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Abstract

Rationale: Chronic obstructive pulmonary disease (COPD) is
a heterogeneous disease and likely includes a subgroup that is
biologically comparable to asthma. Studying asthma-associated
gene expression changes in COPD could add insight into COPD
pathogenesis and reveal biomarkers that predict a favorable response
to corticosteroids.

Objectives: To determine whether asthma-associated gene signatures
are increased in COPD and associated with asthma-related features.

Methods:We compared disease-associated airway epithelial gene
expression alterations in an asthma cohort (n = 105) and twoCOPD
cohorts (n = 237, 171). The T helper type 2 (Th2) signature (T2S)
score, a gene expression metric induced in Th2-high asthma, was
evaluated in these COPD cohorts. The T2S score was correlated
with asthma-related features and response to corticosteroids
in COPD in a randomized, placebo-controlled trial, the Groningen
and Leiden Universities study of Corticosteroids in Obstructive
Lung Disease (GLUCOLD; n = 89).

Measurements and Main Results: The 200 genes most
differentially expressed in asthma versus healthy control subjects
were enriched among genes associated with more severe airflow
obstruction in these COPD cohorts (P, 0.001), suggesting
significant gene expression overlap. A higher T2S score was
associated with decreased lung function (P, 0.001), but not asthma
history, in both COPD cohorts. Higher T2S scores correlated with
increased airwaywall eosinophil counts (P = 0.003), blood eosinophil
percentage (P = 0.03), bronchodilator reversibility (P = 0.01), and
improvement in hyperinflation after corticosteroid treatment
(P = 0.019) in GLUCOLD.

Conclusions:These data identify airway gene expression alterations
that can co-occur in asthma and COPD. The association of the T2S
score with increased severity and “asthma-like” features (including
a favorable corticosteroid response) in COPD suggests that Th2
inflammation is important in a COPD subset that cannot be
identified by clinical history of asthma.
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Chronic obstructive pulmonary disease
(COPD) affects an estimated 10% of the
world’s population, and is the fourth
leading cause of death worldwide (1, 2).
Both COPD and asthma are characterized
by chronic airway inflammation and
airflow obstruction (3). However, there has
been greater progress in understanding
asthma pathophysiology. This has led to
effective treatment strategies for asthma,
such as the cornerstone of asthma
treatment: inhaled corticosteroids (ICS).
By contrast, there is currently no
pharmacological treatment that effectively
slows the progression of COPD. Despite
their broad antiinflammatory effects, ICS
do not achieve marked long-term effects in
the majority of patients with COPD (4).
However, COPD is highly heterogeneous,

and a subset may display asthma-like
biology and a favorable ICS response (5–8).
To date, no biomarkers reliably predict ICS
responsiveness in COPD.

Although COPD is traditionally
differentiated from asthma by poorly
reversible airflow obstruction, a subset of
patients with COPD displays bronchial
hyperresponsiveness and at least partial
reversibility of airflow obstruction with
bronchodilators (6). Similarly, although
inflammation in COPD is typically
thought to be driven by T helper type 1
(Th1) immune responses (7), asthma-
associated inflammatory pathways (e.g.,
eosinophilia and Th2 inflammation) appear
to underlie disease in some patients.
For example, IL-13 (a Th2 cytokine) is
expressed in higher percentages in T cells in
bronchoalveolar lavage fluid in subjects
with COPD than in subjects without the
disease (8). We hypothesize that the COPD
subgroup in which these asthma-associated
inflammatory pathways play a more
significant role may also benefit most from
ICS. Similarities between gene expression
profiles in asthma and COPD have not
been studied, but could add to our
understanding of the biology underlying
the clinical and pathologic overlap between
asthma and COPD.

We previously applied a genomic
approach to distinguish two molecular
subphenotypes (endotypes) of asthma
defined by their degree of Th2
inflammation. Airway epithelial expression
levels of three IL-13–inducible genes,
periostin (POSTN), chloride channel Ca21-
activated 1 (CLCA1), and serine peptidase
inhibitor B2 (SERPINB2), were identified
as airway Th2 inflammatory markers
(9–11). Expression of these genes was
higher in asthma versus healthy control
subjects overall. The asthma subgroup with
the highest expression levels, the “Th2-
high” endotype, had higher IL-5 and IL-13
expression levels in bronchial biopsies,
increased serum total IgE levels, greater
blood and lung eosinophilia, increased
airway hyperresponsiveness, and a better
lung function (FEV1) response to ICS
(10, 11). Furthermore, the blood biomarker
periostin derived from this signature
predicted the response of subjects with
asthma to omalizumab and to an anti–IL-
13 monoclonal antibody, lebrikizumab (12,
13). Whether Th2-high gene expression
signatures are also present in COPD and
are associated with a specific Th2-high

endotype is unknown. Investigation of
these signatures in COPD could lead to
a better understanding of which patients
will benefit from ICS therapy.

