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Abstract

Poor bioavailability of topically instilled drug is the major concern in the field of ocular drug 

delivery. Efflux transporters, static and dynamic ocular barriers often possess rate limiting factors 

for ocular drug therapy. Different formulation strategies like suspension, ointment, gels, 

nanoparticles, implants, dendrimers and liposomes have been employed in order to improve drug 

permeation and retention by evading rate limiting factors at the site of absorption. Chemical 

modification such as prodrug targeting various nutrient transporters (amino acids, peptide and 

vitamin) has evolved a great deal ofintereSt to improve ocular drug delivery. In this review, we 

have discussed various prodrug strategies which have been widely applied for enhancing 

therapeutic efficacy of ophthalmic drugs. The purpose of this review is to provide an update on the 

utilization of prodrug concept in ocular drug delivery. In addition, this review will highlight 

ongoing academic and industrial research and development in terms of ocular prodrug design and 

delivery.
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1. INTRODUCTION

Systemic or local administrations are the most common route to deliver ocular formulations. 

Topical administration is favored route due to its localized drug action at anterior segment of 

the eye. However, poor penetration and rapid loss of therapeutics following its topical 

administration are the major restrictions of the topical route [1, 2]. Several formulation 

approaches (solutions, ointments, gels, microparticles, nanoparticles, and micelles) have 

been developed to address issue associated with poor ocular bioavailability at the site of 

action following topical instillation of therapeutics. Besides these formulation approaches, 

chemical approach such as prodrug has been utilized to optimize physicochemical and 

biochemical properties of a drug molecule for increasing its ocular bioavailability [3].

Prodrug design is a chemical approach to deliver parent drug molecule in order to achieve 

improved drug absorption. It is an effective way to deliver those drug moieties which 
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otherwise do not possess optimal ocular bioavailability due to several physiological 

(biological barriers) and physicochemical (parent drug solubility) restrictions [2, 3]. The 

rationale of this review is to provide an update on the utilization of prodrug strategy in 

ocular drug delivery. In addition, this review will summarize the current academic and 

industrial research progress in terms of ocular prodrug design and delivery.

2. OCULAR PRODRUG DESIGNED CONSIDERATION

Prodrug concept has tum out to be an important part of the ocular drug design and delivery. 

Synthesizing prodrugs which accomplish most if not all requirements of an ideal 

formulation is very challenging. Important considerations while designing ophthalmic 

prodrugs are:

• Parent drug must hold functional group susceptible to chemical derivatization

• Chemical modification at the functional group site of parent drug must be 

reversible.

• Parent drug, prodrug, and the pro-moiety attached to parent compound must be safe 

and non-toxic. Pro-moiety should exert rapid elimination from the body. Generally 

amino acid, small peptide or vitamins has been used as a pro-moiety which are very 

safe and easily removable natural body substrates.

• In vivo prodrug bioreversion must be governed by functionally active biological 

enzymes such as esterase and peptidase. The rate of bioreversion should be 

optimized in order to avoid pro-moiety detachment and parent drug release at non-

target site.

• Prodrug must possess sufficient shelf life and stability in final formulation.

• The majority of ocular preparations are delivered in the form of liquid such as eye 

drops. Hence, aqueous solubility of prodrug is a critical parameter to consider when 

parent drug is lipophilic in nature and possess low water solubility.

• Prodrug should also possess optimal lipophilicity in order to accomplish higher 

diffusion across lipophilic ocular barriers (dynamic and static).

• Final prodrug should have ability to evade unfavorable physicochemical as well as 

biopharmaceutical properties of a parent molecule. In addition to resolving 

formulation issues associated with drug, prodrug should also exhibit high affinity 

and site specific delivery of parent drug molecule. These characteristics will not 

only overcome side effects associated with parent molecules but it will also help 

reducing dose of final formulation [1-3].

3. OCULAR PRODRUG STRATEGIES

3.1. Functional Group Approach

The common functional groups that have been utilized in ophthalmic prodrug design are 

carboxylic, hydroxyl, amine, and carbonyl groups. Modification of these functional groups 

which includes esters [4-6], carbamates [7], phosphates [8-11] and oximes [12, 13] results in 
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ophthalmic prodrugs. Table 1 represents such prodrug structures of the most common 

functionalities.

3.1.1. Ester Prodrugs—The most common ophthalmic prodrugs developed so far are 

esters derived from either COOH or OH functional group present in the drug molecules. 

Usually COOH or OH functional group in drug molecules exist in ionized form under 

physiological conditions which does not favor drug passage through the lipid membrane, 

resulting in inadequate drug bioavailability. Appropriate esterification of active molecules 

with other pro-moieties can generate ester derivatives with desirable hydrophilicity, 

lipophilicity and in vivo lability [14]. As shown in Fig. (1), ‘A’ type ester prodrugs can be 

prepared from carboxylic acid drugs and alcohol promoieties, whereas ‘B’ type of ester 

prodrugs can be derivitized from alcohol drugs and acid promoieties. To synthesize ester 

prodrugs mostly Steglich esterification reaction conditions have been applied with N,N′-

Dicyclohexy-lcarbodiimide (DCC) or Ethyl-3-(3-dimethylaminopropyl) carbodiimide 

(EDC) as a coupling reagent and 4-Dimethyl-aminopyridine (DMAP) as a catalyst [15].

