 

the selected SNPs. Intrigued by the novelty and increasing use of the PRS test, we aimed to 

evaluate and improve its performance for GWAS data. First, by an analysis of the PRS test, we 

point out its connection with the Sum test [Chapman and Whittaker, 2008, Genet Epidemiol, 

32:560-566; Pan, 2009, Genet Epidemiol, 33:497-507]; given the known advantages and 

disadvantages of the Sum test, this connection motivated the development of several other 

polygenic tests, some of which may be more powerful than the PRS test under certain situations. 

Second, more importantly, to overcome the low statistical efficiency of the data-splitting strategy 

as adopted in the PRS test, we reformulate and thus modify the PRS test, obtaining several 

adaptive tests, which are closely related to the adaptive sum of powered score (SPU) test studied 

in the context of rare variant analysis [Pan et al., 2014, Genetics 197:1081-1095]. We use both 

simulated data and a real GWAS dataset of alcohol dependence to show dramatically improved 

power of the new tests over the PRS test; due to its superior performance and simplicity, we 

recommend the whole sample-based adaptive SPU test for polygenic testing. We hope to raise the 

awareness of the limitations of the PRS test and potential power gain of the adaptive SPU test.
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Introduction

Genome-wide association studies (GWASs) have been successful in identifying genetic 

variants, mostly single nucleotide polymorphisms (SNPs), associated with complex diseases 

and other traits (Hindorff et al 2010). The most popular statistical method is univariate 

testing on each individual SNP separately. Univariate testing is powerful in detecting few 

associations with large effect sizes. However, if there are a large number of associations, 

each with only a small effect size, univariate testing will not be powerful, as to be confirmed 

later. This latter case arises as predicted by Fisher’s (1918) polygenic theory, which in 

particular is adopted to account for unexplained genetic variations contributing to the risk of 

psychiatric disorders [Gottesman and Shields, 1967] and other complex diseases. When 

failing to identify any or a sufficient number of associated SNPs based on univariate testing, 

one would question whether it is due to polygenic effects, which may shed light on the 

underlying genetic architecture, such as the common variants-common disease hypothesis 

stating that common diseases are caused by many common genetic variants. The 

International Schizophrenia Consortium (ISC) (2009) proposed a polygenic risk score (PRS) 

test to detect the possible existence of small individual effects from a large number of SNPs. 

When applied to a GWAS dataset with trait schizophrenia, univariate testing only identified 

several strongly associated loci that could not explain a substantial genetic component; 

however, the PRS test did find strong evidence of associations of many SNPs with 

schizophrenia, presumably each with only a small effect that cannot be detected by 

univariate testing on each individual SNP. Interestingly, when applied to the WTCCC 

samples [The Welcome Trust Case Control Consortium, 2007] with a large number of SNPs 

selected and their effect sizes estimated based on the ISC schizophrenia sample, the PRS test 

also detected statistically significant polygenic effects on bipolar disorder (BD), but not on 

six other non-psychiatric diseases. On the other hand, for traits such as breast cancer and 

prostate cancer [Machiela et al., 2011] and the Framingham Coronary Heart Disease Risk 

Score [Simonson et al., 2011], the PRS test either did not identify significant polygenic 

effects or only detected marginally significant polygenic effects.

In a motivating example we were interested in the possible polygenic effects of alcohol 

dependence, a mental disorder characterized by tolerance, withdrawal, uncontrollable drive 

to drink, and repeated use of alcohol despite serious psychological or physiological 

problems [Bierut et al., 2010]. Alcohol dependence is the third leading cause of preventable 

death in the United States [Mokdad et al., 2004]. Both genetic and environmental factors 

contribute to the liability to alcohol dependence. Previous twin and family-based studies 

estimated that 50% to 60% of the individual differences in liability to alcohol dependence 

can be explained by genetic factors [Gelernter and Kranzle, 2009]. However, few 

susceptibility SNPs for alcohol dependence have been identified by GWAS in spite of its 

relatively high heritability and the success of GWAS for other diseases. For example, in the 

“Study of Addiction: Genetics and Environment”(SAGE), one of the first large-scale case-

control GWAS of alcohol dependence with 2,544 European American and 1,104 African 

American individuals, did not identify any genome-wide significant SNP by the 

conventional single SNP analysis [Bierut et al., 2010]. We, however, hypothesized that there 

might be polygenic effects of alcohol dependence captured by the genome-wide SNPs, and 
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therefore applied the PRS test as well as some new and more powerful tests to be introduced 

later to analyze the SAGE GWAS data.

In light of the novelty and importance of the PRS test, it is desirable to learn more of its 

properties, such as: why/when it works (or does not work)? how is it related to other existing 

tests? Through some simple algebra, we establish a strong connection between the PRS test 

and the Sum test [Chapman and Whittaker, 2008; Pan, 2009]. Naturally one can also 

construct a polygenic version of the Sum test, called Poly-Sum, which is shown to be 

essentially the same as the PRS test. More importantly, since it is known that the Sum test 

may not perform well in the presence of many non-associated SNPs [Basu and Pan, 2011], 

which is expected to be the norm in any polygenic analysis with thousands or more of SNPs, 

this connection motivates modifications to the PRS test, leading to other versions of the 

polygenic testing, such as Poly-SSU based on a more robust and often more powerful sum 

of squared score (SSU) test [Pan, 2009]. This analysis also sheds light on why the PRS test 

is powerful in the presence of differing association directions of SNPs, deviating from the 

common problem of the usual Sum test [Pan, 2009].

