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Visualization of HRas Domains in the Plasma Membrane of Fibroblasts
Anna Pezzarossa,1 Franziska Zosel,1 and Thomas Schmidt1,*
1Physics of Life Processes, Huygens-Kamerlingh Onnes Laboratory, Leiden University, The Netherlands
ABSTRACT The plasmamembrane is a highly complex, organized structure where the lateral organization of signaling proteins
is tightly regulated. In the case of Ras proteins, it has been suggested that the differential activity of the various isoforms is due to
protein localization in separate membrane compartments. To date, direct visualization of such compartmentalization has been
achieved only by electron microscopy on membrane sheets. Here, we combine photoactivated light microscopy with quantitative
statistical analysis to visualize protein distribution in intact cells. In particular, we focus on the localization of HRas and its minimal
anchoring domain, CAAX. We demonstrate the existence of a complex partitioning behavior, where small domains coexist with
larger ones. The protein content in these domains varied from two molecules to tens of molecules. We found that 40% of CAAX
and 60% of HRas were localized in domains. Subsequently, we were able to manipulate protein distributions by inducing coales-
cence of supposedly cholesterol-enriched domains. Clustering resulted in an increase of the localized fraction by 15%.
INTRODUCTION
The currently accepted model of the plasma membrane is a
heterogeneous bilayer organized into microdomains that
results from molecular lipid-lipid and lipid-protein interac-
tions and also reflects the interconnections between
membrane components and the actin cytoskeleton (1).
Although the first suggestions of protein clustering and
membrane heterogeneity were highlighted in the 1970s in
the classical article by Singer and Nicholson (2), it is only
in the past decade that strong evidence of their existence
has emerged. Domains ranging in size from a few tens of
nanometers to ~100–200 nm in diameter have been found
in the past decade, both through indirect biochemical assays
(3) and using sophisticated microscopy techniques includ-
ing fluorescence recovery after photobleaching (4,5),
fluorescence resonance energy transfer (6), fluorescence
correlation spectroscopy (7–9), single-particle tracking
(10–12), single-molecule microscopy (13–15), and electron
microscopy (16). However, a common view on the nature
and biological role of such membrane domains is still lack-
ing. This uncertainty in part arises from the inability of the
above techniques to directly identify domains in live cells.
Earlier techniques identified domains indirectly by analysis
of their effect on such processes as lateral diffusion of
proteins and lipids (10–12,17). To date, direct observation
of domains has been achieved in membrane sheets
through cryo-immunogold electron microscopy (16). In
the approach described here, the first of its kind to our
knowledge, the advantages of the earlier approaches are
combined to allow on one hand direct visualization of pro-
teins and analysis of their organization and on the other
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experimentation with intact (though so far only fixed) cells.
A further limitation of most studies of plasma membrane
structure and function is that they have focused on the outer
leaflet of the plasma membrane, in particular either labeled
lipids or antibody-tagged outer-membrane components,
which are more easily accessible experimentally. Less is
known about the presence of domains in the inner leaflet
of the plasma membrane or about possible coupling of
inner-leaflet to outer-leaflet domains.

It is believed that domains in the inner leaflet would act as
platforms where membrane-bound signaling proteins are
segregated (1,18). This would add an additional layer to
the regulation of signaling cascades. Interleaflet coupling
could add an extra layer of control of signaling pathways,
facilitating the interactions between transmembrane pro-
teins and their effectors on the cytoplasmic leaflet (19,20).

The lipid anchored Ras proteins are involved in a multi-
tude of pathways regulating cell growth, differentiation,
and apoptosis (21). These proteins are small GTPases that
function as molecular switches between an active, GTP-
bound and an inactive, GDP-bound state in many intracel-
lular signaling pathways. Ras proteins are localized in the
cytosolic leaflet of the plasma membrane (22,23), although
they can also be found in the Golgi apparatus and in the
endoplasmic reticulum (24). The Ras-protein family com-
prises various highly homologous isoforms that significantly
differ only in their C-terminal ends, the so-called hypervar-
iable region (HVR) (25). The HVR contains the sequence
that controls how the proteins are anchored to the plasma
membrane. Three of the Ras isoforms, H-, N- and KRas,
are ubiquitously expressed in mammalian cells. Different
isoforms yield different signaling outputs, although each in-
teracts with the same set of effector proteins. It has been
suggested that this seeming controversy might be explained
http://dx.doi.org/10.1016/j.bpj.2015.03.006
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by differences in Ras localization and partitioning within the
membrane. Given that the different isoforms use different
membrane anchoring motifs, it is likely that their specificity
to membrane domains might be dictated by different lipid
content or structuring by the membrane skeleton (21,26,27).

