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Abstract

Constant oxygen supply is essential for proper tissue development, homeostasis and function of all 

eukaryotic organisms. Cellular response to reduced oxygen levels is mediated by the 

transcriptional regulator hypoxia-inducible factor-1 (HIF-1). It is a heterodimeric complex protein 

consisting of an oxygen dependent subunit (HIF-1α) and a constitutively expressed nuclear 

subunit (HIF-1β). In normoxic conditions, de novo synthesized cytoplasmic HIF-1α is degraded 

by 26S proteasome. Under hypoxic conditions, HIF-1α is stabilized, binds with HIF-1β and 

activates transcription of various target genes. These genes play a key role in regulating 

angiogenesis, cell survival, proliferation, chemotherapy, radiation resistance, invasion, metastasis, 

genetic instability, immortalization, immune evasion, metabolism and stem cell maintenance. This 

review highlights the importance of hypoxia signaling in development and progression of various 

vision threatening pathologies such as diabetic retinopathy, retinopathy of prematurity, age-related 

macular degeneration and glaucoma. Further, various inhibitors of HIF-1 pathway that may have a 

viable potential in the treatment of oxygen-dependent ocular diseases are also discussed.
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Hypoxia and the Discovery of HIF-1

A constant oxygen supply is essential for proper tissue development, homeostasis and 

function of all eukaryotic organisms. Cells require oxygen as an electron acceptor during 

oxidative phosphorylation for efficient ATP production. Oxidative phosphorylation 

produces higher energy (∼18 fold) than glycolysis [1, 2]. Oxygen serves as a major element 

in regulating membrane transport, intracellular signaling, expression of many genes, and cell 

survival [3, 4]. Hypoxia (∼1% O2) occurs when tissue oxygenation demand exceeds the 

vascular supply. Response to reduced oxygen levels is mediated by the transcriptional 
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regulator hypoxia-inducible factor 1 (HIF-1). HIF-1 was first discovered by its ability to 

induce expression of erythropoietin (EPO) in kidney and liver. Such production of EPO is 

inversely related to tissue oxygen concentration. In response to hypoxia, EPO is stimulated 

which in turn promotes red blood cell production and oxygen carrying capacity. This 

information led to the identification of a hypoxia response element (HRE; 5′-RCGTG-3′) in 

the 3′-enhancer region of EPO [5, 6].

Structure of HIF-1

A functional HIF-1 system is expressed in all metazoan species including the simplest 

animal Trichoplax adhaerens [7]. The HIF1A gene was mapped on 14q21-q24 human 

chromosome. HIF-1 is a heterodimeric complex consisting of an oxygen dependent subunit 

(HIF-1α) and a constitutively expressed nuclear subunit (HIF-1β) [8]. HIF-1β is also known 

as the aryl hydrocarbon receptor nuclear translocator (ARNT). It was first identified as 

structural binding component of aryl hydrocarbon receptor (AHR), which induces the 

transcription of Cyp1a1 metabolizing enzyme [9]. Both subunits are members of basic helix-

loop-helix-PER-ARNT-SIM (bHLH-PAS) protein family. In human, HIF1A, EPAS1 and 

HIF3A genes encode three different isoforms of HIF-α (HIF-1α, HIF-2α and HIF-3α), 

respectively [10].

Structurally, HIF-1α exhibits bHLH and PAS domains at the N-terminal. The bHLH domain 

and N-terminal of PAS (PAS-A) (amino acids/aa 1-166) facilitate DNA dimerization while 

complete bHLH and PAS domains (aa 1-390) facilitate DNA binding [11, 12]. HIF-1α also 

exhibits an oxygen-dependent degradation (ODD) domain, two transactivating domains 

(TADs) and two nuclear localizing signals (NLS). The ODD domain (aa 401-575) located 

within central region plays a predominant role in regulating stability of HIF-1α with respect 

to oxygen concentration [13]. Two TADs (N-TAD; aa 531-575 and C-TAD; 786-826) help 

in recruiting various coactivators required for transcription of target genes. Bridged between 

them is an inhibitory domain (ID; aa 576-785) capable of repressing their transcriptional 

activity under normoxic conditions (∼20% O2) [14, 15]. N-NLS (aa 17-30) and C-NLS (aa 

718-721) promote nuclear translocation of HIF-1α. However, studies have demonstrated 

that nuclear import is highly dependent on C-NLS [16]. HIF-1α is ubiquitously expressed in 

all human tissues, while the other related protein HIF-2α is primarily expressed in lung, 

endothelium and carotid artery [17-19]. HIF-2α shares 48% structural identity with HIF-1α. 

A third protein, HIF-3α, is also expressed in many tissues including adult thymus, lung, 

brain, heart, and kidney. This protein lacks C-TAD. However, the N-terminus of this protein 

shares 57% and 53% structural homology with HIF-1α and HIF-2α, respectively [20, 21]. A 

splice variant of HIF-3α is the inhibitory PAS domain (IPAS) protein, primarily expressed 

in Purkinje cells and corneal epithelium. This variant acts like a negative regulator of HIF-1 

by binding to amino terminal region of HIF-1α, preventing transactivation. Further, this 

protein is also induced under hypoxia in heart and lung, suggesting a negative feedback 

mechanism for HIF-1 activity [22, 23]. The domain organization of both the subunits 

(HIF-1α and HIF-1β) is depicted in Fig. 1.
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Regulation of HIF-1

Functional activity of HIF-1 is regulated by levels of oxygen dependent HIF-1α subunit. 