Among others, our analysis also suggests a severe shortcoming of the PRS test: its data-

splitting strategy. The PRS test uses a half of the original sample to select and over-weight 

more promising (i.e. more likely to be associated) SNPs, and then uses the other half of the 

sample to test their aggregated association with the trait/disease. As to be shown in more 

details later, although selection and weighting of SNPs are desirable, the main reason of 

data-splitting is for the applicability of the usual statistical theory for the final test; it is 

straightforward to use the whole sample to select and weight SNPs, which however 

complicates the derivation of the null distribution of the resulting test. As discussed in other 

contexts, e.g. in the two-stage design of GWAS [Skol et al., 2006], in spite of its simplicity 

and wide applications (e.g. Wu et al., 2010), data-splitting is generally less efficient than its 

counterpart based on the whole sample. Hence, our new formulation of the PRS test 

naturally suggests its modifications with the use of the whole sample to select and weight 

SNPs, leading to two adaptive tests, called adaptive thresholded variance-weighted sum of 

squared score (atSSUw) test and adaptive thresholded sum of squared score (atSSU) test, 

which are variants of the adaptive SSUw and adaptive SSU tests studied in the context of 

rare variant (RV) analysis [Pan and Shen, 2011]. These two tests are in turn closely related 

to some special cases of the adaptive sum of powered score (aSPU) test and its weighted 

version aSPUw test originally proposed for analysis of small sets of RVs [Pan et al., 2014]. 

With both simulated and real GWAS data, we demonstrate that the two new atSSUw and 

atSSU tests performed similarly, both much more powerful than the PRS test; most 

importantly, it turns out that the aSPU test was most powerful across a wide range of 

scenarios and thus is recommended.

Besides the issue of sample splitting, our results also support the importance of adaptive 

weighting in practice. In contrast to a fixed set of weights as used in PRS, the powerful 

aSPU test is built on the idea of assigning multiple sets of weights to SNPs, from which the 

most effective set of weights is selected and adopted. The idea of adaptive weighting can be 

broadly applicable, not only to association testing as focused here. For example, we envision 

that adaptive weighting on SNPs might be able to improve the performance for risk 
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prediction based on one’s genome-wide genotypes, as to be elaborated in the final section. 

Another issue we touch on is SNP selection versus SNP weighting. Our conclusion is the 

same as those in other applications [Newton et al., 2007] and the theory of model selection 

versus model averaging [Yuan and Yang, 2005; Shen and Huang, 2006]: in the presence of 

many weak signals, such as weak associations of many SNPs, accurate selection will be too 

difficult to outperform weighting, as demonstrated by relative performance of SNP selection 

(via p-value thresholding as adopted in a thresholded SSU test) and SNP weighting (as used 

in the aSPU test) to be shown later. In summary, we feel that our results obtained here may 

prove useful to not only genetic association testing but also other problems in practice.

Methods

Data and some existing tests

We consider the case-control study design, though the methods may be easily extended to 

other study designs, e.g. with a quantitative or survival trait. Suppose that for subject i, i = 1,

…,n, Yi = 0 or 1 is a binary trait, e.g. an indicator of disease, and Xi = (Xi1, …, Xik)′ is the 

genotype score at k SNP loci. We use additive coding for each SNP; that is, Xij is the count 

of the minor allele at SNP j for subject i. It is straightforward to include covariates, but for 

simplicity of presentation we ignore them. We consider a logistic regression model:

(1)

We’d like to test the null hypothesis H0 : β = (β1, …, βk)′ = 0; that is, there is no association 

between any SNPs and the trait under H0.

The score vector U = (U1, …, Uk)′ for β in model (1) and V = Cov(U) are simply

where Y¯ and X¯ are the sample means of Yi’s and Xi’s respectively. Five global multilocus 

tests [Pan, 2009] can be constructed as

where Vjj = Var(Uj) is the jth diagonal element of V. The score test is classical, while the 

SSU test ignores the covariance matrix of the score vector U. As discussed in Pan (2009, 
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2011), the SSU test is closely related to an empirical Bayes test for high-dimensional data 

[Goeman et al., 2006] and a variance-component score test in kernel machine regression 

[Wu et al., 2010]; the SSUw test is a weighted version of the SSU test that accounts for 

varying variances of the score components. The UminP test is a representative univariate 

test based on minimum p-value of all the SNPs. The Sum test can be interpreted as the score 

test under the working (and in general incorrect) assumption β1 = β2 = … = βk, under which 

the general logistic regression model (1) reduces to , 

which regresses the trait (Yi) on the sum of the genotype scores .

In the current context, even after selecting some nearly independent SNPs (without using 

trait Yi’s), we have a large k (and a large n); both k and n are typically larger than thousands. 

If we apply the standard score test (or its asymptotically equivalent Wald or likelihood ratio 

test), the power will be low. In fact, as shown theoretically in Fan (1996) and to be shown 

empirically later, as the dimension k increases, the power of the score test gradually 

diminishes, tending to the Type I error rate α. Similarly, if we have many small |βj | /= 0, the 

most popular single SNP-based UminP test in GWAS is also low-powered. As a response, 

the PRS test was recently proposed by the ISC.

Next we review the PRS test, then reformulate it in two ways to illuminate its connections 

with some existing tests, motivating the development of several other tests. A summary of 

the two sets of results is presented in Tables 1 and 2 respectively so that one may choose to 

skip technical details in the remaining sections.

The PRS test and its connection with other tests

Recognizing that many SNPs may have only small effects on the trait while many others 

(called null SNPs) are not at all associated with the trait, the PRS test aims to look at the 

overall or collective effects of those non-null SNPs without singling out their identities. 