Here, we applied stochastic superresolution imaging by
photoactivation localization microscopy (PALM) (28–30)
to study the partitioning of HRas and of its 10 C-terminal
amino acids, which include the CAAX motif (hereafter
CAAX) in mouse fibroblast cells. By detailed analysis of
the surface distribution of the proteins with 35 nm positional
accuracy, we were able to identify 100-nm-sized domains of
increased HRas occupancy in the inner leaflet of the plasma
membrane. Further, we were able to manipulate the parti-
tioning of HRas by clustering of GM1 gangliosides on
the extracellular leaflet induced by cholera toxin subunit
B (CTX). HRas reorganization upon CTB administration
indicates that cholesterol-rich domains on the outside are
coupled to nanodomains on the inside of a cell.
MATERIALS AND METHODS

Plasmids

The pDendra2 plasmid encoding for Dendra2 protein (Evrogen, Moscow,

Russia) was digested using the restriction sites AgeI and BSrgI. The

pcDNA3.1 vector encoding the 10 C-terminal amino acids of human

HRas, including the CAAX motif fused to yellow fluorescent protein

(YFP) (12), was cut using the same restriction sites. Dendra2 was subse-

quently ligated into the pcDNA 3.1 vector. An analogous procedure was fol-

lowed for pcDNA3.1 vector encoding for HRas-YFP. The integrity of the

resulting reading frames was controlled by sequence analysis.
Cell culture and transfection

Mouse 3T3 fibroblasts were cultured in Dulbecco’s modified Eagle’s

medium (DMEM) supplemented with 10% newborn serum (NBS), strepto-

mycin (200 mg/mL) and penicillin (200 U/mL) in a 7% CO2 humidified

atmosphere at 37�C (95% humidity). Cells were passed every 4 days. For

microscopy, cells were cultured on 25 mm glass slides, pretreated with hy-

drofluoric acid. Adherent cells were transfected with 1 mg DNA and 6 mL

FuGENE 6HD (Roche Diagnostic, Mannheim, Germany) per slide. The

transfection efficiency, as determined by fluorescence microscopy, was

~20%. At 1 to 3 days after transfection, cells were fixed with 4% parafor-

maldehyde in phosphate-buffered saline (PBS) (GIBCO, Invitrogen, Grand

Island, NY) at 37�C for 15 min. For CTB measurements, cells were incu-

bated with 5 mg/mL Alexa647-cholera toxin B (Invitrogen, Thermo Fischer

Scientific, Waltham, MA) for 10 min before fixation.
Single-molecule fluorescence microscopy

PALM imaging (28,29) was performed on a modified version of the wide-

field single-molecule imaging setup that has been described in detail previ-

ously (31). In brief, 3T3 cells adhered to a glass slide were mounted onto an

inverted microscope (Axiovert100, Zeiss, Jena, Germany), equipped with a

100� oil immersion objective (NA 1.4, Zeiss), and kept in PBS at room tem-

perature. The apical membrane of the cells was imaged. For imaging, the

514 nm line from an Ar/Kr laser (Spectra Physics, Newport Corp., Irvine,

CA)was coupled via an optical fiber to the excitation path of themicroscope.

Light from a 405 nm diode laser (Crystal Laser, Reno, NV) was used to pho-
toconvert Dendra2. Images were taken consecutively for up to 104 images

per experiment. The time lag between images was set to 120 ms. Precise

timing and intensity setting for the excitation lightwas achieved by an acous-

tooptic tunable filter (AA Electroptique, Orsay, France). The illumination

intensity at 514 nmwas set to 4 kW/cm2 and the illumination time per frame

to 5ms. Both settings ensured that most of the photoconverted Dendra2mol-

ecules photobleached after one frame. The intensity of the 405 nm activation

laser for photoconversion was increased from 0.2 mW/cm2 to 20 mW/cm2

during acquisition, to ensure sufficient photoconversion of fluorophores

per frame. The density of photoconverted molecules was <0.1 mole-

cules/mm2. The fluorescence signal of individual photoconverted Dendra2-

labeled proteins was subsequently detected on a slow-scan back-illuminated

CCD camera (SpectraMax, Photometrics, Tucson, AZ) with a pixel size of

20 mm, which translates into a pixel size of 200 nm in the objective plane.

