Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1980 Oct;66(4):666–671. doi: 10.1104/pp.66.4.666

In Vivo Pathway of Oleate and Linoleate Desaturation in Developing Cotyledons of Cucumis sativus L. Seedlings 1

Denis J Murphy 1, Paul K Stumpf 1
PMCID: PMC440700  PMID: 16661499

Abstract

Exogenous [1-14C]oleic acid and [1-14C]linoleic acid were taken up and esterified to complex lipids by greening cucumber (Cucumis sativus L.) cotyledons. Both 14C-labeled fatty acids were initially esterified to phosphatidylcholine prior to eventual accumulation in triacylglycerols and galactolipids. Kinetic data suggest that esterification occurs prior to desaturation and that phosphatidylcholine is the initial site of both [14C]-oleate and [1-14C]linoleate esterification and of [1-14C]oleate desaturation to [1-14C]linoleate. [1-14C]Linoleic acid was esterified more rapidly than [14C]oleic acid and its desaturation product, [1-14C]α-linolenate, occurred mainly on monogalactosyl diacylglycerol, although some was also observed on the other major acyl lipids, including phosphatidylcholine.

Full text

PDF
669

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Gurr M. I., Robinson M. P., James A. T. The mechanism of formation of polyunsaturated fatty acids by photosynthetic tissue. The tight coupling of oleate desaturation with phospholipid synthesis in Chlorella vulgaris. Eur J Biochem. 1969 May 1;9(1):70–78. doi: 10.1111/j.1432-1033.1969.tb00577.x. [DOI] [PubMed] [Google Scholar]
  2. Hawke J. C., Stumpf P. K. Desaturation of Oleic and Linoleic Acids by Leaves of Dark- and Light-grown Maize Seedlings. Plant Physiol. 1980 Jun;65(6):1027–1030. doi: 10.1104/pp.65.6.1027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Jaworski J. G., Goldschmidt E. E., Stumpf P. K. Fat metabolism in higher plants. Properties of the palmityl acyl carrier protein: stearyl acyl carrier protein elongation system in maturing safflower seed extracts. Arch Biochem Biophys. 1974 Aug;163(2):769–776. doi: 10.1016/0003-9861(74)90539-6. [DOI] [PubMed] [Google Scholar]
  4. Jaworski J. G., Stumpf P. K. Fat metabolism in higher plants. Properties of a soluble stearyl-acyl carrier protein desaturase from maturing Carthamus tinctorius. Arch Biochem Biophys. 1974 May;162(1):158–165. doi: 10.1016/0003-9861(74)90114-3. [DOI] [PubMed] [Google Scholar]
  5. MUDD J. B., McMANUS T. T. Metabolism of acetate by cellfree preparations from spinach leaves. J Biol Chem. 1962 Jul;237:2057–2063. [PubMed] [Google Scholar]
  6. McKee J. W., Hawke J. C. The incorporation of [14C]acetate into the constituent fatty acids of monogalactosyldiglyceride by isolated spinach chloroplasts. Arch Biochem Biophys. 1979 Oct 1;197(1):322–332. doi: 10.1016/0003-9861(79)90252-2. [DOI] [PubMed] [Google Scholar]
  7. Michael R. P., Setchell K. D., Plant T. M. Diurnal changes in plasma testosterone and studies on plasma corticosteroids in non-anaesthetized male rhesus monkeys (Macaca mulatta). J Endocrinol. 1974 Nov;63(2):325–335. doi: 10.1677/joe.0.0630325. [DOI] [PubMed] [Google Scholar]
  8. Murphy D. J., Leech R. M. Lipid biosynthesis from [14C]bicarbonate, [2(-14)C]pyruvate and [1(-14)C]acetate during photosynthesis by isolated spinach chloroplasts. FEBS Lett. 1977 May 15;77(2):164–168. doi: 10.1016/0014-5793(77)80226-3. [DOI] [PubMed] [Google Scholar]