Since it is unknown which SNPs are null, and considering null SNPs simply adds noise into 

the resulting test and thus may reduce its statistical power, the PRS test selects and over-

weights those more promising (i.e. more likely non-null) SNPs. To avoid adjusting for 

complicated effects of SNP selection, the PRS test takes a two-step procedure with data 

splitting. The original sample D = {(Yi, Xi) : i = 1, …, n}, possibly conditional on some 

covariates (e.g. gender), is randomly split into two (almost) equal parts, called the discovery 

sample D1 and target sample D2 respectively. Without loss of generality, suppose that the 

first n1 = |D1 | ≈ n/2 observations are in the discovery sample, while the remaining ones are 

in the target sampleof size n2 = |D2 |. First, the discovery sample D1 is used to fit a 

univariate logistic regression model for each SNP j:

(2)

with i = 1, …, n1, to obtain a maximum likelihood estimate (MLE)  and its 

p-value pj = pj (D1), for j = 1, …, k. Note that, i) we use βM ,j to distinguish it in the marginal 

model (2) from βj in the joint model (1); ii) if necessary, we use, e.g. , to show the 

explicit dependence of an estimate on the data being used. Second, using weights 
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 for a given threshold PT based on the discovery 

sample, one constructs a new “score” for each subject in the target sample: 

. Note that only those SNPs with their 

p-values pj < PT will have non-zero weights and thus be used. Then one would test whether 

there is any difference in the mean scores (i.e. E(si)) between the cases and controls by a t-

test. The numerator of the t-statistic is

where n2,1 and n2,0 are the numbers of the cases and controls in the target sample D2 

respectively. As shown by Clayton et al (2004),

is the score function for βj in the joint model (1) or for βM ,j in the marginal model (2) with 

the target sample D2. Accordingly, it is easy to verify that the numerator of the t-statistic is 

the same as the score statistic in the logistic regression model:

corresponding to the Sum test for H′ : α1 = 0 with the new genotype scores wj Xij. In other 

words, the ISC polygenic test uses a half of the sample (i.e. discovery sample) to construct 

weights for the SNPs, then uses the remaining half of the sample (i.e. target sample) to 

conduct a Sum test with the weighted genotype scores. Since under some situations, the Sum 

test may not perform better than some other tests, especially than the UminP and SSU tests 

in the context with a small k [Chapman and Whittaker, 2008; Pan, 2009], it may be better to 

use some other tests. In particular, Basu and Pan (2011) found that the performance of the 

Sum test deteriorated quickly as more nonassociated SNPs were added in, which is expected 

to be the case in the current context with more than thousands of the SNPs to be tested. 

Hence, if we apply the SSU, SSUw and UminP tests [Pan, 2009] to the target sample with 

the weighted genotype scores (i.e. replacing Xij by wj Xij), we obtain the polygenic versions 

of these tests, called Poly-SSU, Poly-SSUw and Poly-UminP respectively. It is noted that 

both the SSUw and UminP tests are invariant to non-zero weighting on genotype scores, but 

do depend on SNP selection through thresholding, hence the two tests and their polygenic 

versions will operate differently. In our simulations, we did find improved performance of 

these tests over the PRS test under some situations; however, since these tests were still 

lower powered than other adaptive tests to be presented next, we will only briefly discuss 

their performance in simulations.
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Although the weighting is expected to be effective in boosting the power of the polygenic 

tests while the sample splitting allows treating the weights as fixed and thus applying the 

usual statistical theory (e.g. for the t-test here), the practice of sample splitting can be too 

costly as shown in other contexts [Faraway, 1992; Skol et al., 2006] and in our later 

simulations. Hence, we would pursue strategies without sample splitting while mimicking 

the PRS test, motivating the development of other tests.

Another formulation of the PRS test and two adaptive tests

To yield a test that is data-adaptive while maintaining the advantages of weighting SNPs and 

avoiding data splitting, we first have a careful look at the weights in the PRS test. As shown 

in Pan (2009),

where U = (U1, U2, …, Uk)′ is the score vector, IM ,d = diag(IM) is a diagonal matrix with 

diagonal elements of IM, and IM = −∂U/∂βM |βM =0 is the (observed) Fisher information 

matrix based on the marginal logistic regression model (2). It is easy to verify that in the 

current case, the jth diagonal element of  is . Hence, we have

Accordingly, the PRS test statistic is

where v1 is the (estimated) variance of the numerator of TPRS(PT).

We propose modifying the above reformulated PRS test such that all the quantities are 

obtained from the whole sample without data splitting, leading to

which is exactly the variance-weighted sum of squared score (SSUw) test [Pan, 2009] being 

applied only to the set of the SNPs with their p-values less than the threshold PT ; we call it 

a thresholded SSUw (tSSUw) test. Of course, due to SNP selection, we cannot use the usual 

statistical theory for the SSUw test (e.g. its null distribution as a mixture of chi-squared 

distributions with degrees of freedom 1). We propose using the permutation [Churchill and 

Doerge, 1994], or the parametric bootstrap [Buzkova et al., 2011] in the presence of 

covariates, to obtain its p-value, say PtS S U w(PT) ; more details are to be given later. Since 
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the result of the tSSUw(PT) test depends on the choice of the threshold PT, it is natural to try 

a few possible values of PT before combining their results. Hence, we propose an adaptive 

tSSUw (atSSUw) test

where Ω is a set of possible threshold values. The atSSUw test is a variant of the adaptive 

SSUw test as studied in Pan and Shen (2011). Differing from the adaptive SSUw test 

therein, rather than using all possible threshold values, the current test only uses those 

specified in Ω, largely reducing the computing demand.

Analogous to using the SSUw test to define the atSSUw test, we can similarly define an 

adaptive test based on the sum of squared score (SSU) test. In some situations, the SSU test 

was found to perform better than the SSUw test (as shown in our later simulations). 

Furthermore, as discussed in Pan (2009, 2011), the SSU test is closely related to an 

empirical Bayes test for high-dimensional data [Goeman et al., 2006], a variance component 

test in kernel machine regression (KMR) [Tzeng and Zhang, 2007; Kwee et al., 2008; Wu et 

al., 2010], and a pseudo-F test in genomic distance-based regression (GDBR) [Wessel and 

Schork, 2006]; see Schaid (2010a, 2010b) for more reviews and discussions. Specifically, a 

new adaptive thresholded SSU (atSSU) test is defined as

where PtSSU(PT) is the p-value of the thresholded SSU (tSSU) test

We recourse to the permutation [Churchill and Doerge, 1994], or the parametric bootstrap 

[Buzkova et al., 2011] in the presence of covariates, to calculate the p-value of either 

atSSUw or atSSU test. It may appear that a double permutation or bootstrap procedure is 

needed, but indeed not necessary. Specifically, for example, for the atSSU test, the 

procedure is as following. First, by permutation (or bootstrapping) we generate B 

independent copies of Y (b) under H0, b = 1, 2, …, B. Second, based on each copy of Y (b) 

and genotypes X, we calculate the corresponding tSSU statistic for each threshold 

, and its p-value 

. Third, we have 

, and the final p-value of the atSSU test 

.
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Instead of using the more time-consuming Wald test to calculate the p-value pj for each SNP 

j, we propose using its asymptotically equivalent and much faster score test, 

under H0.