To correct for the drift of the setup, an immobilized 200-nm-sized fluores-

cent bead (Crimson Red FluoSpheres, Molecular Probes, Eugene, OR)

was imaged simultaneously with the cells.
Control

As a control for experiments and analysis, purified enhanced YFP (eYFP)

was immobilized in a 15% acrylamide gel. This involved dilution of

200mLof 20 nMbuffered solution of eYFP in 2mLof polyacrylamide before

polymerization. At this low final concentration of 2 nM, the eYFPmolecules

were assumed to be randomly distributed. To obtain clusters of molecules,

the concentration of YFP was increased 100 times to a final concentration

of 200 nM. The samplewas photobleached beforemeasurement with contin-

uous 514 nm illumination for 30 s at an intensity of 4 kW/cm2. This photo-

bleaching step assured that on average only one molecule per frame was

visible. We acquired 1000 consecutive frames 10 � 10 mm in size in which

we observed the stochastic recovery (32) and photobleaching of eYFP.
Image analysis

Image and statistical analysis were performed using MATLAB (The

MathWorks, Natick, MA). The signals of individual Dendra2 molecules

on the charge-coupled device were fitted to two-dimensional Gaussian pro-

files of mean full width at half-maximum of 3705 40 nm set by the diffrac-

tion limit. The mean signal detected from individual molecules was 420 5

60 cnts. At this signal, the accuracy for single-molecule lateral localization

was found to be 35 nm in both the x and y directions (33). Before further

analysis, all positions within the entire image stack were corrected for

experimental drift, as determined by simultaneously tracking fiducial

marker beads within each image. In this way, the drift was corrected to

an accuracy of 5 nm throughout the image stack. Dendra2 signals that lasted

for longer than one frame or reappeared within the 100 following frames,

i.e., within 12 s, and were found within the positional accuracy of the first

detection, were assumed to arise from the same molecule and were dis-

carded (for details, see Section S2 in the Supporting Material).

The drift-corrected single-molecule position data were subsequently

used to reconstruct a two-dimensional image of the cell membrane. Each

position was thereby represented by a two-dimensional Gaussian of width

given by the mean positional accuracy,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2x þ s2y

q
. For each image, >104

positions were used.
Statistical analysis

Ripley’s analysis

For statistical analysis of potential nonrandom distributions of proteins on

the plasma membrane, we used Ripley’s L(r) � r function (34),

LðrÞ � r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KðrÞ=p

p
� r; (1)
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with Ripley’s K-function that counts the mean number of neighbors in a dis-

tance of radius r for N points in an area A:

KðrÞ ¼ A

N2

XN
isj

w�1
ij Ir

�
dij
�
: (2)

dij is the Euclidean distance between two points and the counting measure is

Ir(dij)¼ 1 for distance dij% r and Ir(dij)¼ 0 otherwise. wij R 1 is a weight-
ing factor that accounts for edge effects (34). It corresponds to the inverse of

the proportion of the circumference of a circle with its center in i and pass-

ing through j, which lies within the area A.

For a spatially randomly arranged point pattern, K(r) ¼ pr2, and thus

L(r) � r approaches 0. For a nonrandom pattern with well-separated clus-

ters of typical size R, L(r) � r displays a characteristic maximum at R and

decays to zero for larger radii (35).

The superresolution images of the size of a cell area (commonly 7 �
7 mm2) typically were split into 20 square tiles of 1 � 1 mm2. Each of

the tiles contained at least 70 positions. Ripley’s L(r) � r function was sub-

sequently applied to each tile separately. From the analysis of the individual

tiles, the mean <L(r) � r> was calculated, as was a 1s-confidence interval

as defined by the 1� s=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
realizations

p
quantil.

Density-based spatial cluster analysis with noise

Following the approach of Nan et al. (36), we used another density-based

algorithm, density-based spatial cluster analysis with noise (DBSCAN), to

complement the information obtained with Ripley’s analysis. DBSCAN is a

widely used algorithm in spatial pattern analysis and data mining (37,38). It

generates a list of clusters and assigns each point in the imagewithin a certain

distance (here 40 nm) to a cluster. Points that do not belong to any cluster are

classified as noise (randomly distributed points). The minimal number of

points required to formaclusterwas set to 2 (corresponding toprotein dimers).
Simulations

Point patterns were simulated using MATLAB. The simulations were used

to validate our statistical analysis and to determine the parameter values

needed to reproduce the experimental results. As an initial guess for the pa-

rameters, we used values found in the experiments. The radius of maximum

clustering, R, obtained from Ripley’s analysis was used as an initial esti-

mate for the simulations (35) (see Section S2 in the Supporting Material)).