We hypothesized that there are
partially overlapping airway gene expression
changes in asthma and COPD, which reflect
shared processes that contribute to airflow
obstruction. Furthermore, we hypothesized
that signatures of airway epithelial gene
expression alterations in asthma are up-
regulated in COPD, and can identify
a COPD subgroup with a clinical phenotype
more similar to asthma (e.g., increased
airway eosinophil counts and ICS
responsiveness). We compared airway cell
gene expression in asthma to that of two
established COPD cohorts using gene set
enrichment analysis (GSEA) (14). We
then studied the association of Th2 gene
signatures with lung function in these
cohorts. Finally, we determined whether
a Th2 signature (T2S) score is associated
with asthma-associated pathological
features (e.g., lung tissue eosinophilia)
and ICS responsiveness in a previously
published randomized controlled trial
of patients with COPD with no history
of asthma (15).

Some of the results of these studies have
been previously reported in the form of an
abstract (16).

Methods

Subjects and Sample Preparation

Asthma dataset—asthma and control
subjects. Gene expression microarray and
quantitative PCR data from large airway
epithelial brushings were previously
obtained from steroid-naive subjects with
mild to moderate asthma (n = 62) and
control subjects without asthma (n = 43) in
a cross-sectional study design (Table 1,
Figure 1; see also Table E1 in the online
supplement) (9, 10). Bronchial biopsies
were obtained in a subset (n = 61). Subjects
with asthma were divided into Th2-high
and -low subgroups (n = 40 and 22,
respectively) using a validated standardized
mean expression level of POSTN, SERPINB2,
and CLCA1 (“three gene mean” [TGM]) (11).

COPD datasets. Three previously
described COPD datasets were used for
comparison (Figure 1):

1. The bronchial airway epithelium COPD
(BAEC) dataset (17): RNA was isolated

At a Glance Commentary

Scientific Knowledge on the
Subject: Some patients with chronic
obstructive pulmonary disease
(COPD) appear more similar to those
with asthma clinically, suggesting that
asthma-associated inflammatory
pathways may play a more significant
role in a specific COPD subgroup.
Although few pharmacological
therapies have been found to be
effective in COPD, inhaled
corticosteroids (ICSs) and other
asthma therapeutics may be more
effective in this “asthma-like” COPD
subgroup.

What This Study Adds to the
Field: In this study, we find that there
is significant overlap of disease-
associated airway epithelial gene
expression alterations in asthma and
a COPD subset. Furthermore, asthma-
derived gene expression signatures of
Th2 inflammation are associated with
increased disease severity, eosinophil
counts, and ICS response in COPD.
Our data suggest that there is a
clinically relevant COPD subgroup
characterized by asthma-like gene
expression alterations. They also
suggest that Th2-related gene
expression signatures may serve as
biomarkers to predict which patients
with COPD will benefit from ICS or
other Th2-targeted therapies.
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from bronchial epithelial brushings
obtained from sixth- to eighth-
generation bronchi in former and
current smokers with a range of lung
function (n = 87 with COPD and 151
without; Table 1, Table E2). Clinical
history of asthma was not an exclusion
criterion.

2. The small airway epithelium COPD
(SAEC) dataset (18): RNA was isolated
from brushings obtained from 10th–12th
generation bronchi in nonsmokers (n= 63),
current smokers without airway obstruction
(n= 36), and smokers with mild to
moderate COPD during research
bronchoscopy (n= 72; Table 1, Table E3).

3. The endobronchial biopsy Groningen
and Leiden Universities study of
Corticosteroids in Obstructive Lung
Disease dataset (GLUCOLD) (5, 15): 89
steroid-naive subjects with moderate to
severe COPD without an asthma history
were enrolled (Table E4). A subset
was included in a double-blinded,
randomized, controlled trial in which
they received: (a) placebo for 30 months
(n = 23); (b) ICS (fluticasone) with or
without long-acting b agonist (LABA;
salmeterol) for 30 months (n = 45); or
(c) ICS for 6 months then placebo for

Asthma Dataset

Epithelial brushings and endobronchial biopsies
obtained from 3rd to 4th generation bronchi in:

 1. Subjects with mild-moderate asthma 
2. Healthy control subjects                   

COPD Dataset 1
BAEC

Epithelial brushings obtained from
6th to 8th generation bronchi in:  

1. Former and current smokers with normal lung function
2. Formal and current smokers with COPD                        

COPD Dataset 2
SAEC

Epithelial brushings obtained from
10th to 12th generation bronchi in: 

1. Healthy non-smokers
2. Current smokers with normal lung function
3. Current smokers with COPD

COPD Dataset 3
GLUCOLD

Endobronchial biopsies obtained from
3rd to 4th generation bronchi in

subjects with moderate to severe COPD at:

1. Baseline
2. 6 and 30 months after randomization

to Placebo or ICS ± LABA 

Compared airway epithelial gene expression by: 
1. GSEA
2. epithelium-derived

Th2 gene signatures (TGM, T2S)

endobronchial biopsy-derived
T2S Score related to: 

1. Airway biopsy cell counts at baseline        
2. Change in lung function parameters after

Placebo vs ICS ± LABA

Figure 1. Study design. Gene expression overlap in asthma and chronic obstructive pulmonary disease (COPD) was identified by comparing microarray
profiles from an asthma cohort with profiles from three COPD cohorts: (1) the bronchial airway epithelium COPD (BAEC) cohort; (2) the small airway
epithelium COPD (SAEC) cohort; and (3) the Groningen and Leiden Universities study of Corticosteroids in Obstructive Lung Disease (GLUCOLD) cohort.
GSEA = gene set enrichment analysis; ICS = inhaled corticosteroid; LABA = long-acting b agonist; T2S = Th2 signature; TGM = three gene mean.

Table 1. Asthma and Chronic Obstructive Pulmonary Disease Datasets

Dataset Sample Description Subjects/Samples

Asthma–epithelial Airway epithelial samples,
third- to fourth-generation
bronchi

Healthy = 43
Asthma = 62
Th2 low = 22
Th2 high = 40

Asthma–endobronchial Asthma dataset subset
endobronchial samples,
third- to fourth-generation
bronchi

Healthy = 24
Asthma = 37
Th2 low = 13
Th2 high = 24

BAEC Airway epithelial samples,
sixth- to eighth-generation
bronchi

Healthy current/former
smokers = 151

Current/former smokers with
COPD = 87

SAEC Airway epithelial samples,
10th- to 12th-generation
bronchi

Healthy nonsmokers = 63
Healthy current smokers = 72
Current smokers with

COPD = 36

GLUCOLD Endobronchial biopsy samples,
third- to fourth-generation
bronchi

Baseline = 79 total subjects,
randomized to:

Placebo = 21
Fluticasone3 30 mo = 19
Fluticasone1 salmeterol3
30 mo = 26

Fluticasone3 6 mo then
placebo3 24 mo = 21

Definition of abbreviations: BAEC = bronchial airway epithelium COPD; COPD= chronic obstructive
pulmonary disease; GLUCOLD=Groningen and Leiden Universities study of Corticosteroids in
Obstructive Lung Disease; SAEC = small airway epithelium COPD; Th2 = T helper type 2.
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24 months (n = 21). Lung function was
measured every 3 months. RNA was
isolated from endobronchial biopsies
obtained at baseline and at 6 and 30
months.

Gene expression in each COPD dataset
was previously and independently profiled
by microarray (GSE37147, GSE11784, and
GSE36221, respectively). Consent was
obtained by participants in all studies
separately. Additional detail on each dataset
is provided in supplemental METHODS in the
online supplement.

Statistical Analysis
Each dataset underwent preprocessing and
normalization separately (affy package,
Bioconductor, R statistical software version
3.0.2) (19–21). Statistical analyses were
done using the limma package in the R
statistical environment (22).

Differential gene expression. Ranked
differential gene expression lists for use in
subsequent analyses were determined for
the datasets using the following contrasts
(details are in the supplemental METHODS in
the online supplement):

1. Asthma dataset: (a) subjects with
asthma versus control subjects; and (b)
Th2-high subjects with asthma versus
Th2-low subjects with asthma/control
subjects.

2. BAEC dataset: gene expression
alterations associated with FEV1 %
predicted (FEV1%pred), a measure
that decreases with increasing airflow
obstruction after adjustment for
smoking status, cumulative smoke
exposure, age, and sex.

3. SAEC dataset: (a) smokers with COPD
versus healthy smokers; and (b) healthy
smokers versus healthy nonsmokers
(FEV1%pred measurements were not
available).

4. GLUCOLD dataset: gene expression
alterations associated with 6 and
30 months of ICS treatment compared
with placebo after adjustment for
smoking status.
Adjustment for multiple comparisons

was done by applying the Benjamini-
Hochberg false discovery rate (23).

GSEA. GSEA was used to compare the
asthma dataset with the COPD datasets
on the gene set level. Briefly, this method
determines whether a group of genes (“gene
set”) is significantly overrepresented
(“enriched”) at extremes of a ranked list,

in which case the gene set is considered
correlated with the phenotype (see
additional details in the supplemental
METHODS) (14). We compared genes
significantly altered in asthma (“asthma
gene sets”) to genes ranked in association
with COPD in the BAEC and SAEC
datasets. Genes significantly associated with
COPD in the BAEC and SAEC datasets
(“COPD gene sets”) were compared with
genes ranked by association with asthma.
The “leading edge,” those genes that
accounted for most of the similarity
between asthma and COPD, were
considered the genes of interest in both
asthma and COPD (i.e., “asthma–COPD
overlap genes”). These asthma–COPD
overlap genes were used to create a gene set
that was compared with genes ranked in
association with ICS treatment versus
placebo at 6 and 30 months in the
GLUCOLD dataset. Qiagen’s Ingenuity
Pathway Analysis (Qiagen, Redwood City,
CA [www.qiagen.com/ingenuity]) was used
to identify biologic processes in which these
asthma–COPD overlap genes may be
involved.

Th2 gene signature scores. The TGM
metric, the scaled mean value of POSTN,
SERPINB2, and CLCA1 calculated for
each subject, was used as our initial Th2
inflammation signature (11). However, as it
is unclear whether this metric optimally
summarizes Th2 inflammation in COPD
given differences between the asthma
and COPD datasets (e.g., subjects with
COPD are older with a smoking history),
we next developed the T2S score to
include a broader range of genes. The
100 genes most up-regulated in the airway
epithelium in Th2-high asthma as
compared with Th2-low asthma/healthy
control subjects were summarized into
a single metagene metric using a principle
component analysis projection algorithm
(see the supplemental METHODS and
Table E5 for genes included in the
epithelial T2S) (24).

Spearman correlation, t tests,
Wilcoxon rank-sum tests, multiple
regression models, and one-way analysis
of variance were used, as appropriate, to
determine differential expression of these
metrics, and associations between the Th2
metrics and (1) lung function, (2) clinical
characteristics, and (3) gene expression
of Th2-associated genes in each cross-
sectional dataset (see the supplemental
METHODS).

GLUCOLD T2S score analyses. Two
separate analyses were done to relate the
T2S score to pathologic and physiologic
parameters. A new 100-gene T2S metric
was derived from the asthma dataset
endobronchial tissue gene expression data,
to better correspond with the endobronchial
tissue data available in GLUCOLD (genes
listed in Table S6; see supplemental
METHODS for details).

Two linear models adjusted for
smoking status were used:

1. The “baseline analysis” evaluated the
association of the T2S metric with
pretreatment eosinophil levels (primary
outcome for baseline analysis) and
neutrophil levels in bronchial tissue,
percent serum eosinophils, serum IgE levels
(IU/L), and bronchodilator responsiveness
(% FEV1 change) (all subjects).

2. The “longitudinal treatment analysis”
evaluated association of the baseline T2S
metric with change in FEV1%pred
(primary outcome), as well as residual
volume (RV)/total lung capacity (TLC)
% predicted and inspiratory capacity
(IC; in liters) as markers of hyperinflation,
after 6 and 30 months of treatment for
the ICS with and without LABA versus
placebo arms (see the supplemental
METHODS).
The ICS and ICS plus LABA groups

were combined to improve power, as the
long-term clinical and antiinflammatory
effects in these groups were comparable.
However, a sensitivity analysis was done
excluding the subjects who received LABA
to ensure that any associations were seen
with ICS alone.

Clustering analysis. Clustering of
the three and 100 genes from which the
TGM metric and T2S score were derived,
respectively, was done to identify Th2-high
subgroups in each COPD dataset using
Euclidean distance, with average linkage as
a distance metric.

Results

GSEA Identifies Gene Expression
Similarities between Asthma
and COPD
We first examined whether there are
similarities in disease-associated airway
epithelial gene expression alterations in
asthma and COPD. We could not combine
gene expression data across datasets, due to
differences in microarray platforms and
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subject characteristics. Thus, we used GSEA,
which compares gene rankings and does not
require combined datasets.

GSEA revealed significant concordance
of gene expression in asthma and COPD.
The 100 genes most up-regulated in the
airway epithelium in subjects with asthma as
compared with control subjects without
asthma were enriched among genes
associated with decreased FEV1%pred in the
BAEC dataset, and genes increased in
smokers with COPD compared with
smokers without airflow obstruction in the
SAEC dataset (both P, 0.001; Figures 2A
and 2B). Similarly, the 100 genes most
down-regulated in asthma were enriched
among genes associated with increased
FEV1%pred in the BAEC dataset and genes
decreased in COPD in the SAEC dataset
(both P, 0.001; Figures 2A and 2B); 77%
of the 95 genes in the BAEC cohort leading
edge set were also present in the SAEC

cohort leading edge set. This suggests that
the epithelial gene expression changes that
best account for asthma–COPD overlap
occur in both the large and small airway
epithelium (see supplemental RESULTS for
details on strength of concordance between
asthma and COPD, and Tables E7 and E8
for lists of overlapping leading edge sets).

The genes most altered in the airway
epithelium in COPD were also altered in
asthma. Genes most correlated with low
FEV1%pred in the BAEC cohort or with
COPD in the SAEC cohort were enriched
among genes correlated with asthma (all at
P, 0.001; Figure E1). Thus, not only are
asthma gene sets correlated with poor lung
function in COPD, but COPD gene sets are
correlated with an asthma diagnosis.

Leading Edge Set Analysis
The genes in the leading edge sets in both the
BAEC and SAEC datasets were combined into

asthma–COPD overlap gene sets. The up-
regulated overlap genes were enriched among
genes down-regulated by ICS with and
without LABA treatment compared with
placebo at 6 and 30 months in the
GLUCOLD dataset (P, 0.001 and P = 0.002,
respectively).The down-regulated overlap
genes were enriched among genes up-
regulated with ICS with and without LABA
treatment in the GLUCOLD dataset at
6 months (P, 0.001), but not at 30 months.
This suggests that many, but not all, of these
overlapping gene expression changes are
steroid responsive (see supplemental RESULTS

and Tables E7 and E8).
An ingenuity pathway analysis done on

the overlapping leading edge gene sets
suggests that this asthma–COPD overlap
reflects specific cellular and molecular
pathways. It particularly identifies
multiple pathways involved in epithelial
inflammation. The top disease and
biological functions were psoriasis,
migration of leukemia cell lines, allergy,
and hypersensitivity reaction. The top
upstream regulators included an IL-
6–associated cytokine, oncostatin M
(OSM), and multiple members of the
activator protein-1 (AP-1) transcription
factor family: FOS-like antigens 1 and 2
(FOSL1 and FOSL2) and jun D proto-
oncogene (JUND) (see supplemental
RESULTS for details).

Signatures of Th2 Inflammation Are
Increased in COPD and Associated
with Disease Severity
We next studied gene expression signatures
related to Th2 inflammation to determine if
they accounted for some of the similarities
between asthma and COPD. There was
a small, but significant, increase in the TGM
metric with lower FEV1%pred values in an
unadjusted analysis in the BAEC dataset
(Spearman’s r =20.16, P = 0.02) and in
smokers with versus smokers without
COPD (TGM median = 0.05; 95%
confidence interval [CI] =20.78 to 2.80
vs. 20.26; 95% CI =21.09 to 2.16,
respectively) in the SAEC dataset (P =
0.001; Figure E2). In adjusted analyses
in the BAEC dataset, this association
between TGM and FEV1%pred declined
(b =20.005, P = 0.06, corresponding to
a TGM decrease of 0.05 for every 10%
decrease in FEV1%pred), with TGM more
significantly associated with smoking status
(b =20.27, P = 0.02, corresponding to
a decrease in the TGM metric of 0.27 in

High FEV1 Low FEV1

Downregulated in Asthma (p<0.001)

Downregulated in Asthma (p<0.001)

Upregulated
in COPD

Downregulated
in COPD

Upregulated in Asthma (p<0.001)

Upregulated in Asthma (p<0.001)

No COPD
BAEC Dataset

SAEC Dataset

Severe COPD

A

B

Figure 2. Genes most altered in the airway epithelium in asthma evaluated in chronic obstructive
pulmonary disease (COPD) using gene set enrichment analysis (GSEA). Line plots of the 100 genes
most up-regulated in asthma compared with control (fold change. 1.25; false discovery rate q-
value, 0.01) show enrichment among (A) genes associated with low FEV1 % predicted (FEV1%pred)
in the bronchial airway epithelium COPD (BAEC) cohort (P, 0.001), and (B) genes up-regulated in
subjects with COPD compared with smokers without COPD in the small airway epithelium COPD
(SAEC) cohort (P, 0.001). The 100 genes most down-regulated in asthma were similarly associated
with (A) high FEV1%pred in the BAEC cohort (P, 0.001) and (B) COPD in the SAEC cohort (P,
0.001). Red and blue bars represent all genes ranked by (A) t statistic for correlation of gene
expression with FEV1%pred in the BAEC cohort or (B) fold change for association with COPD in the
SAEC cohort. Vertical black lines represent the position of genes in the gene set along the ranked
gene list. The length of the lines represents the magnitude of the GSEA running enrichment score.
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current vs. former smokers). In stratified
analyses, we found a significant association
between TGM and FEV1%pred in
former smokers (b =20.009, P = 0.027,
corresponding to a TGM decrease of 0.09
for every 10% decrease in FEV1%pred), but
not current smokers (P = 0.7). Furthermore,
in the SAEC dataset, there was a trend
toward lower expression of the TGM metric
in current smokers without COPD than
in nonsmokers (TGM median =20.16;
95% CI =21.19 to 3.75; P = 0.10). At the
individual gene level, we found that both
POSTN and SERPINB2may be repressed by
smoking (see supplemental RESULTS). Thus,
although the TGM metric is significantly up-
regulated in COPD, our data suggest that one
or more of the three genes comprising this
metric may be repressed by current smoking,
and therefore may not be the optimal markers
of Th2 inflammation in COPD.

Given the significant influence of
smoking status on the TGM metric, we
developed a 100-gene signature of Th2-
related gene expression, the T2S score. By
including this broader range of genes, we
hypothesized that we would be better able to
summarize Th2 inflammation in COPD,
while limiting the effect of confounders (e.g.,
smoking status) on the signature. All 100
genes were highly associated with Th2-high
asthma (fold change. 1.25; false discovery
rate, 0.05). The T2S score correlated
well with Th2-associated clinical
characteristics in the asthma dataset (see
supplemental RESULTS).

The 100-gene T2S metric was
associated with lower FEV1%pred in the
BAEC dataset (b =20.07, P, 0.001,
corresponding to a 0.7 score increase for
every 10% decrease in FEV1%pred). It was

higher in current smokers with COPD (T2S
score = 3.516 2.89) than without COPD
(T2S score = 0.166 2.39; P, 0.001) in the
SAEC dataset (Figure 3). GSEA using the
100 genes summarized by the T2S score
corroborated these findings, also showing
enrichment of these genes with worsening
lung function in both cohorts (P, 0.001;
see supplemental RESULTS and Figure E3).
Current smokers did have significantly
higher T2S scores than former smokers in
the BAEC dataset (1.84 units greater, 95%
CI = 0.68–3.0; P = 0.002). In the SAEC
dataset, smokers without COPD had higher
T2S scores than nonsmokers (T2S score in
nonsmokers = 22.196 4.70; P, 0.001),
but T2S scores were considerably higher
in COPD than in both nonsmokers and
smokers without COPD. Thus, although
smoking status was associated with changes
in the T2S score, the association between
T2S score and disease status was less
affected by differences in smoking status.
Further clinical associations could not be
made, due to poor clinical characterization
of these cohorts. However, in subjects with
COPD in each dataset, the T2S metric
correlated well with gene expression
of v-Kit Hardy-Zuckerman 4 feline
sarcoma viral oncogene homolog (KIT),
carboxypeptidase A3 (CPA3), and eotaxin-3
(CCL26), genes previously identified to be
highly associated with Th2 inflammation in
asthma (Figure E3) (25).

Hierarchical clustering of the TGM
metric suggested that a subset of
approximately 5% of smokers in both
COPD datasets had gene expression
patterns consistent with a Th2-high state
(Figure E5). Clustering by the T2S metric
suggests that a larger subgroup of smokers

(z20%) had increased expression of the
Th2-high signature (Figure 4). Thus,
the exact size of the COPD subgroup
identified by these signatures is uncertain.
Importantly, in the BAEC dataset, a higher
T2S score was not associated with a history
of asthma (P = 0.78, green and red bars
above heatmap in Figure 4A).

Association of the T2S Score
with Clinical Parameters in the
GLUCOLD Cohort
We next studied the association of the
endobronchial T2S metric with asthma-
related features and ICS therapy response in
the GLUCOLD study (6).

At baseline, the T2S score was
associated with increased tissue eosinophil
numbers in these steroid-naive subjects (P =
0.003; Figure 5A). It was also associated
with increased serum eosinophil percentage
(P = 0.03; Figure E6A), and increased
bronchodilator responsiveness (P = 0.01;
Figure E6B) There was a trend toward
decreased tissue neutrophil counts (P =
0.084). No association was found between
the T2S score and serum IgE levels.

In the longitudinal treatment
analysis, baseline T2S score was not
associated with slower decline in post-
bronchodilator FEV1%pred or decreased
hyperresponsiveness after ICS with and
without LABA compared with placebo.
However, a higher T2S score was associated
with greater hyperinflation improvement
(change in RV/TLC % predicted, a measure
of small airway obstruction) after ICS with
and without LABA treatment versus placebo
at 30 months (Figures 5B and 5C; P = 0.019
for the interaction between T2S score and
treatment), and a trend toward improvement
at 6 months (P = 0.056). When LABA-
receiving participants were excluded, those
treated with ICS alone still showed greater
hyperinflation improvements compared with
placebo (P, 0.001 at 6 mo; P = 0.042 at 30
mo). The T2S score was also associated with
an improvement in IC (another marker of
hyperinflation), after ICS with and without
LABA versus placebo at 6 months (Figures
E7A and E7B; P = 0.018) (26), although
not at 30 months.

Discussion

In this study, we identify a set of airway
epithelial genes that is altered in asthma and
in some current and former smokers with
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Figure 3. Relationship between T helper (Th) type 2 signature (T2S) score and measurements of lung
function decline. The 100-gene T2S score (A) increases with decreasing FEV1 % predicted (FEV1%
pred) in the bronchial airway epithelium chronic obstructive pulmonary disease (COPD) cohort (fold
change =20.7 for every 10% increase in FEV1%pred; P, 0.001), and (B) is higher in subjects
with COPD (3.516 2.89 [mean6 SD]) than in smokers without airway obstruction (0.166 2.39)
and in nonsmokers without airway obstruction (22.196 4.70) in the small airway epithelium
COPD cohort (P, 0.001 for all comparisons).
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COPD, suggesting similar processes leading to
airflow obstruction in asthma and at least
a COPD subgroup. We also find evidence
that, in COPD, as in asthma, a Th2
inflammation–related gene expression
signature is up-regulated when compared
with subjects without disease. This overall
up-regulation is again due to increased
expression in a subgroup. Signature
expression in COPD is further associated
with asthma-related inflammatory
characteristics (e.g., increased bronchial
tissue and blood eosinophils, increased
bronchodilator responsiveness) and
a favorable ICS treatment response, as
reflected by greater improvement in
hyperinflation. Thus, our data identify
molecular and cellular pathways underlying
a clinically relevant COPD subgroup with

asthma-like features. They further suggest
that the Th2-related signature may serve
as a biomarker to predict which patients
with COPD will benefit from ICS
treatment or other Th2-targeted therapies,
particularly identifying the subgroup that
will show improvement in small airway
disease.

Importantly, subjects with COPD
that have a Th2-high signature are not
identifiable by clinical history of asthma
alone. Th2-high signatures did not correlate
with asthma history in the BAEC dataset,
and subjects with a history of asthma were
excluded from the GLUCOLD trial. This
suggests that a biomarker is necessary to
identify the subjects with COPD in which
Th2 inflammation plays a more important
role in pathogenesis.

Shared airway gene expression
alterations in asthma and COPD could
reflect stereotypical epithelial responses to
airway injury. However, our data argue
specifically for a Th2-related gene
expression response in at least a COPD
subgroup. First, we found an increase in
tissue and blood eosinophils, as well as
response to ICS with increasing Th2-related
gene expression in the GLUCOLD trial.
Second, the T2S score is increased in
subjects with COPD compared with both
smokers without COPD and nonsmokers in
the SAEC dataset, suggesting that long-term
smoking–induced injury alone is not
enough to cause the increase observed in
COPD. In addition, the extent of Th2-
related gene expression correlates with gene
expression of specific mast cell markers
(CPA3, KIT) and CCL26 (eotaxin-3),
which also increases in Th2-high asthma
(26–28). CPA3 marks an increase in
intraepithelial mast cell numbers in asthma,
and CCL26 is an eosinophil chemotactic
molecule, the epithelial expression of which
increases with increasing asthma severity
(26, 28).

The improvement in hyperinflation
related to the T2S metric is likely clinically
relevant, as it is an important COPD
characteristic. We indeed found that two
measures of hyperinflation, RV/TLC %
predicted and IC, showed improvement.
Measures of hyperinflation are more closely
associated with dyspnea and reduced
exercise capacity than FEV1%pred in COPD
(29). Hyperinflation reflects airflow
limitation of the small peripheral airways,
the main site of the COPD inflammatory
response (28). Our T2S score may therefore
identify those patients with COPD more
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Figure 4. Heatmap of the 100-gene Th2-high gene signature supervised by T helper (Th) type 2
signature (T2S) score. Shown for the (A) bronchial airway epithelium chronic obstructive pulmonary
disease (COPD) dataset and (B) small airway epithelium COPD dataset. Genes are in rows and
samples are in columns arranged from low to high T2S score. Red indicates high relative expression;
blue indicates low relative expression; yellow and purple bar above each heatmap indicates COPD
status. The green and red bar in A indicates asthma status. Unsupervised clustering gives a similar
result, with approximately 20% as Th2 high; however, the genes first cluster by smoking status,
then by the T2S metric.
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likely to have dynamic and ICS-responsive
distal airflow limitation. In asthma,
bronchial hyperresponsiveness is extremely
steroid sensitive, and ICS therapy leads
to improvements in central airway
obstruction, as reflected by changes in
FEV1. The fact that we find improvements
in hyperinflation, but not FEV1 or
hyperresponsiveness, suggests that we are
not just identifying a group of subjects
with asthma who have been misclassified
as COPD, but are indeed identifying
a specific COPD subgroup.

We recognize that we are measuring
the T2S score in GLUCOLD in the large, not
distal, airways, where we are observing the
physiologic change. However, we have
previously shown that gene expression
changes in the large airways in COPD
are consistent with those found in the
small airways; thus, these gene expression
changes could reflect distal pathology
(17). The association between our T2S
and hyperinflation adds further evidence
to this hypothesis.

Pathway analysis suggests that the
observed gene expression overlap may
reflect additional non–Th2 inflammatory
pathways. Psoriasis, a disease characterized
by epithelial inflammation (particularly
IFN-, TNF-a–, Th1-, and Th17-mediated
inflammation), was the top disease category
identified. OSM and AP-1 transcription
factor proteins were found to be possible
upstream regulators of the gene expression
alterations. OSM encodes oncostatin M, an
IL-6–associated cytokine hypothesized to

play a key role in airway remodeling
in asthma and COPD (30, 31) The
redox-sensitive proinflammatory
transcription factor AP-1 likely contributes
to airway disease pathology in multiple
ways, including a role in glucocorticoid
resistance (32, 33). Thus, there are likely
other areas of overlap to be explored in
future studies. In addition, although the
majority of the overlap genes are steroid
responsive in the GLUCOLD dataset,
at least one-third are not. This further
suggests that the gene expression
changes reflect biology beyond Th2
inflammation.

Our analysis was limited by the
different microarray platforms and patient
populations studied in each dataset,
prohibiting direct comparisons between
datasets. To overcome this, we used: (1)
GSEA, a tool previously shown to be effective
in dataset comparison (34); and (2) gene
signature analysis within datasets. These tools
allowed us to identify similarities between
asthma and COPD on a gene set level. Our
study also had multiple strengths. The gene
expression datasets contained large subject
numbers, and we were able to validate our
findings in one dataset with another. We were
also able to show that our Th2-associated
signature was associated with asthma-related
features and a treatment response in a third
independent cohort.

The increase of our gene signature in
some, but not all, subjects with COPD and
its association with clinical parameters
suggest a Th2-high COPD endotype.

However, our cluster analysis does not
definitively establish the size of this group.
The modest phenotypic characterization
of each cohort also makes it difficult to
determine the full range of phenotype
features associated with this group. Analysis
of our T2S metric in larger, extensively
characterized cohorts will allow us to better
establish the size of the Th2-high subgroup
and confirm the clinical utility of these
genomic markers. Ultimately, the derivation
of noninvasive biomarkers from these
signatures may be valuable for clinical
application, similar to the use of periostin
to predict treatment response in asthma
(12, 13).

In conclusion, our study suggests that
a subset of current and former smokers
develops an asthma–COPD overlap
condition that is associated with gene
expression markers of Th2 inflammation
in the airway, increased airway wall and
blood eosinophils, greater bronchodilator
responsiveness, and improvement in
hyperinflation with ICS treatment. The
presence of these asthma-associated Th2-
associated signatures is not predicted by
a simple clinical history of asthma. Future
studies will be directed at determining
whether these signatures can be leveraged
to develop less-invasive biomarkers for
characterizing lung inflammation, and for
more specific targeting of therapies
in COPD. n

Author disclosures are available with the text
of this article at www.atsjournals.org.
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