Further generalizations and connections

For analysis of relatively small sets of RVs, Pan et al (2014) proposed a class of sum of 

powered score (SPU) tests:

(3)

indexed by a parameter γ ≥ 1. Note that TSPU is based on the whole sample D (without data-

splitting). The SPU tests cover the Sum and SSU tests as two special cases with a 

corresponding γ = 1 and γ = 2 respectively. Importantly, as γ → ∞ (and as an even integer), 

then the SPU test would approach the UminP test if the variances of the score components 

are a constant (or if their varying variances are ignored, which may be advantageous in 

certain cases as to be shown); the reason is simple:

As compared to the use of weight wj ≈ Uj (D1)I(pj (D1) < PT)/Var(Uj (D1)) in the PRS test 

and weight wj = Uj (D)I(pj (D) < PT) in the tSSU or tSSUw test, the SPU(γ) test uses weight 

wj = Uj (D)γ −1 . Aside from using the whole sample versus a half of the sample, the SPU 

tests differ from other tests in the following key aspect: rather than using a fixed set of 

weights, the parameter γ in the SPU tests indexes varying sets of weights, allowing more 

flexibility and adaptivity to the unknown truth. For example, as to be shown, in the presence 

of many non-associated SNPs, a larger value of γ would perform better than a smaller γ of 

the SPU test; that is, either PRS or tSSU might not be sufficiently adaptive to the situation 

with a huge number of non-associated SNPs, and thus would suffer from loss of power. Note 

that there is no thresholding or SNP selection in the SPU tests; one may argue that among a 

large number of candidate SNPs, it will always be too difficult to correctly select out those 

causal SNPs with only weak effects. As to be shown later, depending on the unknown 

underlying genetic architecture, we may need use different values of γ and associated 

weights Uj(D)γ−1 to yield high power. For example, if most SNPs are almost equally 

associated with a trait, then a γ ≈ 1 may be optimal; on the other hand, if only few SNPs are 

associated with large effect sizes, then a larger γ would give higher power.

For a given dataset, to adaptively choose the value of γ for the SPU tests, an adaptive SPU 

(aSPU) test was proposed to combine the results of multiple SPU tests. Suppose that we 

have some candidate values of γ in Γ, e.g. Γ = {1, 2, 4, 8, 16, 32, ∞} if the SNPs are 

believed to have different association directions, or more generally, Γ = {1, 2, …, 8, ∞} as 
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used in our later experiments, and suppose that the p-value of the SPU (γ) test is PSPU(γ), 

then the aSPU test combines the multiple SPU tests as

Borrowing the idea of SNP selection with p-values, we can further generalize a SPU test to a 

thresholded SPU (tSPU) test:

and thus define an adaptive thresholded SPU (atSPU) test:

where PtSPU(γ,PT) is the p-value of the tSPU (γ, PT) test. We can similarly define the tSPUw 

and atSPUw tests.

Again we use the permutation or parametric bootstrap procedure as for the tSSUw and 

atSSUw tests to obtain the p-value for the above tests. As to be shown in simulations, it 

turns out that thresholding for SNP selection has minimal effects on performance in the 

atSPU test, presumably because the aSPU test has effectively incorporated SNP weighting.

Results

Simulation set-ups

We conducted extensive simulation studies to evaluate and compare the performance of 

various tests. The simulated data were generated as in Wang and Elston (2008). First, we 

generated a latent vector Z = (Z1, …, Zk)′ from a multivariate Normal distribution with a 

first-order auto-regressive (AR1) covariance structure: Corr(Zi, Zj) = ρ|i−j| between any latent 

components i and j; we used ρ = 0 and ρ = 0.2 to generate (neighboring) SNPs in linkage 

equilibrium and in (weak) linkage disequilibrium (LD) respectively. Second, the latent 

vector was dichotomized to yield a haplotype with MAFs each randomly selected uniformly 

between 0.05 and 0.5. Third, we combined two independent haplotypes and obtained 

genotype data: Xi = (Xi1, …, Xik)′ for subject i. Fourth, for a non-null case we randomly 

chose k1 causal SNPs with their corresponding βj /= 0 (specifically, ORj = exp(βj) ~ U (1, a) 

or U (1/a, a) with a > 1), while all other βj = 0; for a null case, all βj = 0. Fifth, the disease 

status Yi of subject i was generated from the logistic regression model (1). We used β0 = − 

log(0.05/0.95) for a 5% background disease probability; that is, Pr(Yi = 1|Xi = 0) = 0.05. 

Sixth, as in a case-control study, we sampled n/2 cases and n/2 controls in each dataset.
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We considered several set-ups with various values of ρ = 0 or 0.2, k1 = 20, 50 or 100, k from 

1000 to 20000, and n = 2000 with 1000 cases and 1000 controls.

Throughout the simulations, we fixed the test significance level at α = 0.05. The results were 

based on 1000 independent replicates for each set-up. For the tSSU and tSSUw tests, we 

used two sets of the thresholds for PT ∈ Ω = {0.05, 0.1, 0.2, 0.3, 0.4, 0.6} or Ω = {0.005, 

0.01, 0.05, 0.1, 0.2, …, 0.9, 1}; for the γ in the SPU and aSPU tests, we used Γ = {1, 2, 4, 6, 

8, 16, 32, ∞} for k = 1000 and Γ = {1, 2, 3, …, 8, ∞} for others; for the atSPU and atSPUw 

tests, we used Ω = {0.005, 0.01, 0.05, 0.1, 0.2, …, 0.9, 1} and Γ = {1, 2, 3, 4, 6, 8, 16, 32}.