However, to reproduce the results more closely, we subsequently assumed a

distribution of cluster sizes between 40 and 150 nm. The range of concen-

trations, 5000 < c < 25,000, corresponded to the number of molecules

detected in the experiments. Other parameters included the fraction of

randomly distributed molecules, a (0.4< a< 0.6 (12)), the number of clus-

ters, Nc, the number of molecules per cluster, pc ¼ c� (1� a)/Nc, (i.e., 2<

pc < 15), and the cluster radius, R (40 nm < R < 500 nm). On top of the

randomly distributed positions, Nc clusters were randomly distributed

over the area, with each cluster containing pc positions randomly distributed

in a circular area of radius R around the center of mass. L(r) � r was calcu-

lated as in Eq. 1 for each realization, and the results were compared to the

experimental data. For a purely random distribution of positions (a ¼ 1),

L(r) � r fluctuates around zero. Further, we found that for the case of clus-

tering, the position of the maximum of L(r)� r is located close to clustering

radius R, as was reported in Kiskowski et al. (35), and the maximal value of

L(r) � r increases with the number of positions within a cluster, pc (for a

summary of those simulations, see the Supporting Material).
RESULTS

YFP-acrylamide gel

The strategies for experiment and analysis were validated
by examining the spatial distribution of eYFP molecules
Biophysical Journal 108(8) 1870–1877
immobilized in an acrylamide gel (see Materials and
Methods).

As shown by Dickson at al. (39), eYFP can be reactivated
multiple times from the dark state and thus is a suitable flu-
orophore for superresolution imaging by PALM (32). The
positions of the molecules in each frame were determined
by fitting the intensity distribution from individual eYFP
molecules to a two-dimensional Gaussian (see Materials
and Methods). Images of eight separate areas of the gel
showed an average of 13 eYFP molecules/mm2. To recon-
struct a high-resolution image, each molecule was plotted
as a two-dimensional Gaussian with a standard deviation
that equals the positional accuracy, <s1D> ¼ 35 nm. The
resulting image shows a random distribution of molecules
throughout the region of interest (Fig. 1 A). An analysis
based on both the DBSCAN algorithm and Ripley’s K-func-
tion was performed to confirm the visual inspection. The
observed area was divided into nonoverlapping tiles of
1 � 1 mm in size, and L(r) � r was evaluated in each box
up to a radius of r ¼ 0.5 mm. The DBSCAN algorithm iden-
tified 84% of the molecules as being unclustered, and the re-
maining 16% were assigned to small clusters containing two
or three molecules (see Fig. 1 B). The mean Ripley’s anal-
ysis of the eight independent measurements is shown in
Fig. 1 C. For comparison, the figure shows the mean results
obtained from 10 simulated random point patterns using the
same number of data points (Fig. 1 C, black dashed line). To
demonstrate the capability of the algorithm to distinguish
random distributed fluorophores from clusters, we per-
formed the same analysis on gel containing a 100� higher
concentration of fluorophore. The resulting image shows
large aggregates (see Fig. 1 D). DBSCAN identifies only
9% of these as randomly distributed molecules, whereas
the remaining 91% belong to clusters that vary in content
from a few tens to hundreds of molecules, as shown in
Fig. 1 E. Finally, Ripley’s K-function confirmed this obser-
vation (Fig. 1 F), showing a marked deviation from the re-
sults obtained at the lower concentration of fluorophores.
Hence, these control experiments validate the approach
chosen here to detect a random distribution by means of
superresolution microscopy in conjunction with Ripley’s
analysis.
CAAX clustering

Initially, we studied the membrane distribution of the min-
imal anchoring motif of the HRas protein CAAX. Associ-
ation of CAAX to membrane domains between 20 and
200 nm in size has been suggested previously based on re-
sults from studies that used various indirect methods
(9,12). Here, we performed superresolution experiments
to directly visualize those potential domains in fixed
cells. In these and all subsequent experiments, we chose
to use the photoconvertible genetically encoded fluoro-
phore Dendra2. Dendra2 offers active regulation of the



FIGURE 1 (A) PALM image of eYFP gel. Each position is represented as a two-dimensional Gaussian. Scale bar, 1 mm. (B) Distribution of molecules in

the gel according to the DBSCAN algorithm, showing that 84% of molecules are unclustered. (C) Plot of L(r)� r calculated for the eYFP gel (blue solid line).