Although transcription of HIF-1α mRNA occurs at normoxic conditions, the protein is 

rapidly degraded via the ubiquitin proteasome pathway [24, 25]. HIF-1α protein has a very 

short half-life (t1/2∼5 minutes) and its stability is highly regulated by posttranscriptional 

modifications including hydroxylation, ubiquitination, acetylation, phosphorylation and 

nitrosation [26, 27].

Prolyl Hydroxylation

Hydroxylation of proline residues led to the identification of oxygen sensing mechanism of 

HIF-1α [28, 29]. It was considered a major breakthrough in delineating the signal 

transduction of HIF-1. Mutagenic studies substituting proline stabilized HIF-1α even under 

normal oxygen tension, demonstrate its importance in regulating transcriptional responses. 

Two proline residues (Pro/P 402 and 564) located within ODD domain are rapidly 

hydroxylated by 2-oxoglutarate (2-OG) dependent dioxygenases [30-32]. These 

dioxygenases recognize a conserved amino acid sequence ‘LXXLAP’, where X represents 

any amino acid. Human dioxygenases have been coined as prolyl hydroxylases (PHDs) or 

HIF- prolyl hydroxylases (HPHs) [33]. PHDs require oxygen for hydroxylation as well as 

ferrous ion (Fe2+) and ascorbate as cofactors [34]. During hydroxylation an oxygen 

molecule is split so that one oxygen atom is transferred on to proline while the other reacts 

with 2-OG to produce succinate and CO2 [30, 35]. Absolute requirement for Fe2+ ion stems 

from the observation that iron chelators or transition metal ions can suppress hydroxylation 

either by reducing the availability of Fe2+ or substituting Fe2+ at the active binding site [36, 

37]. Ascorbate plays a very important role in regulating the activity of PHDs and 

maintaining the Fe2+ state of iron [35].

Molecular cloning studies have identified three isoforms of PHDs (PHD 1, 2 and 3) [38]. All 

the three isoforms can hydroxylate HIF-1α, with the highest activity exhibited by PHD2. 

The relative in vitro hydroxylation activity can be demonstrated as PHD2 ≫ PHD3 > PHD1 

[33, 39]. Subcellular localization of these isoforms varies. PHD1 is exclusively localized in 

the nucleus; while PHD2 is localized in the cytoplasm and PHD3 is found in both 

compartments. However, PHD2 is able to shuttle between cytoplasmic and nuclear 

components facilitating HIF-1α degradation in both compartments. Further studies have 

suggested that PHD2 and PHD3 mRNA expression is hypoxia inducible, while PHD1 

mRNA expression is not altered by hypoxia [40].

Polyubiquitination

Post hydroxylation, von Hippel-Lindau protein (pVHL) binds HIF-1α. X-ray 

crystallographic studies have demonstrated that hydroxyproline fits accurately into a pocket 

in pVHL hydrophobic core and this binding is highly specific [41, 42]. Moreover, pVHL 

associates with elongin C and this interaction is stabilized by elongin B. Cullin-2 and Rbx1 

proteins are also recruited to form the VCB-Cul2 E3 ligase complex which facilitates 

polyubiquitination and degradation by the 26S proteasome [43, 44]. Although pVHL-E3 

ligase complex is predominantly expressed in the cytoplasm, cytoplasmic-nuclear trafficking 
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of the complex facilitates HIF-1α degradation in both compartments [45, 46]. pVHL thus 

plays a predominant role in the degradation of HIF-1α. Loss of activity or mutation of 

pVHL has been implicated in the development of many disease processes due to induction 

of hypoxia regulated genes [47-49].

Lysine Acetylation

Jeong et al., have identified a key lysine residue (Lys/K 532) that plays a crucial role in 

determining proteasomal degradation of HIF-1α. An acetyl group of acetyl-coA is 

transferred onto K532, located within ODD domain, by acetyltransferase ARD1. This 

modification further promotes interaction of HIF-1α with pVHL, in concert with proline 

hydroxylation. ARD1 is present in all the human tissues and its activity is not dependent on 

oxygen levels. However, the transcriptional and translational levels of ARD1 are reduced 

under hypoxia, causing decreased acetylation [50]. Replacing lysine with arginine enhances 

stability of HIF-1α while increasing acetylation promoted its degradation [51, 52].

Asparagine Hydroxylation

A third hydroxylation site on asparagine 803 (Asn/N 803) was identified on C-TAD of 

HIF-1α. This asparagyl residue is conserved on HIF-2α isoform (N851) [53, 54]. Unlike 

other posttranslational modifications already discussed, asparagine hydroxylation may not 

affect the stabilization of HIF. Rather, it promotes HIF activity via modulation of TADs. 