Simulation results

We fixed the sample size n = 2000. We first investigated the cases with k = 1000 

independent SNPs; we gradually increased the number of causal SNPs from k1 = 20 to 100. 

Since the results were similar, while in the current context it is more of interest to investigate 

a denser set of associated SNPs with weak effects, we focused on k1 = 100.

All the tests could control the Type I error rates satisfactorily (not shown). For power 

comparison (Figure 1), it is noteworthy that, as expected from our earlier analysis, the PRS 

test was much less powerful than the tSSUw and tSSU tests, whereas the latter two 

performed similarly. Hence, in the sequel we will only discuss the tSSU and atSSU tests. It 

is noted that the atSSU test could maintain the high power of the tSSU tests while avoiding 

the difficult choice of a single threshold PT and the multiple testing problem with the use of 

several values of PT .

As shown in Figure 1, the asymptotics-based Score, SSU and SSUw tests could be 

conservative, due to the relatively small ratio of n/k. It is interesting to see that the Sum test 

was or nearly was the most powerful if the non-zero associations were in the same direction. 

Comparing the SPUw and SPU tests, they gave similar results if the same γ was used, hence 

we will skip the SPUw and aSPUw tests. Among the SPU tests, it seems that the SPU(4) test 

was most powerful, though the SPU(2), i.e. SSU, test also performed similarly. It is 

noteworthy that the aSPU test maintained high power across all the situations, as a useful 

summary on all the SPU tests. We also note that the tSPU tests’ applying thresholding on the 

SPU tests barely gained; the atSPU and atSPUw tests were almost equally powerful as the 

aSPU test. Hence, for simplicity, we would not need to apply thresholding, and will focus on 

the aSPU test. Overall, we claim that the aSPU test was the winner; in particular, the aSPU 

test was much more powerful than the PRS test.

We note that, although the SPU(1) and SPU(2) test statistics are equal to that of the Sum and 

SSU tests respectively, due to different methods used in calculating their p-values (i.e. 

permutation-based versus asymptotic approximations to the null distributions of the test 

statistics), their results were close but not exactly the same. For a larger number of SNPs 

with k > 1000, we will no longer consider the asymptotics-based tests due to their 

questionable application of asymptotics.

If the SNPs were weakly correlated (in LD) (with ρ = 0.2), we obtained similar results (not 

shown).
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Now we gradually increased the number of SNPs from k = 1000 to 2000, 5000, 10000 and 

finally 20000, while fixing other parameters (Tables 3 and 4). The previous conclusions 

held. Here we emphasize a few major points. First, again we see that the aSPU test was the 

overall winner; in particular, the power difference between the PRS and aSPU test could be 

dramatic. Second, as k increased, we do see the advantage of the PRS test over the global 

Sum, i.e. SPU(1), test, and that of the tSSU over the SSU, i.e. SPU(2), test, e.g. for k = 

20000. It confirms the intuition of applying p-value thresholding to select SNPs to gain 

power for a large k. Nevertheless, as compared to the aSPU test, thresholding in the PRS and 

tSSU tests, and the weighting scheme in PRS, were still much less effective than using the 

weighted score vector in the SPU tests as summarized by the aSPU test. Third, as k 

increased, an SPU(γ) test with a larger, but not the largest, γ would be most powerful. For 

example, for a = 1.25 and k = 20000, the power of Sum=SPU(1), SSU=SPU(2) and SPU(∞) 

tests was 0.148, 0.418 and 0.533 respectively, much lower than 0.819 of the SPU(6) test; as 

a comparison, the aSPU test was most powerful at 0.822. This confirms the adaptivity and 

thus its power advantage of the aSPU test. At the same time, it also demonstrates the severe 

limitation of using any test with a fixed set of weights, e.g. the Sum or SSU test. In 

particular, due to the close connection between the SSU test and KMR and GDBR, we 

expect that the KMR and GDBR would share the same drawback as the SSU test.

While we fixed the number of causal variants in Figure 1 and Tables 3-4, we also 

investigated the performance of various tests as the number of causal SNPs increased for a 

fixed total number of SNPs. Table 5 shows the results for k = 1000 independent SNPs with 

the number of causal SNPs, k1, increasing from 20 to 100. For easy comparison, we also 

include some previous results for k1 = 100 (e.g. in Figure 1 for PRS). First of all, it is clear 

that the aSPU test (without sample splitting) was substantially more powerful than the 

various polygenic tests (with sample splitting), including the PRS test. Among the SPU(γ) 

tests, it is clear that as the number of causal SNPs, k1, increased, a smaller γ would give 

higher power, demonstrating again the importance of adaptive weighting. Second, it was 

confirmed that the PRS and Poly-Sum tests were essentially the same. Third, among the 

polygenic tests, when the number of causal SNPs was relatively small to medium with k1 = 

20 or 50, Poly-SSU test was much more powerful than the PRS (or Poly-Sum) test, while 

they performed similarly when there was a high proportion of causal SNPs with k1 = 100. 

This phenomenon can be explained by the relative performance of the SSU(1) and SSU(2) 

tests (due to their equivalence to the Sum and SSU tests respectively). Fourth, although less 

powerful than Poly-SSU, both Poly-SSUw and Poly-UminP might or might not outperform 

the PRS test, again depending on the number of causal SNPs.