The function fluctuates around zero, as expected for a randomly distributed sample. Also plotted are the experimental confidence interval (gray area) and the

L(r)� r for a set of 10 simulations (black dashed line). (D) PALM image of a 200 nM eYFP gel. Clusters of molecules are clearly visible. (E) Distribution of

molecules in (D) according to the DBSCAN algorithm. Only 9% of the molecules are randomly distributed. (Inset) Full histogram. Clusters containing up to

600 molecules are detected. (F) Plot of L(r) � r calculated for the 200 nM eYFP gel (yellow solid line). The function has a maximum at 120 5 15 nm. The

gray area indicates the confidence interval. To see this figure in color, go online.

HRas Domains in Fibroblasts 1873
photoconversion and does not require a high-fluency photo-
bleaching step, which may damage the sample. Wide-field
and confocal images verified that the construct was
faithfully located at the membrane (not shown). The local-
ization of CAAX was studied in 11 cells. Before superre-
solution imaging, a bright-field image was taken to select
a cell and define a region of interest on its apical mem-
brane. High-resolution fluorescence images were taken
for up to 104 frames per sequence. On average, 2–10
molecules were activated per frame. For the analysis,
single fluorophore positions were localized and selected
as described in Materials and Methods. Upon visual inspec-
tion, PALM images show a nonhomogenous distribution of
CAAX molecules. The density map showed irregular
patches containing a higher density of molecules alter-
nating with regions of sparsely distributed molecules
(Fig. 2, A and B).

To quantitatively estimate the observed clustering, we
performed both the density-based spatial clustering analysis
with noise (DBSCAN) and Ripley’s K-function analysis
(34–38). The first method estimates the percentage of clus-
tered molecules and the protein content of such clusters,
whereas the latter method provides information on cluster
size.

DBSCAN analysis classified 605 3% of the CAAXmol-
ecules as randomly distributed monomers. The remaining
40% are distributed in clusters with varying protein content.
Small clusters of two to three proteins account for around
50% of the clustered fraction. Another 25% of molecules
are found in clusters with a maximum of 10 proteins.
An example of one such cell distribution is shown in
Fig. 2 D. The remaining 25% of molecules are distributed
in bigger clusters, which can contain up to hundreds of pro-
teins (see Fig. 2 D, inset).

Ripley’s analysis was implemented iteratively on 1 �
1 mm tiles, covering the entire cell. The density of molecules
in each tile varied between 40 and 170 molecules/mm2.
L(r) � r was calculated for each tile. The mean over all
tiles, <L(r) � r>, was assumed to be representative of the
spatial distribution of CAAX in a single cell. The average
Biophysical Journal 108(8) 1870–1877



FIGURE 2 (A) PALM image of CAAX. Scale

bar, 1 mm. (B) DBSCAN output for a selected re-

gion of the cell image in (A). Scale bar, 500 nm.

(C) Density map of molecule distribution along

the membrane. Scale bar, 1 mm. (Inset) Zoom of

the red-outlined region in the larger image. A re-

gion with higher density of molecules is visible.

Scale bar, 1 mm. (D) Cluster-size distribution for

the cell in (A) as determined by DBSCAN. In

this cell, ~40% of the molecules are randomly

distributed. Clustered molecules are mainly

distributed in small clusters (containing up to 10

molecules.) (Inset) The full distribution of cluster

sizes shows that a few molecules are in bigger clus-

ters with up to 100 molecules. (E) Plot of the mean

L(r) � r calculated for CAAX in 11 cells (green

solid line). The function has a maximum at r ¼
112 5 13 nm. Also plotted are the confidence in-