In 1976, Hussain et al. [16] reported the first ophthalmic prodrug dipivefrin, where two 

hydroxyl functional groups of epinephrine have been esterified to prepare dipivalyl 

epinephrine. Dipivefrin showed enhanced corneal penetration with I0 times improved 

therapeutic index compared to epinephrine [17, 18]. Since then, a plethora of ester prodrugs 

including adrenergic agonists [19, 20], adrenergic antagonists [21, 22], cholinergics [23, 24], 

carbonic anhydrase inhibitors [25], prostaglandins [5, 26], antimetabolites [6, 27] and 

steroids [28, 29] have been prepared and their pharmacokinetic behaviors have been 

thoroughly explored Ester prodrugs can enhance corneal penetration with improved 

therapeutic index. However, in some instances these components appear to be chemically 

instable in aqueous eye drop formulations.

Ester prodrugs can be converted back to active parent drugs via esterases present in the eyes. 

Esterases appear to be to be concentrated in the iris-ciliary body, corneal epithelium, retina 

and optic nerve. Different classes of esterases i.e., acetylcholine esterase, pseudocholine 

esterase, butyryl-choline esterase and carboxyl esterases are responsible for facile 

conversion of the ester prodrugs to parent drugs [30]. Enzyme catalyzed ester hydrolysis is 

highly dependent on the acyl and the alcohol moieties surrounding the cleavable ester bond. 

Sterically unhindered straight chain aliphatic esters of timolol i.e o-acetyl/o-propionyl/o-

butyryl timolol can be rapidly hydrolyzed both enzymatically and chemically, whereas 

sterically hindered esters such as the 1′-methylcyclopropanoyl, cyclopropanoyl, 3,3-

dimethylbutyryl derivatives are stable enough to generate aqueous solutions with shelf-lives 

larger than two years at 10-15°C [31].

3.1.1.A. Ester Prodrugs from OH Functionalities of Drugs

Case Study 1: Ganciclovir (GCV) is a promising antiviral compound which exhibits 

significant activity against human cytomcgalovirus. However the low partition coefficient of 

GCV results in poor ocular bioavailability. In order to improve corneal permeation of GCV 

following topical administration, Mitra et al. have reported short chain lipophilic mono-ester 

prodrugs of GCV with varying side chain from one carbon to four carbon atoms (Fig. 2). 
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GCV mono-ester prodrugs have shown increased corneal permeability compared to parent 

GCV. Corneal permeability has been found to increase disproportionately with increasing 

side chain length or lipophilicity of the prodrugs. GCV monovalerate containing four carbon 

side chains have shown highest permeability with a six fold increase compared to parent 

GCV. These prodrugs undergo facile enzymatic hydrolysis to active GCV in cornea, leading 

to lower prodrug concentration in this tissue and therefore generating high driving force for 

prodrug diffusion. Thus prodrug permeability exhibits a linear relationship with their 

hydrolysis rate. The hydrolysis rate in corneal homogenate and iris ciliary body has been 

also found to increase with as carbon chain length ascends from acetate to valerate ester [27, 

32].

3.1.1B. Ester Prodrugs from COON Functionalities of Drugs

Case Study 2: Prostaglandin analogs, PGF2α have been widely used as ocular hypotensive 

agents. In carboxylic acid forms of these compounds exhibit poor permeability and cause 

irritation to the eye. The carboxylic acid functionality of prostaglandins (PGF2α and its 

analogs) has been utilized to develop various alkyl/aryl ester prodrugs which resulted in 2-3 

fold higher lipophilicity and 25-40 fold enhanced in vitro corneal permeability. These agents 

were found to be 10-30 times more potent ocular hypotensive agent than their parent 

molecules. However, due to ocular side effects such as conjunctival hyperemia and 

superficial irritation these prodrugs have limited clinical application [33-35]. Later on, two 

isopropyl ester derivatives of modified PGF2α analogs have been developed (latanoprost, 

travoprost) where the modification was made on one of the side chain (omega chain) of 

PGF2α backbone by attaching phenyl ring at the 17-position. These prostaglandin analogs 

exhibit high selectivity to the prostaglandin F receptor (FP receptor) with low affinity 

toward non-specific receptors and thereby lower some of the side effects. Latanoprost, 

travoprost and one other PGF2α analog, unoprostone isopropyl are currently being used 

clinically (Fig. 3) [26, 36, 37]. Latanoprost and travoprost undergo facile hydrolysis by 

esterases present in cornea to biologically active latanoprost acid and travoprost acid 

respectively. Cornea slowly releases latanoprost acid into anterior parts of the eye [36]. The 

maximum concentration of latanoprost acid has been detected in aqueous humour 1-2 hrs 

after topical application [38]. Travoprost and other ester prodrugs of PGF2α analog 

hydrolyze during passage through the cornea by butyrylcholine esterase and carboxyl 

esterases [39].

3.1.2. Phosphate Ester Prodrugs—Phosphate ester prodrugs are typically designed for 

hydroxyl functionalities of poorly water-soluble drugs. Presence of dianionic phosphate 

promoiety in phosphate prodrugs enhances aqueous solubility of the parent drugs [8-11]. 

These compounds exhibit adequate to excellent chemical stability which opens up the 

possibility of developing topical eye drop formulations [40]. These prodrugs can be rapidly 

hydrolyzed to parent drugs by alkaline phosphatases present in the eye tissues [41].