Application to an alcohol dependence GWAS dataset

We applied the PRS test as well as our proposed aSPU test to analyze the aforementioned 

GWAS of alcohol dependence. We obtained the “Study of Addiction: Genetics and 

Environment”(SAGE) GWAS data from the database of Genotypes and Phenotypes 

(dbGaP) through accession number phs000092.v1.p1. Case subjects were identified as 

having a lifetime history of alcohol dependence using DSM-IV (Diagnostic and Statistical 

Manual of Mental Disorders, edition 4) criteria; control subjects were individuals who 

reported a history of drinking, but did not meet the DSM-IV criteria. Genotyping was 
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performed using Illumina Human1Mv1 CBeadChips on 2,544 European American 

individuals (1,165 cases and 1,379 controls). A total of 948,658 SNPs were available from 

dbGaP. We followed the same quality control procedure as in the original SAGE GWAS 

paper (Bierut et al 2010). We selected autosomal SNPs with a sample MAF of 2% or 

greater, Hardy-Weinberg equilibrium (HWE) test p-value > 1 × 10−4, and genotyping rate of 

at least 99%. The final genotype data after quality control consisted of 607,033 SNPs. As a 

further quality control step, we performed conventional single SNP-based association 

analyses and found no genome-wide significant SNPs, consistent with that reported in the 

original SAGE GWAS. In addition, the genomic control factor λ was 1.05, suggesting no 

noticeable population stratification [Devlin and Roeder, 1999].

To obtain a set of SNPs in approximate linkage equilibrium as done in the ISC paper [The 

International Schizophrenia Consortium 2009], we applied PLINK [Purcell et al., 2007] to 

prune the SNPs with a sliding window of 200 SNPs (with a moving step of 20 SNPs) and a 

criterion of LD r2 ≤ 0.1, leading to 62,801 SNPs remaining.

Due to the consistently good performance of the aSPU test in simulations, here we focus on 

contrasting the results from the PRS and aSPU tests. When the PRS test was applied to the 

SAGE samples, it yielded highly significant p-values of 5.04 × 10−5 and 1.23 × 10−6 with 

the threshold PT = 0.1 and PT = 0.5 respectively (Table 6). Taking into account the multiple 

testing issue entailed by the multiple thresholds, the Bonferroni-adjusted overall p-value for 

the PRS test was 1.23 × 10−6 × 7 = 8.64 × 10−6.

Although a p-value < 0.05 is sufficient to reject the null hypothesis of no polygenic effects, 

we performed 10 million permutations for the aSPU test to demonstrate possible power 

differences between the aSPU and PRS tests. The aSPU p-value was 9 × 10−7, more 

significant than the PRS test. As shown in Table 6, none of the test statistics for SPU(2) and 

SPU(4) in the 10 million permutated datasets was larger than those observed in the real 

dataset, leading to both p-values less than 1 × 10−7 . A larger number of permutations might 

result in a even smaller p-value for the aSPU test. Although both tests strongly suggested 

polygenic effects of alcohol dependence, the aSPU test appeared to be more powerful than 

the PRS test, consistent with the conclusions from our extensive simulation studies. A closer 

look at the individual SPU tests revealed some interesting insights. First, SPU(1), i.e., the 

Sum test, had a small p-value of 5.12 × 10−4, suggesting that most of the polygenic effects 

were likely in the same direction (either protective or increasing risk). Second, SPU of 

higher odd powers, i.e., SPU(3), SPU(5) and SPU(7), led to larger p-values; so did SPU(6) 

and SPU(8) compared with SPU(2) and SPU(4). The relative performance within the SPU 

test family in the real data appeared to be more consistent with simulations in Table 3 than 

those in Table 4, i.e., a larger proportion of causal SNPs, each with smaller effect size (a = 

1.1). Finally, SPU(∞), i.e., the UminP test, had an insignificant p-value of 0.3383, in 

agreement with the single SNP-based association analysis result. In summary, the polygenic 

effects of alcohol dependence as identified by both of the aSPU and PRS tests suggested that 

increasing the sample size of the GWAS for alcohol dependence in future studies might lead 

to the identification of genome-wide significant individual SNPs. In fact, a more recent 

GWAS of alcohol dependence with much larger sample size (16,087 subjects in the 

combined discovery and replication samples of both European American and African 
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American individuals), including the SAGE samples as a subset, identified a number of 

genome-wide significant SNPs [Gelernter et al., 2014], which in turn supported the 

polygenic effects of alcohol dependence we identified here.

For the permutation-based SPU and aSPU tests, we used B = 108 permutations. We split the 

job into 10 runs on a Texas Advanced Computing Center (TACC) HPC cluster, each run 

with B = 107 permutations requested on 30 nodes (and three cores on each node); it took 

about 21 hours to finish. Then it took less than an hour to assemble the results across the 10 

runs. The total time was close to (but less than) one day.

We also analyzed 1104 African American samples (625 cases and 476 controls) in the 

SAGE GWAS; however, neither the PRS nor the aSPU test identified significant polygenic 

effects (all p-values > 0.1) based on 119,494 SNPs in approximate linkage equilibrium. 

Given the polygenic effects of alcohol dependence in the African American population 

suggested by the more recent GWAS [Gelernter et al., 2014], the insignificant results of both 

the PRS and aSPU tests were likely due to the smaller sample size than that of the European 

American samples and thus insufficient power, motivating the development of perhaps even 

more powerful tests in the future.

Conclusions and Discussion

We have carefully analyzed and reformulated the PGS test proposed by the ISC, pointing 

out its many connections with existing tests, serving to both highlight its limitations and 

motivate the development of new tests. In particular, we have stressed the low efficiency of 

the sample-splitting strategy adopted in the PRS test, which was also pointed out by other 

authors [Dudbridge, 2013]; without sample splitting, however, the usual asymptotics and 

some theoretical results of Dudbridge (2013) may no longer be used.

Nevertheless, modifying the PRS test with the use of the whole sample leads to a 

thresholded version of the existing SSUw test. We further generalize the thresholded SSUw 

test to the thresholded SPU and SPUw tests. Although our numerical studies confirmed the 

higher power of some adaptive tests over the PRS test, we found that thresholding with the 

univariate analysis p-values had minimal effects on the performance of the atSPU test as 

compared to the aSPU test. Application to the SAGE GWAS of alcohol dependence 

demonstrated the higher power of the aSPU test. Due to its consistently superior 

performance and simplicity, we recommend the use of the whole sample-based aSPU test.

It is noted that the PRS test can be used to test for shared polygenic effects between different 

diseases, where sample splitting is not needed. For example, the training sample is a GWAS 

dataset for schizophrenia while the test sample is another GWAS dataset for bipolar disorder 

[ISC, 2009]. Although not pursued here, our results may prove useful in this new context. 

First, as shown in Table 5, depending on the genetic architecture of the disease, including 

the proportion of the causal SNPs, other versions of the polygenic tests, such as Poly-SSU, 

could be more powerful than the PRS (or Poly-Sum) test, and thus can be used. Second, 

based on our important observation of the necessity and effectiveness of adaptive weighting, 

rather than using the fixed weight wj ∝ Uj for each SNP j, we may apply the adaptive weight 

wj (γ) ∝ U γ −1 with a suitably chosen γ ≥ 1 to obtain the polygenic scores before applying a 
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global test, which does not have to be the Sum test as in PRS, and could be a more powerful 

and robust test like SSU or aSPU.

While we have here focused on testing polygenic effects of complex disease, the polygenic 

score in the PRS test has also been used to predict disease risk, which, however, needs much 

larger sample size than that for testing polygenic effects [Dudbridge, 2013; Chatterjee et al., 

2013]. Specifically, a training sample, say D1, is used to obtain weight 

 for each SNP j. Then for any subject i ∈ D2 in a new 

test sample, its polygenic risk score  is used for outcome prediction. One of our 

main results on the necessity and effectiveness of adaptive weighting on SNPs for 

association testing may be borrowed for risk prediction. As for the aSPU test, rather than 

using the weight wj ∝ Uj (D1), we may use adaptive weight wj (γ) = Uj (D1)γ −1 (with or 

without thresholding), where γ ≥ 1 is a tuning parameter to be determined (e.g. by cross-

validation or another model selection criterion), and thus construct an adaptive risk score for 

each subject i as ),j wj (γ)Xij . Further studies are needed to evaluate this approach.

Finally, we point out that polygenic testing may be conducted on just a subset of the 

genome, which is related to but still differs from the usual gene- or SNP-set analysis, in 

which the number of the SNPs to be tested is often much smaller. In light of its robust power 

in the presence of thousands of neutral SNPs, the aSPU test might be promising in gene-set 

association analysis of GWAS data [Wang et al., 2007; Torkamani et al., 2008; Schaid et al., 

2012; Wei et al., 2012], where hundreds to thousands of SNPs grouped by biological 

functions are tested simultaneously. However, some modifications may be needed to 

account for special features in pathway analysis, such as different gene sizes (i.e. with 

different numbers of SNPs), overlapping SNPs in multiple genes, and how to assign SNPs in 

inter-genic regions to genes. This could be a direction of future investigation.

R code will be posted at http://www.biostat.umn.edu/~weip/prog.html
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Figure 1. 
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Table 1

A summary of the PRS test and its modifications based on sample splitting.

Data D ={(Yi, Xi)|i = 1, …, n} = D1 υ D2 split to two parts D1 and D2.

Model Logit [Pr(Yi = 1)] = βM,0 + XijβM,j, i ∈ D1.

Output wj = wj(D1) = β̂M , j(D1)I (pj(D1)<PT ), w = (w1, …, wk )′,

Xw,ij = wj X ij, Xw,i = (Xw,i1, …, Xw,ik )′.

Model Logit Pr(Y i = 1) = β0 + Σ j=1
k Xw,ijβj, i ∊ D2.

Output
Uw = (Uw,1, …, Uw,k )′ = Uw(D2) = Σi∊D2

Xw,i(Y i − Y
‒

(2)), Y
‒

(2) = Σi∊D2
Y i ∕ ∣ D2 ∣ ,

Vw = Cov(Uw) = Y
‒

(2)(1 − Y
‒

(2))Σi∊D2
(Xw,i − X

‒
w)(Xw,i − X

‒
w)′, X

‒
w = Σi∊D2

Xw,i ∕ ∣ D2 ∣ .

Tests
TPRS ≈ TPoly−Sum = 1′Uw ∕ 1′Vw1.

TPoly−SSU = Uw
′Uw = Σ j=1

k Uw, j
2

.

TPoly−SSUw = Σ j=1
k Uw, j

2 ∕ Vw, jj.

TPoly−UminP = max j=1
k Uw, j

2 ∕ Vw, jj.
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Table 2

A summary of the PRS test and its modifications without sample splitting. T is for a test statistic and P is for 

its p-value.

Data D ={(Yi, Xi)|i = 1, …, n} = D1 υ D2 split to two parts D1 and D2.

Model Logit [Pr(Yi = 1)] = βM,0 + XijβM,j, i ∈ D1.

Output P-values pj(D1)’s for H0: βm,j = 0.

Model Logit Pr(Y i = 1) = β0 + Σ j=1
k X ijβj,

Output
U(D) = (U1

(D), …, Uk
(D))′ = Σi∊DX i(Y i − Y

‒), Y
‒

= Σi∊DY i ∕ ∣ D ∣ ,

U (Dm) = (U1(Dm), …, Uk (Dm))′ = Σi∊Dm
X i(Y i − Y

‒
(m)), Y

‒
(m) = Σi∊Dm

∕ ∣ Dm ∣ for m = 1, 2.

Tests TPRS ≈ cΣ j=1
k U j(D1)U j(D2)I (pj(D1)<PT ) ∕ Var(U j(D1)).

T tSSUw(PT ) = Σ j=1
k U j

2(D)I (pj
(D)<PT ) ∕ Var(U j

(D)).

TatSSUw(Ω) = minPT ∊ΩPtSSUw(PT ).

T tSSU (PT ) = Σ j=1
k U j

2(D)I (pj
(D)<PT ).

TatSSU (Ω) = minPT ∊ΩPtSSU (PT ).

TSSU = Σ j=1
k U j

2(D).

TSPU (γ) = Σ j=1
k U j

γ(D).

TaSPU (Γ) = minγ∊ΓPSPU (γ).

T tSPU (γ,PT ) = Σ j=1
k U j

γ(D)I (pj
(D)<PT ).

TatSPU (Γ,Ω) = minγ∊Γ,PT ∊ΩPtSPU (γ,PT ).
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Table 3

Empirical Type I error rate (for a = 1) and power (for a > 1) for various tests. There are k1 = 100 causal SNPs 

with ORj ~ U(1, a) and all other k – k1 SNPs with ORj = 1. The highest power is in boldface.

k = 2000 SNPs k = 5000 SNPs

Test PT a = 1 1.1 1.15 1.2 1 1.1 1.15 1.2

PRS .01 0.052 0.064 0.114 0.369 0.038 0.060 0.078 0.209

.05/.025 0.049 0.063 0.155 0.449 0.045 0.050 0.092 0.240

.1/.05 0.048 0.066 0.146 0.502 0.038 0.060 0.090 0.240

.2/.1 0.050 0.088 0.191 0.511 0.056 0.062 0.103 0.261

.3/.15 0.052 0.091 0.202 0.533 0.050 0.069 0.100 0.259

tSSU .01/.005 0.042 0.159 0.455 0.875 0.038 0.097 0.268 0.653

.05/.01 0.055 0.201 0.487 0.883 0.052 0.109 0.276 0.623

.1/.05 0.048 0.199 0.501 0.867 0.054 0.125 0.310 0.597

.2/.1 0.054 0.189 0.492 0.858 0.052 0.127 0.313 0.586

.3/.2 0.051 0.193 0.501 0.854 0.056 0.132 0.307 0.586

atSSU 0.054 0.213 0.550 0.920 0.061 0.131 0.349 0.686

SPU(1) 0.050 0.277 0.503 0.716 0.047 0.128 0.236 0.365

SPU(2) 0.048 0.200 0.524 0.876 0.052 0.136 0.321 0.597

SPU(3) 0.048 0.285 0.647 0.936 0.050 0.137 0.340 0.709

SPU(4) 0.051 0.218 0.594 0.942 0.056 0.145 0.378 0.756

SPU(5) 0.052 0.214 0.565 0.934 0.042 0.108 0.348 0.750

SPU(6) 0.046 0.171 0.512 0.896 0.044 0.117 0.344 0.733

SPU(∞) 0.048 0.098 0.227 0.514 0.044 0.087 0.181 0.370

aSPU 0.059 0.287 0.674 0.969 0.045 0.152 0.435 0.795
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Table 4

Empirical Type I error rate (for a = 1) and power (for a > 1) for various tests. There are k1 = 100 causal SNPs 

with ORj ~ U(1, a) and all other k – k1 SNPs with ORj = 1. The highest power is in boldface.

k = 10000 SNPs k = 20000 SNPs

Test PT a = 1 1.15 1.2 1.25 1 1.2 1.25 1.3

PRS .001 0.038 0.068 0.135 0.315 0.057 0.083 0.196 0.532

.005 0.058 0.057 0.140 0.328 0.046 0.073 0.206 0.538

.01 0.055 0.058 0.127 0.352 0.053 0.097 0.203 0.497

.025 0.055 0.070 0.160 0.337 0.055 0.089 0.193 0.453

.05 0.051 0.075 0.149 0.338 0.050 0.099 0.186 0.434

.1 0.060 0.079 0.154 0.304 0.055 0.105 0.182 0.396

tSSU .001 0.063 0.154 0.436 0.841 0.057 0.288 0.685 0.958

.005 0.057 0.170 0.439 0.831 0.050 0.289 0.636 0.883

.01 0.052 0.181 0.442 0.781 0.046 0.292 0.569 0.833

.025 0.053 0.188 0.436 0.716 0.055 0.246 0.497 0.763

.05 0.059 0.189 0.409 0.670 0.063 0.241 0.465 0.690

.1 0.055 0.194 0.382 0.629 0.059 0.223 0.434 0.637

atSSU 0.065 0.229 0.515 0.880 0.061 0.334 0.686 0.940

SPU(1) 0.059 0.159 0.190 0.278 0.047 0.129 0.148 0.215

SPU(2) 0.049 0.181 0.377 0.637 0.053 0.240 0.418 0.626

SPU(3) 0.051 0.189 0.432 0.756 0.055 0.245 0.500 0.774

SPU(4) 0.059 0.245 0.581 0.880 0.058 0.361 0.714 0.939

SPU(5) 0.055 0.213 0.555 0.893 0.035 0.358 0.746 0.954

SPU(6) 0.054 0.244 0.600 0.911 0.047 0.417 0.819 0.980

SPU(oo) 0.053 0.122 0.305 0.628 0.063 0.234 0.533 0.853

aSPU 0.056 0.268 0.609 0.926 0.062 0.423 0.822 0.979
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Table 6

P-values of various tests on the GWAS of alcohol dependence in 2544 European American samples (1165 

cases and 1379 controls). PT : the p-value threshold used in the PRS test.

Test PT p-value

PRS 0.01 0.0042

0.05 7.29 × 10−5

0.10 5.04 × 10−5

0.20 1.61 × 10−5

0.30 5.85 × 10−6

0.40 1.37 × 10−6

0.50 1.23 × 10−6

Bonferroni-adjusted p-value 8.64 × 10−6

SPU(1) 5.12 × 10−4

SPU(2) < 1 × 10−7

SPU(3) 0.0433

SPU(4) < 1 × 10−7

SPU(5) 0.1925

SPU(6) 6.54 × 10−5

SPU(7) 0.3111

SPU(8) 0.0235

SPU(oo) 0.3383

aSPU 9.00 × 10−7
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