terval (gray area) and the mean L(r)� r of 10 sim-

ulations (black dashed line). The light gray shaded

area represents the confidence interval of the

random sample. To see this figure in color, go

online.
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and confidence intervals for all 11 cells were calculated to
include potential biological variability of the data set and
were assumed to be representative of CAAX distribution
in 3T3 cells. (Fig. 2 E). The <L(r) � r> plot displays
maximal clustering at 1125 13 nm. The errors were calcu-
lated as the mean 5 SEM of the different single-cell mea-
surements. To quantitatively interpret Ripley’s K test, we
performed a set of simulations to verify the parameter values
that were able to reproduce the experimental pattern. We
assumed that a ¼ 60% of molecules are randomly distrib-
uted, as determined by DBSCAN. The remaining 40%
were distributed in clusters of two to five molecules. Bigger
clusters (as identified by DBSCAN) were taken into
account by including clusters of 15 molecules. L(r) � r
was calculated on each point pattern. The average curve
for 10 point patterns is shown in Fig. 2 E (black dashed
line) overlaid with the experimental data. We assumed
the distribution of cluster sizes to be between 40 and
150 nm. For details of the simulations, see the Supporting
Material.

HRas spatial distribution

After assessing the distribution of the minimal anchoring
motif, CAAX, we studied the full-length HRas protein.
The concentration of HRas-Dendra2 in the range 50–180
molecules/mm2 was comparable to that determined for
CAAX-Dendra2. This allows a direct comparison of the
resulting curves. Superresolution images were acquired
and analyzed as described above. The density map of
HRas exhibits large aggregates, connoting a nonrandom
distribution of HRas on the plasma membrane (Fig. 3 A).
DBSCAN analysis showed a decrease in the fraction of
randomly distributed monomers to 38 5 5% compared to
Biophysical Journal 108(8) 1870–1877
the 60% observed for CAAX. The majority of clustered
molecules appear to be concentrated in clusters of two to
three molecules, as seen for the membrane anchor, CAAX
(see Fig. 3 B). Ripley’s analysis displayed a maximum at
160 5 22 nm. The simulation parameters that could repro-
duce the results of Ripley’s analysis were a ¼ 33% of
randomly distributed molecules, cluster sizes varying in
the range 80–180 nm, and protein concentration, c, in the
range 2–15 molecules. The resulting curve is shown in
Fig. 3 C overlaid with the curve obtained from the experi-
mental data.

CTB-induced protein reorganization

After showing the existence of membrane-bound protein
clusters, we investigated whether we could manipulate
these structures by modifying the organization of lipids in
the outer leaflet of the plasma membrane. To induce
cholesterol-dependent coalescence of the membrane, cells
were treated with CTB. Cells were imaged and analyzed
as described above. Upon CTB incubation, the organiza-
tion of CAAX-Dendra2 exhibited a significant change
in <L(r) � r>, as shown in Fig. 4. An additional 20% of
molecules formed clusters (thus reducing the percentage
of randomly distributed molecules from 60% to 40%), as
shown in Fig. 4, B and C. This increased clustering corre-
sponded also to an apparent increase in the radius of
maximal clustering to 156 5 13 nm (Fig. 4, A (left), B,
and D).

For the full-length HRas protein, the changes were not as
striking, although they were statistically significant. The
unclustered fraction decreased to 30 5 2%, as determined
by DBSCAN. The radius of maximum clustering increased
to 200 5 19 nm, a change from the untreated cells at



FIGURE 3 (A) Density map of HRas distribution in the membrane. (Inset) Zoom of the red-outlined region in the larger figure, where clusters are visible.

(B) Cluster-size distribution as determined from DBSCAN for the cell in (A). In this cell, ~45% of the molecules are randomly distributed. Clustered mol-

ecules are mainly distributed in small clusters (containing up to 10 molecules.) (Inset) The full distribution of cluster sizes shows that a few molecules are

clustered in bigger clusters with up to 100 molecules. (C) Plot of the mean L(r) � r calculated for HRas in 11 cells (magenta solid line). The function has a

maximum at r ¼ 160 5 22 nm. Also plotted are the confidence interval (gray area) and the mean L(r) � r of 10 simulations (black dashed line). The light

gray shaded area represents the confidence interval of the random sample. To see this figure in color, go online.
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the limit of our confidence interval (Fig. 4, A (right), B,
and D).
DISCUSSION