Under normoxic conditions, N803 is hydroxylated by a factor inhibiting HIF-1 (FIH-1), an 

oxygen dependent 2-OG dioxygenase requiring Fe2+ and ascorbate as cofactors [55-57]. It is 

considered as a second oxygen sensor and is localized in cytoplasm. Transcription of FIH-1 

is not dependent on oxygen concentration [40]. Hydroxylation on N803 prevents interaction 

of HIF-1α with its coactivators CREB binding protein (CBP)/p300 due to steric inhibition. 

This coactivator recruitment is essential for transactivation of HIF-1α [58, 59].

Phosphorylation

Phosphorylation of HIF-1α by mitogen-activated protein kinase (MAPK) pathway appears 

to play a crucial role in regulating its activity and function. HIF-1α is highly phosphorylated 

in vitro by p42/p44 and p38 kinases [60-62]. Such activation promotes transcriptional 

activity of HIF-1. It is hypothesized that HIF-1β exhibits preferential binding to the 

phosphorylated HIF-1α protein [63]. Inhibitors of p42/44 protein kinases diminished 

hypoxia induced transcriptions of target genes, while their stimulation accelerates their 

translational activity [64]. Threonine (Thr/T) at residues 796 and 844 appear to be the 

potential phosphorylation sites in HIF-1α and HIF-2α, respectively [65].

Transactivation and Target Genes of HIF-1

In normoxic conditions, de novo synthesized cytoplasmic HIF-1α is rapidly hydroxylated 

(P402 and P564) and acetylated (L532). Later, HIF-1α is captured by pVHL and degraded 

by 26S proteasome [28, 42, 44]. However, in hypoxic conditions hydroxylation is inhibited. 

It becomes stabilized and then translocates into nucleus via NLS. The protein 

heterodimerizes with constitutively expressed HIF-1β, binds to the pentacore DNA binding 

sequence, recruits coactivators and activates transcription of various target genes (Fig. 2) 
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[66-68]. To date, more than hundred target genes of HIF-1 have been identified. The target 

genes play a key role in regulating angiogenesis, cell survival and proliferation, 

chemotherapy and radiation resistance, invasion and metastasis, genetic instability, 

immortalization, immune evasion, metabolism and stem cell maintenance [69-76]. Some 

important target genes have been listed in Table 1.

Angiogenesis is a complex signaling process involving multiple gene products [110]. Many 

of these genes are upregulated due to hypoxic insult [79, 111-114]. Hypoxia is an important 

regulatory factor directing angiogenic switch, with HIF-1 playing a predominant role in 

“flipping the switch” via direct transcriptional upregulation of vascular endothelial cell 

growth factor (VEGF). VEGF is a potent endothelial-specific mitogen. It interacts with its 

receptor (VEGFR) localized on endothelial cells and stimulates endothelial cell proliferation 

[112, 115-117]. Apart from VEGF induction, many complex mechanisms are also involved 

in HIF-1 mediated angiogenic control. The expression of α1B-adrenergic receptor, 

adrenomedulin (ADM), angiopoietin 2, endothelin-1 (ET1), heme oxygenease-1 (HO-1), 

nitric oxide synthase, placental growth factor (PGF), platelet derived growth factor-B 

(PDGF-B) and stromal derived growth factor-1 (SDF-1) is regulated by hypoxia [105, 

107-109, 118-122]. Also, expression of collagen prolyl hydroxylase, matrix 

metalloproteinases (MMPs) and plasminogen activator receptors and inhibitors (PAIs) under 

hypoxic control regulates matrix metabolism and vessel maturation (Fig. 3) [92, 99-100].

Role of HIF-1 in Ocular Diseases

Retina, a light sensitive tissue, forms the inner lining of posterior ocular segment and is 

metabolically one of the most active tissues in human body [123]. Continuous oxygen 

supply to retina facilitates high energy demand for sensitive and efficient transduction of 

images to readable neuronal signals [124, 125]. This neuronal function is executed by five 

different cell types including photoreceptors, bipolar cells, amacrine cells, horizontal cells 

and ganglion cells. Photoreceptors (cones and rods) play a vital role in phototransduction 

process. Cones mediate vision in bright light while rods mediate in dim light [126, 127]. 

Number of rods outweighs the number of cones by ∼20 fold. Under dark conditions, a 

single rod cell requires 108 ATPs/second for ion homeostasis and signal transduction 

machinery. However under light exposure due to reduction in ion influx, energy requirement 

falls by 75% [128]. The energy requirement is met by oxidative phosphorylation process 

occurring in mitochondria, located within inner segment of photoreceptors [129]. Thus, 

oxygen concentration tightly controls retinal function.

In human a constant supply of oxygen is regulated via choroidal and retinal circulation. 

Since human retina is thick, these two separate and distinct systems act to facilitate 

diffusion. Choroidal vasculature nourishes the outer retina including retinal pigment 

epithelium (RPE) and photoreceptors while retinal vasculature perfuses the inner retinal 

layers. Choroidal circulation is highly vascularized. It is under low autoregulation and 

requires strong sympathetic control. Retinal circulation is relatively sparse, controlled by 

autoregulation and lacks sympathetic control. Arteriovenous oxygen gradient is also 

different between the two vasculatures [130, 131]. Further, the choroidal vessels are 

fenestrated while the retinal vessels lack fenestrations and express tight junctions [132]. 
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Both vasculatures play an important role in regulating retinal physiology. Lack of oxygen 

supply can lead to vision threatening pathologies such as diabetic retinopathy, retinopathy of 

prematurity, age-related macular degeneration and glaucoma. Despite the fact that initiating 

events are different, hypoxia with subsequent neovascularization is a characteristic 

phenomenon noticed with all these vascular diseases.

Diabetic Retinopathy

Diabetic retinopathy (DR) is a frequent secondary microvascular complication in patients 

with diabetes mellitus. It is one of the four major causes of visual impairment often leading 

to blindness [133, 134]. Almost 25-50% of diabetic patients exhibit retinopathy symptoms 

within the first 10-15 years and this number approaches nearly 100% within 30 years of 

diabetic onset [135, 136]. DR is characterized by biphasic progression with an initial non-

proliferative (vaso-obliterative) phase followed by a proliferative (vaso-proliferative) phase. 

During initial stages, a persistent rise in blood glucose levels leads to a loss of intramural 

pericyte function. As a result small saccular capillary outpouchings, known as 

microaneurysms appear [137]. Intraretinal microvascular abnormalities, hemorrhages, 

edematous thickening of basement membrane, soft exudates and cotton wool spots are also 

observed [138-141]. Changes in vasculature and perturbations in oxygen tension lead to 

development of hypoxia, elevating the expression of angiogenic factors and subsequent 

neovascularization (proliferative phase) (Fig. 4A) [142]. The newly formed blood vessels 

are often fragile and permeable. Such vessels grow through the surface of retina into the 

vitreous and subsequent bleeding may lead to obstructed vision. Further, contraction of 

associated fibrovascular component may result in retinal detachment, vision loss and 

blindness [143-146].

The role of HIF-1 in the proliferative stage of DR has been clearly established. Mean 

oxygen tension is significantly lower in diabetics relative to non-diabetic patients in both 

lens (8.4 ± 0.7 mm Hg vs 10.7 ± 0.8 mm Hg) and vitreous cavity (5.7 ± 0.7 mm Hg vs 8.5 ± 

0.6 mm Hg) [147]. Expression levels of HIF-1α and VEGF are elevated in diabetic 

preretinal membranes compared to non-diabetic idiopathic epiretinal membranes [148, 149]. 

Moreover, the production of VEGF and intercellular adhesion molecule (ICAM)-1 are 

diminished in a diabetic mice model lacking Hif-1α expression. It leads to much reduced 

vascular leakage and neovascularization in Hif-1α knockout mice relative to wild type mice 

[150]. These findings clearly suggest that alteration in HIF-1α pathway may be an attractive 

strategy for the treatment of DR.

Retinopathy of Prematurity

Retinopathy of prematurity (ROP), formerly known as retrolental fibroplasias, is the leading 

cause of visual impairment and blindness in children [151]. It was first described in early 

1940s. This condition is associated with low gestational period, low birth weight and 

hyperoxia [152]. Human retinal vasculature begins to develop during 16th week of gestation 

and concludes at 40th week. Hence, premature infant's exhibit incompletely developed 

retinal vasculature and peripheral avascular zone. Oxygen supplementation (hyperoxia) is 

often needed in premature infants to overcome respiratory insufficiency. Such acute rise in 

oxygen tension can stimulate apoptosis of vascular endothelial cells and may cause vaso-
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obliteration via generation of reactive oxygen species (ROS) (Phase I). Further, high 

perinatal levels of prostaglandins (PGD2 and PGE2) and nitric oxide (NO) accelerates 

oxidative metabolism. Reduced levels of antioxidants may induce complexity in disease 

pathology [153-156]. In a subsequent phase, the infant's vaso-obliterated retina undergoes 

hypoxic/ischemic stress. It triggers a series of events such as stabilization of HIF-1α and 

production of various proangiogenic factors resulting in neovascularization (Phase II) (Fig. 

4B). In contrast to normal developmental vasculature, this pathological vasculature displays 

excessive, uncontrolled and misdirected growth towards vitreous and lens. It can cause 

fibrous scarring, retinal detachment and blindness [157-160].

Given the regulatory role of oxygen, it is evident that HIF plays a predominant role in the 

development and progression of ROP. In a mouse oxygen-induced retinopathy (OIR) model, 

the expression levels of HIF-1α and HIF-2α proteins peak after two hours of hypoxic 

exposure. However, HIF-1α is stabilized in neuronal cells and inner retinal layers whereas 

HIF-2α was upregulated in Muller glia and astrocytes [161]. Indeed, inhibition of Hif-1α 

and Vegf by gene therapy in mice ischemic retinopathy model inhibited neovascular tufts 

and nuclei compared to control hypoxia group [162]. Hence, altering the HIF-1α pathway 

may be beneficial than targeting other downstream factors.

Age-Related Macular Degeneration

Age-related macular degeneration (AMD) is the leading cause of blindness in patients over 

the age of 65. World Health Organization (WHO) global eye disease survey has revealed 

that more than 50 million people are affected with AMD and atleast one-third of them are 

blind or severely visually impaired [163]. Development of AMD is multifactorial including 

aging, smoking, genetic factors, obesity, hypertension and hypercholesterolemia [164-168]. 

The disease is characterized by degeneration of central retina leading to disturbed fine and 

color vision. AMD is classified into two clinical forms, non-exudative/dry AMD and 

exudative/wet AMD [169]. The dry phase accounts for 85 to 90% of the total cases. It is 

characterized by the presence of acellular polymorphous debris, termed as drusen, between 

the basal lamina of RPE and inner collagenous layers of Bruch's membrane (Fig. 4C). As 

AMD progresses geographical atrophy of photoreceptors and central retina are noticed [170, 

171]. Although wet AMD represents 10 to 15% of total cases, it accounts for approximately 

90% of vision loss. In certain cases, dry AMD progresses to wet AMD characterized by 

choroidal neovascularization (CNV). These abnormal blood vessels penetrate Bruch's 

membrane; grow into RPE and neural retina. This may lead to blurred vision, retinal 

detachment, fibrosis and complete vision loss [172, 173].

Cell and molecular biology studies have demonstrated that hypoxia, chronic oxidative stress 

and inflammation play a key role in AMD [174-176]. Hypoxia may result from higher 

oxygen consumption, resulting from increased metabolic activity of the inflamed retina or 

due to poor circulation in central macula, resulting from vessel stenosis and 

microthrombosis [177-179]. Also, thickening of Bruch's membrane and drusen formation 

further stabilizes HIF [180]. ROS also causes elevation in HIF protein expression and results 

in increased transcriptional activity of hypoxia regulated genes [181, 182]. Such hypoxic 

milieu contributes to progression of exudative AMD and development of CNV. Infact, 
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HIF-1α and HIF-2α expression were identified in endothelial cells and macrophages of 

choroidal neovascular membranes [183, 184].

Glaucoma

Glaucoma represents a multifactorial optic neuropathic disease [185]. It is classified into 

open and closed-angle depending on the anterior chamber angle. Open-angle glaucoma 

exhibits unobstructed and normal iridocorneal angle while the closed-angle glaucoma 

exhibits occlusion of the angle by the peripheral iris [186, 187]. Glaucoma is characterized 

by increased intraocular pressure, degeneration of retinal ganglion cells and axons. 

However, the exact role of hypoxia in the development of glaucoma is still unknown. 

Clinical observations have demonstrated retinal vascular abnormalities and impaired blood 

flow at the optic nerve head which may result in stabilization of hypoxic factors leading to 

retinal ganglion cell death [188, 189]. The expression of HIF-1α in control and 

glaucomatous human donor eyes was studied. Indeed, higher expression of the protein was 

noticed in retina and optic nerve head of glaucomatous eyes [190]. These findings clearly 

suggest the importance of hypoxia signaling mechanism in the pathogenesis of glaucoma.

Existing Anti-VEGF Therapeutics

Overproduction of VEGF plays an important role in pathogenesis of DR, ROP, AMD, 

neovascular glaucoma, central and branch retinal vein occlusion [191-194]. The human 

VEGF-A gene localized in chromosome 6p21.3 exhibits eight exons and four principal 

isoforms (121, 165, 189 and 206). The shorter isoform, VEGF121, is an acidic polypeptide 

and lacks heparin binding domain. The larger isoforms, VEGF189 and VEGF206, are highly 

basic and exhibit high affinity binding to heparin. The shorter isoform is freely diffusible 

while the larger isoforms are completely sequestered in the extracellular matrix. VEGF165 

exhibits intermediate properties, existing in both diffusible and bound forms [195]. The 

primary sources of VEGF in retina are RPE cells, Muller cells and ganglion cells. VEGF 

binds to two types of protein kinase activating receptors, VEGFR1 and VEGFR2. These 

high affinity receptors have been localized on retinal endothelial cells and pericytes 

[196-199]. Currently, anti-VEGF therapeutics are indicated in the treatment of ocular 

neovascular diseases. These include Pegaptanib sodium (Macugen; Eyetech 

Pharmaceuticals/Pfizer, NY), Ranibizumab (Leucentis; Genentech, CA), Bevacizumab 

(Avastin; Genentech, CA) and Aflibercept (VEGF Trap-Eye; Regeneron, NY).

Pegaptanib (50 kD) is the first anti-VEGF agent approved by US Food and Drug 

Administration (FDA) in 2001 for the treatment of exudative AMD. It is a 28-base 

ribonucleic acid aptamer, covalently linked to two branched polyethylene glycol (PEG- 

20kD) moieties. It binds to extracellular VEGF165 with high affinity and prevents the 

interaction of VEGF with its receptor. Since pegaptanib binds specifically to only one 

isoform, it exhibits limited efficacy. Approval of this drug molecule began a new era in anti-

VEGF therapy. Bevacizumab (149 kD) is a humanized recombinant full-length monoclonal 

antibody. It binds to all VEGF isoforms. Although not approved for specific intraocular use, 

bevacizumab has been indicated as an off-label therapeutic in the treatment of ocular 

diseases. Ranibizumab (48 kD) is the Fab fragment of the former, approved by US FDA in 

2010 for treatment of macular edema and vein occlusion. Both these molecules bind all 
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forms of VEGF. Compared to bevacizumab, ranibizumab demonstrates 5-20 fold greater 

potency due to higher affinity and lack of immunogenicity. Aflibercept (115 kD) was 

approved by US FDA in 2011 for treatment of AMD. It is a recombinant fusion protein 

consisting of the VEGF binding domains of human VEGFR1 and VEGFR2 fused to the Fc 

domain of human immunoglobulin-G1. It acts as a decoy receptor binding free VEGF 

[200-203].

Although large molecule therapeutics appear to be promising, their long term usage must be 

considered with caution. A recent investigation by Kurihara et al., reported the deleterious 

effects following deletion of Vegfa gene in adult mice. Choriocapillaris are completely 

attenuated following three days of RPE-specific Vegf inactivation. Further, cone 

photoreceptors were damaged and cone dysfunction was noticed. These dramatic secondary 

“off-target” effects of Vegf antagonism were not observed when Hif1a, Epas1, and Hif1a/

Epas1 were genetically ablated. The transcriptional mutants did not exhibit any 

morphological, functional, or transcriptional differences relative to control adult mice. 

Further, deletion of transcription factors reduced pathological angiogenesis in laser 

photocoagulation model of CNV. These studies clearly reinforce the strategy that molecules 

aiming at HIF pathway may be an alternative, safer and effective mode of treatment than 

attenuating VEGF levels alone [204, 205].

Development of HIF-1 Inhibitors

Significant research has been conducted in recent years to identify inhibitors of HIF-1 

pathway. Based on their putative mechanism of action, HIF inhibitors may modulate eithe i) 

HIF-1α mRNA expression, ii) HIF-1α protein translation, iii) HIF-1α protein degradation, 

iv) HIF-1α DNA binding activity and v) HIF-1α transcriptional activity. Examples of HIF-1 

inhibitors are summarized in Table 2 while few of them are described below.

HIF-1α mRNA Expression

It has been hypothesized that transcriptional level of HIF-1α is the rate limiting factor of 

HIF-1 activity under hypoxic conditions [240]. Hence, inhibitors that effect HIF-1α mRNA 

expression can lower the rate of HIF-1 translation. Chen et al., have studied the role of 

HIF-1α inhibition by RNA interference (RNAi) with shRNA in BALB/C mouse model of 

corneal neovascularization. The effect of shRNA treatment was assessed by measuring mean 

neovascularization score. The mean score values were as follows: normal (0), control 

neovascular eyes (3.59 ± 1.1), saline treated (4.05 ± 0.75), vehicle-treated (3.64 ± 1.02) and 

RNAi- treated (1.13 ± 0.96). HIF-1α shRNA reduced neovascularization by more than 3 

fold compared to control eyes. Further, the expression of angiogenic factors (VEGF and 

MMPs) and inflammatory mediator (IL-1β) was also diminished. In summary, this study 

confirmed the role of HIF-1α transcriptional inhibition in reducing corneal 

neovascularization and associated inflammation [241]. A similar study with RNAi of 

HIF-1α was performed by Jiang et al., in C57BL/6J mice of ischemic retinopathy. The 

researchers have counted the number of neovascular nuclei on the vitreal side of inner 

limiting membrane. The number of nuclei per cross section were as follows: normoxia (0.05 

± 0.29), hypoxia (41 ± 2.8), vehicle-treated (41 ± 2.6) and siRNA-treated (28 ± 2.8). The 

number of neovessels significantly decreased in transfected group relative to hypoxic group 
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(p< 0.01). This report clearly demonstrates the application of HIF-1α RNAi as a novel 

therapeutic for the treatment of neovascular eye diseases [162].

HIF-1α Protein Translation

Although the precise mechanism of HIF-1α protein translation in hypoxic conditions is not 

clear, several translational inhibitors have been identified. These molecules can directly 

inhibit translation or inhibit various signaling pathways (receptor tyrosine kinases, 

PI3K/AKT/mTOR and Ras-MAPK pathway). These signaling pathways play a predominant 

role in upregulating HIF-1α translation and thus inhibition of these growth factors can alter 

hypoxic regulation. Cardiac glycosides can inhibit HIF-1α protein translation and digoxin 

has been identified as a potent inhibitor in a cell-based reporter assay [242]. The effect of 

digoxin on ocular neovascularization was demonstrated by Yoshida et al., in C57BL/6 mice 

with ischemic retinopathy. Intraocular injection of digoxin lowered retinal 

neovascularization by almost 75% compared to saline group. Also, the area of CNV at 

Bruch's membrane was significantly lowered in presence of digoxin. Apart from inhibiting 

HIF-1α protein expression, digoxin also inhibited the expression of several angiogenic 

factors including VEGF, PDGF-B, SDF-1, VEGFR2, chemokine receptor (CXCR4) and 

Tie2 receptor in ischemic retina. This observation suggests that digoxin may offer 

advantages over VEGF antagonists in the treatment of neovascular diseases due to inhibition 

of several proangiogenic pathways. This study signifies that digoxin, a potent HIF-1α 

inhibitor, can possibly provide a better therapeutic intervention [243].

Genistein, a naturally occurring isoflavonoid, exhibits strong antiangiogenic activity. The 

underlying mechanism is hypothesized as inhibition of HIF-1α translation caused by 

inhibition of tyrosine kinases [213]. Wang et al., examined the effects of genistein on retinal 

neovascularization in C57BL/6 OIR mouse model. Number of vascular nuclei anterior to 

inner limiting membrane was quantified and data obtained was represented as: normoxia 

(0.76 ± 0.81), hypoxia (23.9 ± 4.4), genistein (50mg/kg) (20.9 ± 4.7), genistein (100mg/kg) 

(17.2 ± 4.0) and genistein (200mg/kg) (14.2 ± 3.2). The nuclei numbers were diminished by 

87, 72 and 59% respectively, as the dose of genistein was increased. Further, dose-

dependent reduction in HIF-1α and VEGF levels were also observed. This report suggests 

possible pharmacological application of genistein in ocular neovascularization [244].

HIF-1α Degradation

The molecular chaperone, heat shock protein 90 (Hsp90) is required for activity of various 

signaling proteins [245]. The interaction of Hsp90 with HIF-1α is required for proper 

conformational stability. Inhibitors of Hsp90 can promote degradation of HIF-1α via 

oxygen-independent proteasomal degradation [246]. Geldanamycin and its analogs (17-N-

allylamino-17-demethoxygeldanamycin (17-AAG) and 17-dimethylaminoethylamino-17-

demethoxygeldanamycin (17-DMAG/Deguelin)) may interfere with Hsp90/HIF-1α 

interaction by competing with the ATP binding site [247]. Kim et al. evaluated the potential 

of deguelin in the treatment of vaso-proliferative retinopathies. In an OIR mouse model, 

deguelin treated mice exhibited lower neovascularization as assessed by fluorescein 

angiography (Fig. 5). Further, the number of vascular lumens between posterior lens and 

anterior inner limiting membrane were estimated. Compared to control group the deguelin 
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injected group showed lower number of vascular lumens (19 ± 3.4 vs 4 ± 2.1). Moreover, 

deguelin treatment did not alter normal retinal morphology as evident by normal retinal 

thickness and lack of any inflammation in vitreous, retina or choroid. This data clearly 

implies that modulation of HIF pathway reduces retinal neovascularization without any 

retinal toxicity [248].

HIF-1α DNA Binding and Transcriptional Activity

Binding of active heterodimeric HIF-1 to the consensus -RCGTG- enhancer element of 

target genes is another crucial step necessary for transcription of hypoxia inducible target 

genes. Also, the interaction of coactivator p300 with HIF-1α is another potential mechanism 

required for transcriptional activity of HIF-1. These molecular pathways can also be targeted 

in the treatment of various neovascular diseases [236, 249, 250].

Conclusions and Future Perspectives

In summary, high levels of energy is required for proper retinal function. Any perturbations 

in oxygenation may lead to progression of several retinal degenerative diseases including 

DR, ROP and AMD. Mechanistic studies of cellular and molecular components of hypoxia 

signaling have opened a new era in the treatment of retinopathies. Given the role of HIF-1 in 

the etiology of these diseases, it is evident that manipulation of this pathway at various 

stages can lead to more effective treatment of oxygen-dependent ocular diseases. As 

discussed in this article, many inhibitors have been identified and evaluated both in in vitro 

cell culture and animal models. However, many HIF inhibitors exhibit significant side 

effects and toxicities due to lack of specificity. Hence development of HIF specific 

inhibitors and further work validating the pharmacological intervention of these inhibitors in 

retinal diseases and their translation from bench to bedside is necessary. Nonetheless, there 

is significant optimism that modulation of HIF pathway can provide new treatments for 

ocular neovascular diseases.
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Fig. (1). 
Structure of HIF-1 subunits depicting various domains. (NLS - nuclear localizing signal; 

bHLH - basic helix-loop-helix; PAS -PER-ARNT-SIM; ODD - oxygen-dependent 

degradation; TAD - transactivating domain; ID - inhibitory domain).
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Fig. (2). 
Schematic representation of oxygen dependent HIF-1 stability and transactivation. (PHD - 

prolyl hydroxylase; FIH - factor inhibiting HIF; ARD - acetyltransferase; CBP - CREB 

binding protein; VHL - von Hippel-Lindau protein; HRE - hypoxia response element).
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Fig. (3). 
Schematic representation of angiogenic regulation by HIF-1. (VEGF - vascular endothelial 

cell growth factor; PGF - placental growth factor; PDGF-B - platelet derived growth factor-

B; SDF-1 - stromal derived growth factor-1; VEGFR1 - VEGF receptor 1; MMPs -matrix 

metalloproteinases; PAI-1 - plasminogen activator inhibitor-1).
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Fig. (4). 
A) Stages of diabetic retinopathy (DR). B) Development of retinopathy of prematurity 

(ROP). Reproduced with permission from reference [152]. C) Schematic representation of 

dry and wet age-related macular degeneration (AMD). Reproduced with permission from 

reference [176].
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Fig. (5). 
Estimation of retinal neovascularization in (A) control and (B) deguelin treated oxygen-

induced retinopathy (OIR) mouse model. Reproduced with permission from reference [248].
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Table 1
Target Genes of HIF-1 Pathway

Function Oxygen Regulated Gene Reference

Angiogenesis

Endocrine gland derived VEGF (EG-VEGF) [77]

Transforming growth factor-β3 (TGF- β3) [78]

Vascular endothelial growth factor (VEGF) [79]

VEGF receptor (VEGFR1/Flt-1) [80]

Apoptosis Nip3 [81]

Cell proliferation and survival

Insulin-like growth factor (IGF) 2 [82]

IGF-binding protein (IGFBP) -1 [83]

IGFBP-2 [82]

IGFBP-3 [82]

Transforming growth factor- α (TGF-α) [84]

Dedifferentiation Inhibitor of differentiation protein-2 (ID2) [85]

Drug resistance
Breast cancer resistance protein (BCRP) [86]

P-glycoprotein (P-gp/MDR1) [87]

Energy metabolism Leptin [88]

Erythropoiesis Erythropoietin (EPO) [5]

Genetic instability MutSalpha (MSH2 and MSH6 complex) [89]

Glucose metabolism

Aldolase-A [90]

Aldolase-C [90]

Enolase-1 [90]

Glucose transporter-1 (GLUT-1) [91]

GLUT-3 [92]

Hexokinase-1 [90]

Hexokinase-2 [90]

Lactate dehydrogenase A (LDHA) [93]

Phosphofructokinase L (PFKL) [93]

Phosphoglycerate kinase 1 (PGK1) [93]

Histone modifiers JMJD2B [94]

Iron metabolism

Ceruloplasmin [95]

Transferrin [96]

Transferrin receptor [97]

Matrix metabolism

Collagen prolyl hydroxylase [98]

Matrix metalloproteinases (MMPs) [99]

Plasminogen activator inhibitor -1 (PAI-1) [100]

Migration/Invasion
αvβ3 integrin [101]

Chemokine receptor (CXCR4) [102]

Nucleotide metabolism Adenylate kinase-3 [91]
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Function Oxygen Regulated Gene Reference

pH regulation Carbonic anhydrase-9 [103]

Transcriptional factor ETS-1 [104]

Vascular tone

α1B-Adrenergic receptor [105]

Adrenomedulin (ADM) [106]

Endothelin-1 (ET1) [107]

Heme oxygenase-1 (HO-1) [108]

Inducible nitric oxide synthase (iNOS) [109]
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Table 2
Inhibitors of HIF-1 Pathway

Target Pathway / Mechanism of Action Small Molecules Reference

HIF-1α mRNA expression

Transcription

Aminoflavone [206]

EZN-2968 [207]

RNA interference [208]

HIF-1α protein expression

Translation

Digoxin [209]

PX-478 [210]

Topotecan [211]

Receptor tyrosine kinases

Erotinib [212]

Gefitinib [212]

Genistein [213]

PI3K-AKT pathway

LY294002 [214]

Nelfinavir [215]

Wortmannin [214]

ERK-AKT pathway Resveratrol [216]

mTOR pathway

Everolimus [217]

Rapamycin [218]

Silibinin [219]

Temsirolimus [220]

Ras-MAPK pathway
PD98059 [64]

Sorafenib [221]

HIF-1α protein degradation

Hsp90 inhibitor

Apigenin [222]

Deguelin [223]

Geldanamycin [224]

HDAC inhibitor

FK228 [225]

SAHA [226]

Trichostatin A [227]

Others

Cyclin-dependent kinase Flavopiridol [228]

DNA binding

Cisplatin [229]

Doxorubicin [229]

Echinomycin [230]

Pyrrole - imidazole polyamide [231]

Microtubules 2-methoxyestradiol (2ME2) [232]

Others

Curcumin [233]
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Target Pathway / Mechanism of Action Small Molecules Reference

Mitochondria Antimycin A1 [234]

p300 interaction
Bortezomib [235]

Chetomin [236]

RNA polymerase ECyd [237]

Soluble guanylyl cyclase stimulator YC-1 [238]

Thioredoxin redox system Pleurotin [239]

(PI3K - Phosphatidylinositide 3-Kinases; AKT - Protein Kinase B; ERK - Extracellular Signal-Regulated Kinases; mTOR - Mammalian Target of 
Rapamycin; Hsp - Heat Shock Protein; HDAC - Histone Deacetylase).
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