Skip to main content
. Author manuscript; available in PMC: 2016 May 1.
Published in final edited form as: Genet Epidemiol. 2015 Apr 6;39(4):306–316. doi: 10.1002/gepi.21899

Table 2.

A summary of the PRS test and its modifications without sample splitting. T is for a test statistic and P is for its p-value.


Data D ={(Yi, Xi)|i = 1, …, n} = D1 υ D2 split to two parts D1 and D2.

Model Logit [Pr(Yi = 1)] = βM,0 + XijβM,j, iD1.

Output P-values pj(D1)’s for H0: βm,j = 0.

Model Logit[Pr(Yi=1)]=β0+Σj=1kXijβj,

Output U(D)=(U1(D),,Uk(D))=ΣiDXi(YiY),Y=ΣiDYiD,
U(Dm)=(U1(Dm),,Uk(Dm))=ΣiDmXi(YiY(m)),Y(m)=ΣiDmDmform=1,2.

Tests TPRScΣj=1kUj(D1)Uj(D2)I(pj(D1)<PT)Var(Uj(D1)).
TtSSUw(PT)=Σj=1kUj2(D)I(pj(D)<PT)Var(Uj(D)).
TatSSUw(Ω)=minPTΩPtSSUw(PT).
TtSSU(PT)=Σj=1kUj2(D)I(pj(D)<PT).
TatSSU(Ω)=minPTΩPtSSU(PT).
TSSU=Σj=1kUj2(D).
TSPU(γ)=Σj=1kUjγ(D).
TaSPU(Γ)=minγΓPSPU(γ).
TtSPU(γ,PT)=Σj=1kUjγ(D)I(pj(D)<PT).
TatSPU(Γ,Ω)=minγΓ,PTΩPtSPU(γ,PT).