The differential activity of the various isoforms of Ras pro-
teins has been suggested to result from protein localization
in separate membrane compartments (21). This partitioning
is supposed to be mediated by the different C-terminal
membrane anchoring sequences (23,27). Interestingly, it
has been found that partitioning is connected to the activa-
tion state of Ras proteins (12), thus hinting at a functional
role of membrane-bound protein clusters. However, a com-
plete understanding of the mechanism underlying the spatial
distribution of those proteins is still lacking. Here, we
applied superresolution imaging to directly visualize the
organization of HRas and its minimal anchoring motif in
the inner leaflet of the plasma membrane of 3T3 fibroblasts.
FIGURE 4 (A) Ripley’s analysis of CAAX dis-

tribution (left) and HRas distribution (right) before

(solid line) and after (dashed line) treatment with

CTB. (B) Position and value of the maximum of

Ripley’s function in the four experimental condi-

tions: CAAX alone, CAAXþCTB, HRas alone,

and HRasþCTB. (C) Fraction of randomly distrib-

uted molecules in the different experiments. A

decrease is observed upon CTB treatment. The

dashed line indicates the unclustered fraction in

the control experiment. (D) Radius of maximal

clustering (as determined by Ripley’s analysis) in

the four experimental conditions. To see this figure

in color, go online.
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Data on CAAX distribution support that ~40% of the mole-
cules were organized into clusters. In our previous study,
using single-molecule tracking, we observed that 40% of
CAAX in live cells were undergoing confined diffusion,
whereas the remaining 60% were freely diffusing in the
plane of the membrane (40). We suggested that this was
related to membrane confinement of the membrane anchor,
CAAX. Here, we provide direct evidence of the presence
of molecular clusters, and we suggest that the 60% of
randomly distributed molecules correspond to the fast-
diffusing fraction in tracking experiments. The wide distri-
butions found for the spatial correlation indicate a wide
distribution of domain sizes, ranging from 40 to 150 nm,
as estimated from our simulations. The lower bound of
40 nm is in excellent agreement with the domain size
obtained by immuno-electron microscopy when taking
into account our limited positional accuracy of s ¼
35 nm. The limited positional accuracy will increase any
real domain size, rreal, by a factor of

ffiffiðp
2Þs. Thus, from

the experimentally determined lower bound of 40 nm, we
infer a real domain size of 10 nm. This finding is compara-
ble to the value of ~12 nm found using electron microscopy
(16,41). However, the combination of direct imaging by
superresolution microscopy with spatial distribution anal-
ysis allowed us to unravel more complex partitioning
behavior, where bigger domains coexist with smaller do-
mains, potentially in a dynamic equilibrium. It is probably
impossible to unravel such data using the earlier approaches
by single-molecule tracking due to the spatial averaging
required in the latter experiments. Using DBSCAN, we
were also able to determine the protein content of each
cluster, which varies from two to tens of proteins, but with
the majority of observed clusters formed of two to three
molecules.

Further, we studied the full-length HRas protein. For the
experiment, the inactive, GDP-bound form of the protein
was used. The presence of the highly conserved G-domain
did not influence greatly the lateral segregation of HRas.
We found an increase in the clustered fraction, with ~60%
of the molecules grouped into clusters varying in size
from 80 to 180 nm. This finding suggests that the membrane
anchor is only partially responsible for the partitioning of
the protein, and that further interactions (either between
the proteins or between proteins and other membrane com-
ponents such as the cytoskeleton) play a significant role. It
has been proposed that HRas distribution can play a physi-
ological role in signaling (42).

Previously published studies have suggested that HRas is
localized in cholesterol-enriched raft domains. Thus, to
investigate whether we could manipulate such a distribution,
we incubated cells with CTB, which induces coalescence of
cholesterol-enriched domains (43). Indeed, we observed a
significant increase in the percentage of clustered molecules
for both CAAX and HRas, associated with an increase in
cluster size.
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In conclusion, we demonstrate the superiority of superre-
solution techniques to visualize membrane structuring in
cells. Our data indicate that inner-leaflet HRas-related do-
mains exist in a broad size range between 40 and 150 nm,
each containing 2–15 Ras molecules. From these data, we
suggest a model for inner-membrane partitioning into dy-
namic domains varying in size from a few tens to hundreds
of nanometers in diameter. HRas partitions dynamically into
and out of those domains, and its localization is determined
primarily by the anchoring motif CAAX. CTB-induced
reorganization of CAAX and HRas clusters suggests that
this differential localization is mediated, at least partially,
by the lipid composition and organization in both the inner
and outer leaflets. Membrane reorganization at the extracel-
lular side induced by coalescence of cholesterol-enriched
domains resulted in protein enrichment of microdomains
in the inside, supporting the theory of coupling between
the leaflets.
SUPPORTING MATERIAL

Supporting Materials and Methods and two figures are available at http://

www.biophysj.org/biophysj/supplemental/S0006-3495(15)00235-0.
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