Case Study 3: Most cannabinoids have poor aqueous solubility which limits their 

application by topical administration. In order to improve aqueous solubility, phosphate 

ester prodrugs of three cannabinoids (arachidonylethanolamide, R-methanandamide and 

noladin ether) have been synthesized (Fig. 4) and their physicochemical properties have 
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been studied. These prodrugs have shown significantly enhanced aqueous solubility (Table 

2) compared to their parent drugs with adequate chemical stability in buffer solutions [42]. 

These compounds undergo facile enzymatic hydrolysis on the surface of the cornea by 

alkaline phosphatase to their lipophilic parent compounds, which subsequently permeate 

cornea Corneal permeation of the phosphate prodrug has been compared with that of 

lipophilic parent compounds in aqueous formulations where hydroxypropyl-beta-

cyclodextrin (HP-beta-CD) has been used to solubilize lipophilic parent compounds. During 

in vitro corneal permeation, phosphate ester prodrugs exhibit lower flux (Table 2) relative to 

parent compounds in HP-beta-CD formulations. Aqueous solubility and IOP reducing 

efficacy suggest that phosphate prodrug approach is a potential alternative to cyclodextrin 

based formulations [9].

3.1.3. Carbamate Prodrugs—Carbamate prodrugs can be prepared from amine and 

carboxyl functionalities. Although amines can be easily acylated, carbamate prodrugs are 

rarely used in ophthalmic delivery because of the relatively high in vivo enzymatic stability 

[43]. However, the problem can be overcome by introducing an enzymatically labile ester 

group in the carbamate structure resulting in N-(acyloxy)alkyl carbamates, which are highly 

stable in aqueous solutions [7]. These compounds also exhibit improved in vitro corneal 

penetration [44, 45]. N-(acyloxy)alkyl carbamates exhibit high susceptibility to enzymatic 

bioreversion to the active parent. Esterase-catalzed hydrolysis of terminal ester linkage in 

these derivatives lead to an unstable (acyloxy)alkyl carbonyl intermediate which undergoes 

spontaneous decomposition to parent amine via a labile carbamic acid (Fig. 5) [46,47]. 

However such a prodrug approach has limited applicability to primary amines since N-

(acyloxy)alkyl carbonyl derivatives of primary amines undergo intramolecular acyl transfer 

reaction leading to formation of stable N-acylated derivatives [48].

Case Study 4: This strategy can be used to prepare N-(acyloxy) alkyl carbamate derivatives 

oftimolol where secondary amine group of timolol is utilized to make prodrug derivatives. 

This derivative exhibits 100-500 times faster hydrolysis in plasma than in buffer solution 

(pH 7.4) at 37°C with high aqueous stability (3-5 years at 4°C, iii 4). Esterase-catalyzed 

hydrolysis of this prodrug results in a hemiacetal, which spontaneously convert to parent 

timolol via formation of carbamic acid intermediate (Fig. 5). This prodrug results in five 

fold enhanced in vitro corneal penetration [7].

3.1.4. Oxime Prodrugs—Oximes are derivatives of ketones, which provide an 

opportunity to modify drug molecules, lacking hydroxyl, amine or carboxyl functionalities. 

Several oxime or methoxime derivatives of known β-adrenergic blockers i.e. alprenolol [49], 

betaxolol [13], propranolol [50] and timolol [51]. have been synthesized and studied as 

potential antiglaucoma agents [13, 52-55]. Synthesis of these derivatives involves oxidation 

of secondary hydroxyl functional groups present in the original β-blocker alcohols, using 

activated dimethyl sulfoxide (Pfitzner-Moffat oxidation) followed by coupling of resulting 

ketone by additing either hydroxylamine or methoxyamine in the same reaction mixture. 

Oxime or methoxime derivatives exist in alternative Z (syn) or E (anti) configuration. These 

compounds exhibit significant and long lasting intraocular pressure (IOP) lowering activity 

with improved therapeutic index. Oxime prodrugs undergo sequential hydrolysis to parent β-
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blockers. The activation process involves initial hydrolysis (by oxime hydrolase) of oxime 

derivatives to ketone which further undergoes enzymatic hydrolysis by ketone reductase to 

parent β-blockers (S−(−) stereoisomer). Ocular distribution of oxime hydrolase and ketone 

reductases is primarily limited to iris-ciliary body [56].

Case Study 5: Ethacrynic acids (ECA) which is a sulfhydryl (SH)-reactive diuretic is a 

known ocular hypotensive agent. However ECA and ils derivatives (such as SA9000) 

exhibit corneal toxicity with poor corneal permeability. In an attempt to overcome these 

barriers, an oxime derivative of SA9000 (Fig. 6) has been developed and IOP reducing 

efficacy, corneal toxicity, and in vitro SH reactivity of this compound have been studied. 

This prodrug showed improved IOP reduction and enhanced corneal penetration relative to 

SA9000 following topical administration. The carbonyl functionality in SA9000 accelerates 

SH reactivity which leads to protein binding, thereby resulting in corneal toxicity. 

Modification of SA9000 with oxime functionality lowers SH reactivity which results in 

lower corneal toxicity [12].

3.1.5. Oxazolidine Prodrugs—Oxazolidines are cyclic condensation products of β-

aminoalcohols, present in various drugs and carbonyl containing compounds i.e. aldehydes 

or ketones. Oxazolidine derivatives increase lipophilicity of β-aminoalcohols at 

physiological pH and thereby improve ocular absorption [57, 58]. These compounds 

undergo facile and complete hydrolysis in aqueous solutions within pH 1-11 at 37°C. Most 

oxazolidine derivatives display sigmoidal pH -hydrolytic rate profile where maximum 

hydrolysis rate is observed at pH 7-7.5 [59]. The rate of hydrolysis of oxaz.olidine 

derivatives also depends on several factors: (1) steric effects of carbonyl substituents, (2) 

steric effect of substituents at a position of nitrogen atom in β-aminoalcohol moiety and (3) 

electronegativity of the substituents at β nitrogen atom in β-aminoalcohol moiety. At neutral 

and basic pH hydrolysis rate decreases with increasing steric effects within carbonyl moiety 

or aminoalcohol moiety and increases with increasing electronegativity of substituents at β 

nitrogen atom [60]. However, oxazolidines derivatives possess poor aqueous stability which 

limits their use as ophthalmic prodrugs. In order to enhance aqueous stability various N-

acylated oxazolidines were studied. N-acylated oxazolidines were found to be highly stable 

in aqueous solutions but were highly resistant to enzymatic hydrolysis, which limits their 

use in prodrug design [61].

Case Study 6: Oxazolidine prodrug of phenylephrine, prepared from pivaldehyde exhibits 

ten-times enhanced corneal penetration compared to the parent drug, resulting in 10 to 15 

fold reduction in the phenylephrine dose and thereby reducing the side effects caused by 

systemic absorption of phenylephrine. In rabbits the prodrug shows 10 fold increase in 

mydriatic response compared to topically instilled phenylephrine hydrochloride. However it 

converts to phenylephrine in aqueous solution at pH (1-7.4) with short halflifes (6-13 min) 

[20, 62, 63]. Hydrolysis rate of phenylephrine oxazolidine has been found to decrease with 

increasing steric crowding of substituents (R and R′ in Fig. 7) derived from the carbonyl 

component [57, 64]. Thus the prodrug has to be formulated in a non-aqueous vehicle such as 

sesame oil for the preparation of phenylephrine oxazolidine eye drops.
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3.1.6. Prodrugs Derived from Sulfonamide Functional Groups—Drugs like 

carbonic acid inhibitors (such as acetazolamide, methazolamide and ethoxyzolamide) do not 

contain functional groups that are amenable to prodrug derivatization. The main functional 

moiety in these drugs is the primary sulfonamide group which has been utilized to prepare 

prodrug derivatives. Several different kinds of prodrug derivatives including N-acyl [65], N-

alkoxycarbonyl [66], N-sulfonylurea [67], N-sulfonylimidate [68, 69], N-sulfonylamidine 

[67], N-sulfonyl pseudourea [70], N-sulfonyl sufoximines [67] and N-sulfonyl sulfilimines 

[67] have been developed and their physicochemical properties have been evaluated. These 

derivatives are very stable both chemically and enzymatically which limited their utility as 

prodrugs. N-sulfonyl imidates derivatives of primary sulfonamide moiety have been shown 

to readily hydrolyze in aqueous solution to yield sulfonamide and a carboxylic acid ester 

moiety. However, these compounds have limited chemical stability in aqueous solution 

which restricted their use in eye drop formulations. However, secondary sulfonamide 

derivatives are more reactive and easily hydrolyze [68-70].

3.2. Transporter Targeted Prodrug Approach

Recent progress in transporter identification has greatly contributed to the field of prodrug 

derivatization. Various transporters have been explored and recognized for transferring 

exogenous and endogenous nutrients across the cell membranes [74]. Various influx and 

effiux transporters have also been identified on the various region of the eye (Table 3). A 

major role of these influx transporters is to deliver essential nutrients which can be utilized 

to deliver therapeutic molecules across various ocular barriers. However, an effiux 

transporter relatively lowers ocular bioavailability of therapeutic drug by pushing molecules 

out of a cell.

Anticancer [75], antifungal [76], antiviral [77], steroids [78] and fluroquinolones [79, 80] 

are known substrates of efflux transporters, which lowers ocular bioavailability. Several 

strategies have been applied to evade drug effiux, among which prodrug derivatization is 

one of the most successfully utilized approach for improving ocular bioavailability of 

therapeutic agents.

Prodrugs have been synthesized in such a way that (a) chemically modified drug will have 

lower affinity towards effiux transporter such as quinidine prodrugs [81-83], or (b) 

chemically modified drug will have higher affinity towards influx transporter which 

otherwise are not recognized as such by a transporter such as peptide and amino acid 

prodrugs (acyclovir [84-86] and ganciclovir [87-89]). Hence higher ocular bioavailability of 

therapeutic agents can be achieved. In addition to peptide (PepT1) [87, 90], amino acid 

(LAT1, LAT2, B(0,+)) [84, 91] and monocarboxylic acid (MCT) [92, 93] transporters, 

recently various vitamin transporters such biotin [94] and ascorbic acid (SVCT2) [95-98] 

have been utilized for the delivery of various ocular prodrugs.

In transporter targeted prodrug approach a promoiety such as amino acid, peptide or vitamin, 

which is a substrate of respective transporter, is conjugated to parent drug molecule with 

ultimate aim of improving its bioavailability at the target site. Various transporters have 

been targeted in the eye for improving drug bioavailability following topical route. For 
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successful prodrug delivery an ideal transporter must be highly expressed at desired ocular 

region in order to facilitate optimal and rapid drug uptake. In addition, it must have high 

capacity to avoid inhibition of an excess prodrug or nutrients recognized by the same 

transporter. This approach has distinct feature relative to other approaches as the prodrug is 

specifically recognized by a particular transporter expressed on the cell surface.

3.3. Receptor Targeted Prodrug Approach

In addition to transporter targeted delivery, drug targeting to specific receptor using carrier 

mediated absorption is emerging as a clinically significant approach. Receptors useful for 

prodrug targeting have been identified in various region of the eye (Table 3). Receptors are 

responsible for the internalization of nutrients, such as folate, vitamin B12 and transferrin. 

Due to the importance of these receptors, numbers of investigator have examined the use of 

drug-receptor conjugation for drug delivery and drug targeting. Internalization of such 

conjugates has been achieved successfully by receptor-mediated endocytosis. So far folate 

receptor has been utilized as an ideal candidate for tumor targeted drug delivery but less 

attention has been given to receptor theory for ocular drug delivery [160]. Recently our 

laboratory has started working on the extension of targeted prodrug approach by 

synthesizing receptor targeted prodrugs for ocular drug delivery. However, much attention is 

needed to explore and extend receptor based prodrug approach.

3.4. Stereoisomeric Dipeptide Prodrug Approach

An idea of modulating the enzymatic hydrolysis rate of prodrugs and its implications in drug 

delivery is a growing concept which has high clinical significance. Extended availability of 

intact prodrug at the target site is a crucial requirement for effective drug absorption and 

higher bioavailability. Systemic drug delivery (intravenous or oral) is a potential route for 

the treatment of various ophthalmic disorders [161]. Transporter targeted prodrug strategy 

has been utilized to increase the ocular bioavailability of various drug molecules following 

systemic administration [99, 103, 162-164]. Among all, peptide transporter (PepT) was 

utilized most significantly for dipeptide prodrug delivery due to availability of this 

transporter at various ocular tissues (Table 3).

A major problem associated with orally administered dipeptide prodrugs is their rapid 

metabolism into parent compound resulting in limited availability of intact prodrug at 

transporter site of target ocular tissue [162, 165, 166]. Our laboratory has addressed this 

problem by designing stereoisomeric dipeptide prodrug for enhancing residence time of 

intact prodrug in the systemic circulation so that its translocation by ocular influx transporter 

can be maximized. Basic theory behind this concept was to synthesize enzymatically stable 

prodrugs by averting its early hydrolysis and elevating oral as well as ocular bioavailability 

after oral administration [167]. Hydrolytic enzymes (peptidases and esterases) responsible 

for the bioreversion of dipeptide prodrugs are stereospecific and have high affinity for L-

isomers. All dipeptide prodrugs studied so far were based on L-amino acid isomers, which 

are natural substrates for these enzymes. Talluri et al. have designed series of stereoisomeric 

prodrug by incorporating D-isomers into the dipeptide moieties at a particular position to 

modulate its rate of metabolism. Results from this work were comparable with other studies 
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and provides evidence that incorporation of one D-amino acid into a dipeptide does not 

eradicate its affinity towards PepT transporter [168-170]. Moreover, it also possesses higher 

stability against metabolizing enzymes which could result in higher cellular permeability 

(Table 4). Furthermore it was observed that inclusion of two D-amino acid into a dipeptide 

moiety can not only increase the enzymatic stability but simultaneously abolishing its 

affinity towards PepT transporter [167, 171]. This novel concept has shown that the 

metabolic stability as well as the cellular permeability can be modulated with the 

incorporation of a D-isomer of an aminoacid at a definite position into a dipeptide conjugate. 

This idea can be further extended to a range of therapeutic molecules particularly for 

enhancing their tissue bioavailability .

3.5. Lipid Prodrug

Molecules can cross cell membranes through passive diffusion. In the eye, drug absorption 

takes place either through corneal route (cornea-aqueous humor-intraocular tissues) or non-

corneal route (conjunctiva-sclera-choroid/RPE) [172]. Due to lipophilic nature of cornea and 

other intraocular tissues, both hydrophilic and hydrophobic drugs take transcellular pathway 

to cross ocular membrane. In addition to these, sustained drug delivery for prolonged 

periods of time at the target site is required especiaDy for the treatment of eye diseases at 

posterior segment of eye like vitreous, retina and choroid. In order to improve lipophilicity 

of hydrophilic drug molecules and hence to improve corneal permeation, the lipid prodrug 

approach has been developed Lipid prodrugs are chemical entities where a drug molecule is 

covalently bound to a lipid moiety, such as fatty acid, diglyceride or phosphoglyceride. 

Lipid prodrugs diffuse readily across cell membrane by facilitated diffusion and thereby 

result in improved cellular absorption (Table 5). It also shows sustained delivery of parent 

drug molecule at the site of action [173, 174].

However high lipophilicity of molecules can result in limited permeability as it will stick 

inside the lipid membrane of cornea. Schoenwald and Ward reported a parabolic relationship 

between the lipophilicity and permeability of drug molecules across the rabbit cornea. 

Maximal permeability is observed for prodrugs with log P value of about 2-4 where P is 

defined as octanol/pH 7.4 buffer partition coefficients [22]. So depending on the 

hydrophilicity of each drug molecule, lipid chain length needs to be adjusted in order to get 

maximum permeability across the cornea. Intraocular permeation can be further enhanced 

by conjugating a targeting moiety (receptor/transporter) at one end of lipid prodrug, which is 

being currently explored (Patent: WO 2009/158633 A1) in our laboratory.

Case Study 7

5-Fluorouracil (5-FU) is an antimetabolite which has failed to exhibit significant benefit to 

intraocular cell proliferation, resulting from many vision threating vitre-oretinal diseases as 

it has short vitreous half-life after perioperative infusion [175]. Therefore 5-FU implant is 

required in proliferative vitreoretinopathy [176]. Recently Cheng et al. has reported two 

lipid derivatives of 5-Fluorouracil nucleoside analog, 2′-deoxy-5-fluorouridine (5-F-2dUrd) 

in order to achieve sustained intravitreal drug release, and thereby achieving drug delivery 

by simple intravitreal injection (Fig. 8). An alkoxyalkyl phospholipid residue is covalently 

anchored to 5-F-2dUrd to obtain hexa-decyloxypropyl 5-fluoro-2′-deoxyuridine 5′-
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monophosphate (HDP-P-5F-2dUrd), and hexadecyloxypropyl 5-fluoro-2′-deoxyuridine 3′,

5′-cyclic monophosphate (HDP-cP-5-F-2dUrd).Compared to 5-FU both lipid prodrugs 

exhibit longer vitreous half life with higher non-toxic dose. In addition, the potency of these 

prodrugs against cell proliferation jumped 11.6 times and 3.5 times for HDP-P-5F-2dUrd 

and HDP-cP-5-F-2dUrd respectively [177].

Conjugated lipid chain with 5-F-2dUrd enhances cellular uptake of lipid prodrugs by inner 

limiting membrane. Inside the cells these lipophilic nucleotide converts back to the 

corresponding nucleoside triphosphate which exhibit antiproliferative activity.

4. RECENT FORMULATION STRATEGIES FOR OCULAR PRODRUG 

DELIVERY

Sustain drug concentration at desired site is an important feature of ocular delivery. In 

addition to prolong drug release, sustain delivery formulations can also utilize to prevent 

drug loss from pre-corneal site. Formulations such as microparticles [194], nanoparticles 

[28, 195], and liposomes [196] have been utilized with an aim to delivery prodrug for 

achieving sustained drug delivery at ocular sites. These colloidal formulations can be 

delivered alone or by suspending into a gel in order to modify drug release at various ocular 

sites. Solid lipid microparticles have been designed with an aim to improve stability of 

encapsulated dopamine prodrug in physiological environment Solid matrix of lipid 

microparticles has also provided the sustained delivery of dopamine prodrug for longer 

period of time [194]. Iwala et a1. have demonstrated the sustained release of dipeptide 

prodrugs of acyclovir (ACV) encapsulated into nanoparticle formulation. In this study, 

stereoisomenc dipeptide (L-valine-L-valine and L-valine-D-valine) prod rugs of acyclovir 

encapsulated into PLGA nanoparticles have shown ideal biphasic drug release. Moreover, 

nanoparticle formulations suspended in thermosensitive gels were able to prolong the release 

of ACV pro drugs by eliminating initial burst release [195]. In another study, Gaudana et al. 

have demonstrated the role of hydrophobic ion pairing (HIP) complexation for improving 

prodrug entrapment in nanoparticles. Dipeptide prodrug of dexamethasone was complexed 

using dextran SUlphate as complexing polymer. This novel principle of IDP complexation 

has significantly enhanced entrapment of dexamethasone prodrug in nanoparticles by 

overcoming partitioning limitation of hydrophilic prodrug [28]. Prodrug retention at pre-

corneal and vitreous site bas been improved by delivering intravitreal injection of liposome 

containing tilisolol prodrug [196]. These approaches can have particular importance to treat 

posterior segment eye disease such as diabetic retinopathy and age-related macular 

degeneration [197].

5. OCULAR PRODRUG PATENTS

Pharmaceutical companies and academic organizations have implemented prodrug strategies 

to overcome the recent ophthalmic delivery challenges which are confirmed by the trends 

seen in the published and filed U.S. patents. It is beyond the scope of this review to cover all 

advancements in the field of ocular prodrug design and hence, we have summarized recent 

patents published in the field of ocular prodrug delivery in Table 6.
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6.CONCLUSION

Prodrug derivatization is an adaptable method that can be applicable for series of parent 

drug molecule. For successful prodrug utilization, recognition of drug properties and 

participation of barriers at target site are critical factors. Most of the prodrugs are used for 

improving drug penetration by enhancing lipophilicity and more recently by modulating 

aqueous solubility. Prodrug strategy has revealed promising outcome for the delivery of 

ophthalmic drugs. The recent progress in the field of prodrug design holds a promising 

future for ophthalmic drug delivery. Prodrugs have become an integral part of the drug 

design and delivery process, as exemplified by the growing number of approved prodrugs 

and patents. Growing utilization of coherent prodrug approach at the initial phase of drug 

discovery will lead to the development of composite with improved physicochemical 

properties.
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Fig. (1). 
Ester prodrugs from COOH/OH functionalities.
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Fig. (2). 
Monoester prodrugs of Ganciclovir.
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Fig. (3). 
Chemical structure of prostaglandin prodrugs.
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Fig. (4). 
Chemical Structure of three cannabinoid (arachidonylethanolamide, R-methanandamide and 

noladin ether) phosphate esters.
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Fig. (5). 
Hydrolysis of N-(acyloxy)alkyl carbamate derivatives of timolol to parent timolol.
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Fig. (6). 
Hydrolysis of oxime derivatives (ethacrynic acid a an example) .
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Fig. (7). 
Chemical structure of phenylephrine and its oxazolidine derivative.
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Fig. (8). 
Chemical Structure of lipid prodrugs of 5-Fluorouracil.
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Table 1

Ophthalmic Prodrug Design from Most Common Functionalities

Prodrug Functional
Groups Prodrug form Drugs Hydrolytic

Enzyme Comments

Ester -OH
-COOH

Antimetabolites
[27] Prostaglandins 

[26]
Esterases [30]

Enhanced corneal 
penetration and IOP

reduction [17], 
chemical instability 

in
aqueous solution 

[14]

Phosphate Ester -OH Vidarabin[71]
Cannabinoids [11] Phosphatases [39]

Enhanced aqueous 
solubility [8], 

excellent
chemical stability 

and high 
susceptibility
to enzymatic 

reconversion [40]

Carbamate Ester -NH2 Timolol [7] Esterases [7]

Enhanced corneal 
penetration [7], 

high
enzymatic stability 

[14]

Oxime β-adrenergic blockers
[56]

Oxime hydrolase,
Ketone reductase

[56]

Prolonged IOP 
reduction and 

improved
therapeutic index 
[51], site-specific 

en-
zyme activity [56]

Oxazolidines Phenylephrine [72] -

Enhanced corneal 
penetration and im-
proved therapeutic 

index, poor aqueous
stability [72]

N-sulfonyl
imidates

—SO2NH2
Carbonic anhydrase

inhibitors [73] -

Enhanced aqueous 
solubility, slow 

hydro-
lytic rate and poor 
aqueous stability 

[73]
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Table 2

Aqueous Solubility and Steady State Fluxes of Cannabinoids and their Phosphate Ester Prodrugs [42]

Compounds
Solubility at

pH 7.4 (μg mL−1)
Steady State Fluxes

(nmol (cm2.h)−1

Arachidonylethanolamide 0.4 39.30 (5 % CD, Tris buffer)

Arachidonylethanolamide phosphate ester >5000 26.66 (Tris buffer)

R-methanandamide - 54.89 (5 % CD, Tris buffer)

R-methanandamide phosphate ester >5000 23.95 (Tris buffer)

Noladin ether <0.1 27.61 (5 % CD, Tris buffer)

Noladin ether phosphate ester >5000 14.07 (5 % CD, Tris buffer)

CD:Cyclodextrin
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Table 3

Transporters and Receptors in Various Ocular Tissues

Transporters Substrates Cornea Conjunctiva Retina
Retinal Pigment 

Epit-
helium (RPE)

Blood-Retinal
Barrier
(BRB)

Influx Transporters

Dipeptides Rabbit [90]

Primary cul-
tured rabbit
conjunctival

epithelial cells
[100]

Rabbit [101] Rabbit [102] Rabbit [103]
PepT1

GLUT1 Glucose Rat [104]
Human [105] Human [106] Human [107] Human [107]

Rat [108]

Human [107] 
Rat

[108-110]

ENT1 Nucleoside

Rabbit [111]
Rabbit corneal
epithelial cells

[112]

Rabbit [113]

Rabbit [114]
Cultured human
retinal cell line

[115]

Human RPE cell 
line,

ARPE-19 [114]

Rat inner BRB
cell line, TR-
iBRB2 [116]

MCTs Monocarboxylate Rabbit [117] - Rat [118]

Rat [118]
Human RPE and 

A RPE-
19 cells [119]

Rat inner BRB
cell line, TR-
iBRB2 [92]

SVCT2 Vitamin C(Ascor-
bic acid)

Rabbit corneal
epithelial cells

[120]
- Rat [121]

Rat [121]
Human RPE cells 

[96]
Primary cultures 

of cat
RPE [122]

Rat [123]

SMVT Biotin
Rabbit corneal
epithelial cells

[124]
- Rabbit [94]

Human RPE cell 
line,

ARPE-19 [94]

Rat inner BRB
cell line, TR-
iBRB2[125]

Riboflavin Riboflavin
(vitamin B2)

Rabbit cornea
and Rabbit cor-
neal epithelial

cells [126]

-

Human-derived
retinoblastoma
cell line, Y-79

[127]

Human RPE cell 
line,

ARPE-19[128]
-

LAT1, LAT2 Large neutral
amino acids

Human and
rabbit cornea

[129]
-

Human [130]

Human RPE cell 
line,

ARPE-19 [131]

Rat inner BRB
cell line, TR-
iBRB2[132]

ASCT1 Neutral amino
acids

Rabbit corneal
epithelial cells

and rabbit cornea
[133]

- -
Rat inner BRB
cell line, TR-
iBRB2[134]

B(0,+) Neutral and cati-
onic amino acids

Human, Rabbit
[135]

Rabbit [136]
Rabbit [137]
Human [138]

- Rat [139]

Reduced-folate
transporter (RFT) Reduced folate - - Rabbit [140]

Human RPE cells 
[141,
142]

Rabbit [140]
Mouse [141]

Mouse [141]
Rat inner BRB
cell line, TR-
iBRB2[143]

Proton-coupled
folate transporter

(PCFT)
Folate - - Mouse [144, 145] Mouse [144]

Rat inner BRB
cell line, TR-
iBRB2[143]

Folate receptor
alpha Folic acid - - Human [146]

Mouse [144]

Mouse [141, 146]
Human RPE cells 

[141]
Mouse [141]

Transfeirin Transferrin Human [147]
Bovine [148]

Human [147]
Bovine [148] Rat [149]

Human [147, 
150]

Rat [149, 150]

Human and Rat
[150]
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Transporters Substrates Cornea Conjunctiva Retina
Retinal Pigment 

Epit-
helium (RPE)

Blood-Retinal
Barrier
(BRB)

Efflux Transporters

Various drugs

Corneal epithe-
lial cells, human
and rabbit cornea

[151]

Rabbit con-
junctival

epithelial cells
[152]

Bovine retinal
endothelial cells

[153]
Rabbit retina [83]

Human RPE cell 
line,

ARPE-19[154]
Human RPE 

[155]

Mouse [156]P-glycoprotein,
MDR 1

Multidrug resis-
tance associated
proteins (MRPs)

Rabbit cornea
and human cor-
neal cells [157]
Freshly excised
human corneal
epithelial [158]

Human [157] -
Human RPE cell 

line,
ARPE-I9[154]

Mouse [156]

Breast cancer resis-
tance protein

(BCRP)

Human corneal
epithelial cells

[159]
Freshly excised
human corneal
epithelial [158]

- -
Human RPE cell 

line,
ARPE-19[149]

Mouse [151]
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Table 4

Half lives of Stereolsomeric Acyclovir (ACV) Dipeptide Prodrugs In Tissue and Cell Homogenates (Table 

Regenerated from Reference [167])

Prodrug

t½ (hrs)

Rat Liver
Homogenate Rat Intestinal Homogenate Caco-2 cell

Homogenate

LLACV <0.08 <0.08 7.52 ± 0.40

LDACV 0.49 ± 0.02 1.01 ± 0.07 52.80 ± 8.42

DLACV 2.82 ± 0.18 6.27 ± 0.25 no degradation

DDACV no degradation no degradation no degradation
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Table 5

Recent Trends in Lipid Prodrug Derivatization

Drug Chemical Modification Disease Inferences References

Cidofovir (CDV)
Hexadecyloxypropyl (HDP-

CDV) and Octadecyloxyethyl
(ODE-CDV) ester derivatives

Poxvirus, Herpesvirus,
Adenovirus, Polyomavi-

rus

Immensely improved antiviral efficacy 
(EC50)

from μMrange (for parent compound) to 
nM range

(for lipid conjugates)

[165, 178-183]

Ganciclovir
(GCV)

1-O-hexadecylpropanediole-
3-phospho-ganciclovir (HDP-

p-GCV)

Herpes simplex virus
(HSV), Cytomegalovirus

(CMV) in retinitis

Prolonged in vivo antiviral activity (for 
4-6 weeks)

with no significant toxicity relative to 
parent com-

pound (less than 1 week) upon 
intravitreal injec-

tion

[184]

Elicidic acid conjugates of
GCV (E-GCV)

Human cytomegalovirus
(HCMV), Herpes sim-

plex virus (HSV)
and varicella zoster virus

(VZV)

Improved in vitro efficacy (5-30 fold 
reduction in

antiviral dose) against HCMV and HSV. 
E-GCV

compared to GCV at equimolar doses 
proved more

efficacious with reduction of mortality 
rate.

[185]

Foscamet or
Phosphonoformic

acid (PFA)

1-O-octadecyl-sn-glycerol-3-
phosphonofonnate (ODG-

PFA)

Human cytoinegalovirus
(HCMV)

ODG-PFA had longer vitreous half life 
and sus-

tained drug level in retina at the end ofte 
nth week

after intravitreal injection (concentration 
of 32 μM

at the 10th week was 10imes higher than 
IC90

value against HCMV for foscamet) in 
rabbits.

[186]

Peptide nucleic
acid (PNA)

Cationic peptide-decanoic
acid-Nuclear Antisense -

Nuclear antise nse activity of peptide 
nucle ic acid

was higher up to 2 ordecs of magnitude 
for cationic

peptide-decanoic acid-nuclear antise nse 
compare to

peptide nucleic acid alone.

[187]
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Table 6

Recent Ocular Prodrug Patents

Inventor Drug Promoiety Disease United States Patent

Allergan Dexamethasone,
bimatoprost

amino acid, peptide, monocar-
boxylic acid, organic anion,

cation nucleoside

posterior segment
eye disease 7714024 [188]

Allergan anti-glaucoma, ocular hy-
potensive compounds

acetylcholinester,
psuedoacetylcholine glaucoma 6350780[189]

University of Georgia
Research Foundation

etoposide, vincristine, fluo-
cinolone and other steroids carotenoid (zeaxanthine) macular and retinal

disease 20070259843[190]

Novagali Pharnia SA steroids lipophilic ester posterior segment
eye disease 20070280995[191]

University of Florida and
University of North Texas

Health Science Center
steroidal quinol compounds phosphate or tertiary amide

ester cataract or glaucoma 7572781 [192]

University of Missouri
Kansas City acyclovir and ganciclovir dipeptide, tripeptide ester herpes virus infection WO 2003/03048190

University of Missouri
Kansas City

nucleoside, nucleotide,
oligonucleotide, peptide lipophilic linker ocular diseases WO 2009/158633 A1

Cellgate, Inc. anti-bacterial, anti-viral,
anti-fungal guanidine, amidino, arginine ocular infections 7229961[193]
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