Skip to main content
. 2015 May;43(5):725–734. doi: 10.1124/dmd.114.062539

TABLE 2.

Characteristics of Bayesian Models for MRP4 and BSEP Inhibition

Bayesian models MRP4inhib-ECFP_6 MRP4inhib-FCFP_6 BSEPinhib-ECFP_6 BSEPinhib-FCFP_6
Two-dimensional fingerprints ECFP_6 FCFP_6 ECFP_6 FCFP_6
10-fold XV ROC AUCa 0.816 0.793 0.750 0.759
TP/FN/FP/TNa 33/1/1/22 33/1/1/22 43/0/3/125 43/0/5/123
External validationb 0.819 0.838 0.845 0.871
TP/FN/FP/TNb 8/9/1/11 10/7/2/10 18/4/15/49 17/5/10/54
SE (%)b 47.1 58.8 81.8 77.3
SP (%)b 91.7 83.3 76.7 84.4
Q (%)b 65.5 69.0 77.9 82.6
MCCb 0.4123 0.4216 0.5238 0.5796

FN, false negative; FP, false positive; Q, overall prediction accuracy; SE, sensitivity; SP, specificity; TN; true negative; TP, true positive.

a

XV ROC AUC based on training set compounds (green shaded region).

b

Predictive performance validation by test set compounds (blue shaded region) (Ung et al., 2007; Khandelwal et al., 2008). SE = TP/(TP + FN); SP = TN/(TN + FP); Q = (TP + TN)/(TP + TN + FP + FN); MCC = [(TP * TN) – (FN * FP)]/[(TP + FP)(TP + FN)(TN +FN)(TN+FP)]1/2.