  9. Murphy D. J., Stumpf P. K. Light-dependent Induction of Polyunsaturated Fatty Acid Biosynthesis in Greening Cucumber Cotyledons. Plant Physiol. 1979 Feb;63(2):328–335. doi: 10.1104/pp.63.2.328. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Murphy D. J., Stumpf P. K. Polyunsaturated Fatty Acid Biosynthesis in Cotyledons from Germinating and Developing Cucumis sativus L. Seedlings. Plant Physiol. 1980 Oct;66(4):660–665. doi: 10.1104/pp.66.4.660. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Nichols B. W., James A. T., Breuer J. Interrelationships between fatty acid biosynthesis and acyl-lipid synthesis in Chlorella vulgaris. Biochem J. 1967 Aug;104(2):486–496. doi: 10.1042/bj1040486. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ohlrogge J. B., Kuhn D. N., Stumpf P. K. Subcellular localization of acyl carrier protein in leaf protoplasts of Spinacia oleracea. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1194–1198. doi: 10.1073/pnas.76.3.1194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Roughan P. G. Phosphatidyl choline: Donor of 18-carbon unsaturated fatty acids for glycerolipid biosynthesis. Lipids. 1975 Oct;10(10):609–614. doi: 10.1007/BF02532725. [DOI] [PubMed] [Google Scholar]
  14. Roughan P. G. Turnover of the glycerolipids of pumpkin leaves. The importence of phosphatidylcholine. Biochem J. 1970 Mar;117(1):1–8. doi: 10.1042/bj1170001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. STUMPF P. K., JAMES A. T. Light-stimulated enzymic synthesis of oleic and palmitic acids by lettuce-chloroplast preparations. Biochim Biophys Acta. 1962 Feb 26;57:400–402. doi: 10.1016/0006-3002(62)91143-5. [DOI] [PubMed] [Google Scholar]
  16. Slack C. R., Roughan P. G., Balasingham N. Labelling of glycerolipids in the cotyledons of developing oilseeds by [1-14C] acetate and [2-3H] glycerol. Biochem J. 1978 Feb 15;170(2):421–433. doi: 10.1042/bj1700421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Slack C. R., Roughan P. G., Balasingham N. Labelling studies in vivo on the metabolism of the acyl and glycerol moieties of the glycerolipids in the developing maize leaf. Biochem J. 1977 Feb 15;162(2):289–296. doi: 10.1042/bj1620289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Slack C. R., Roughan P. G., Browse J. Evidence for an oleoyl phosphatidylcholine desaturase in microsomal preparations from cotyledons of safflower (Carthamus tinctorius) seed. Biochem J. 1979 Jun 1;179(3):649–656. doi: 10.1042/bj1790649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Slack C. R., Roughan P. G., Terpstra J. Some properties of a microsomal oleate desaturase from leaves. Biochem J. 1976 Apr 1;155(1):71–80. doi: 10.1042/bj1550071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Slack C. R., Roughan P. G. The kinetics of incorporation in vivo of (14C)acetate and (14C)carbon dioxide into the fatty acids of glycerolipids in developing leaves. Biochem J. 1975 Nov;152(2):217–228. doi: 10.1042/bj1520217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Stymne S., Appelqvist L. A. The biosynthesis of linoleate from oleoyl-CoA via oleoyl-phosphatidylcholine in microsomes of developing safflower seeds. Eur J Biochem. 1978 Oct;90(2):223–229. doi: 10.1111/j.1432-1033.1978.tb12594.x. [DOI] [PubMed] [Google Scholar]
  22. Wharfe J., Harwood J. L. Fatty acid biosynthesis in the leaves of barley, wheat and pea. Biochem J. 1978 Jul 15;174(1):163–169. doi: 10.1042/bj1740163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Williams J. P., Watson G. R., Leung S. P. Galactolipid Synthesis in Vicia faba Leaves: II. Formation and Desaturation of Long Chain Fatty Acids in Phosphatidylcholine, Phosphatidylglycerol, and the Galactolipids. Plant Physiol. 1976 Feb;57(2):179–184. doi: 10.1104/pp.57.2.179. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES