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Abstract

Over the last decade and a half, reinforcement learning models have fostered an increasingly 

sophisticated understanding of the functions of dopamine and cortico-basal ganglia-thalamo-

cortical (CBGTC) circuits. More recently, these models, and the insights that they afford, have 

started to be used to understand key aspects of several psychiatric and neurological disorders that 

involve disturbances of the dopaminergic system and CBGTC circuits. We review this approach 

and its existing and potential applications to Parkinson’s disease, Tourette’s syndrome, attention-

deficit/hyperactivity disorder, addiction, schizophrenia, and preclinical animal models used to 

screen novel antipsychotic drugs. The approach’s proven explanatory and predictive power bodes 

well for the continued growth of computational psychiatry and computational neurology.

INTRODUCTION

The limitations of the state-of-the-art in nosology in psychiatry have been much debated in 

the context of the development of the new edition of the Diagnostic and Statistical Manual 

of Mental Disorders1, 2. There is widespread agreement that the current symptom-based 

system of classification must eventually be replaced with a system based on 

pathophysiology3. However, the current understanding of the neurobiology and genetics of 

psychiatric disorders remains too limited to form the backbone of nosology1. This limited 

understanding is also reflected in the state-of-the-art in treatment, with most psychiatric 

medications having been found by serendipity, rather than through rational design. 

Neurology typically deals with disorders with better understood etiology (e.g., loss of 

dopaminergic neurons in Parkinson’s disease), but even then, it is often unclear how these 

etiological processes produce complex patterns of symptoms, and why treatments can 

alleviate some deficits while exacerbating, or even causing, others4, 5. Part of the problem is 

the complexity of the brain and mind, and the many levels of analysis that span the two. 

Computational models are a valuable tool to tame this complexity, because they foster a 
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mechanistic understanding that can span multiple levels of analysis and that can explain how 

changes to one component of the system (e.g., increases in striatal D2 receptor density) 

produce systems-level changes that translate to changes in behavior.

One area in which substantial progress has been made in integrating computational 

modeling and empirical research in neuroscience is that of reinforcement learning (RL)6. 

This approach has produced explicit models of the roles of dopamine and cortico-basal 

ganglia-thalamo-cortical (CBGTC) loops in learning about reinforcers (rewards and 

punishments) and in guiding behavior so as to acquire rewards and avoid punishments6, 7. 

Existing models address a variety of functions of these circuits, including Pavlovian 

conditioning, instrumental conditioning, and their interactions; habits, goal-directed actions, 

and their interactions; and the inter-related issues of incentive salience, motivation, and 

vigor6, 8–11.

Organizing behavior so as to obtain outcomes appropriate for the current motivational state 

(e.g., acquiring food if hungry) and so as to avoid harmful outcomes is crucial for survival 

and is therefore a central organizing principle of the nervous system. Not surprisingly, then, 

disturbances of the dopaminergic system and CBGTC circuits play a key role in several 

psychiatric and neurological disorders. RL models have recently started to be applied to 

these disorders, and they have been shown to have significant explanatory and predictive 

power12, 17. The approach builds on an understanding of the computations that these circuits 

perform in healthy individuals, and investigates how pathophysiological processes alter 

these computations, producing symptoms. We therefore start by reviewing the 

computational neurobiology of the normal functioning of these circuits. We then discuss 

several disorders that have benefited or are ripe to benefit from the use of RL models. We 

close by discussing the future implications of this body of work for nosology and treatment.

In addition to conveying the specifics of how RL models provide insights into psychiatric 

and neurological disorders, we hope that this review will also help foster the development of 

the emerging disciplines of computational psychiatry and computational neurology. A 

powerful set of computational techniques can now be used to investigate pathophysiological 

processes and their relation to behavior (Figure 1), and these techniques are broadly 

applicable across model types and disorders. Some of these techniques have been used for 

many years; others are more recent. The concerted and widespread use of the full 

complement of these techniques, however, will likely flourish in the coming years, 

especially given the increasing sophistication in computational models of a variety of 

neurocognitive functions that are disturbed in several psychiatric and neurological disorders.

REINFORCEMENT LEARNING IN THE BRAIN

Dopamine and Prediction Errors

Dopamine neurons code reinforcement prediction errors6, 18, a key signal in many RL 

models19. Prediction errors signal the difference between the observed and expected 

outcome: a positive prediction error signals that the outcome was better than expected, and a 

negative prediction error signals that the outcome was worse than expected. The magnitude 

of phasic dopamine-neuron bursts quantitatively represents positive prediction errors20. 
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Whether phasic reductions in dopaminergic neuron firing quantitatively represent negative 

prediction errors is more controversial, because the low tonic firing rate of dopamine 

neurons implies that variations in such reductions are somewhat limited. The duration of the 

pause in dopaminergic neuron firing, however, seems to represent negative prediction errors 

quantitatively21. This asymmetric coding between positive and negative prediction errors – 

burst magnitude for positive and pause duration for negative – may be justified biologically, 

both because it permits lower tonic firing, which is advantageous metabolically, and in terms 

of the postsynaptic effects of these signals on D1 and D2 receptors7, as discussed below. An 

alternative or complementary hypothesis is that negative prediction errors may be coded by 

serotonin22. This hypothesis, however, remains to be adequately tested6.

Although the majority of dopamine neurons burst to positive prediction errors, smaller 

proportions of these neurons also burst under other conditions23. For example, some 

dopamine neurons burst not only to positive events and stimuli that predict positive events, 

but also to negative events and stimuli that predict negative events24, 25. There have been 

some attempts at reconciling these findings with RL26, 27, but this is an area in need of 

additional research. Nonetheless, the predominant function of dopamine bursts is to code 

positive prediction errors23. Supporting this notion, phasic optogenetic stimulation of 

dopamine neurons induces a subsequent preference for the place in which such stimulation 

occurred28, just as if reward had been delivered at that place.

The Basal Ganglia and Action Selection

Prediction errors are used to learn the values (or ‘goodness’) of states (stimuli or situations) 

and/or of state-action pairs. These values are then used to select optimal actions19. A model 

of this process that has been used to account for many behavioral and neural findings6, 29, 30 

is the actor-critic31. The actor-critic view of action selection in the brain suggests that the 

cortex represents the current state and the basal ganglia (BG) implement two computational 

modules: the critic, which learns state values and may be implemented in the ventral 

striatum6, 30 (possibly together with the amygdala and orbitofrontal cortex6); and the actor, 

which learns stimulus-response (S-R) associations and may be implemented in the dorsal 

striatum6, 30. The critic and the actor both use the prediction errors signaled by dopamine to 

update their estimates (of state values and of S-R strengths, respectively). The mapping of 

the actor-critic to the BG is consistent with the view that the BG play a key role in S-R 

learning32, but with different portions of the striatum – which are involved in distinct, 

parallel CBGTC loops33 – playing distinct roles34.

A related but slightly different view suggests that the BG are responsible not for generating 

actions, but for arbitrating between multiple actions that may be under consideration in 

cortex, by facilitating the most appropriate action while suppressing competing actions35–37. 

In other words, whereas according to the actor-critic view, the BG are fully responsible for 

selecting the action on the basis of the current state alone, this alternative view suggests that 

the cortex itself initially generates candidate actions (e.g., on the basis of the frequency with 

which they have previously been executed in the current state37), and the BG then arbitrate 

between these actions (likely on the basis of their learned reinforcement probabilities37, 38), 

to facilitate (‘gate’) the best one. The commonalities between this view and the actor-critic 
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one substantially outweigh their differences, however, so we will not delve into this 

distinction further.

The BG anatomy consists of direct, indirect, and hyperdirect pathways from cortex to BG 

output structures39–41 (Figure 2a). Neurocomputational models37, 42–46 have refined verbal 

theories35, 39–41 of the role of these pathways in action selection. An influential account, 

originally proposed to explain the pathophysiology of several neurological disorders39, 40, 

suggests that the direct pathway provides focused facilitation of the appropriate action(s) for 

the current state, whereas the indirect pathway suppresses actions that are inappropriate for 

that state. Although the original version of this account was based on a somewhat 

oversimplified view of BG anatomy and function, recent findings strongly support this 

distribution of function between the direct (or ‘Go’) and indirect (or ‘NoGo’) pathways47–49. 

This distribution of function finds formal expression in the basal ganglia Go/NoGo (BG-

GNG) model37 (Figure 2b), in which the probability that a given action is selected is 

proportional to the difference between the Go and NoGo activity for that action in the 

current state. Consistent with this scheme, electrophysiological findings demonstrate that the 

positive and negative values of actions are represented in distinct striatal populations, with 

greater activity in the neurons that represent the positive value of an action predicting 

selection of that action, and greater activity in the neurons that represent the negative value 

of an action predicting selection of an alternative action38. The BG-GNG model further 

shows how aspects of BG anatomy not considered in the original account subserve other 

aspects of BG function7. For example, the model suggests that the hyperdirect (or ‘Global 

NoGo’) pathway provides global inhibition of all actions during the early stages of 

processing, particularly in situations of high conflict (i.e., when multiple actions are strongly 

activated simultaneously), to prevent premature, suboptimal responding45.

The BG-GNG model also shows how the direct and indirect pathways can learn which 

actions to facilitate and suppress in each state, respectively, using the prediction errors 

conveyed by dopamine37. The direct and indirect pathways predominantly express D1 and 

D2 receptors, respectively50. In the model, when an action is followed by a dopamine burst, 

the corticostriatal synapses in the direct pathway into active Go units (which encode the 

conjunction between the state and the action that was executed) are strengthened via D1-

dependent long-term potentiation (LTP), and the corticostriatal synapses in the indirect 

pathway into active NoGo units for the executed action are weakened via D2-dependent 

long-term depression (LTD). When an action is followed by a dopamine dip, the reverse 

occurs. These dual effects of dopamine on D1- and D2-mediated plasticity have been 

supported by empirical evidence51, as has the model prediction that the direct and indirect 

pathways mediate learning from positive and negative outcomes, respectively48.

The dynamics of dopamine effects on D1 and D2 receptors may also explain why burst 

magnitude and pause duration code for positive and negative prediction errors, respectively7. 

D1 and D2 receptors have relatively low and high affinity for dopamine, respectively52. D1 

stimulation is therefore hypothesized to depend on phasic dopamine bursts, with larger 

bursts producing greater stimulation. Burst magnitude therefore plays a key role in D1-

mediated LTP due to positive prediction errors. D2 receptors, in contrast, are hypothesized 

to be stimulated tonically by baseline dopamine levels. The effect of pauses in dopaminergic 
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neuron firing on D2 receptors therefore depends on dopamine reuptake, with longer pauses 

allowing greater reuptake, and therefore a larger dip in dopamine concentration. Pause 

duration therefore plays a key role in D2-mediated LTP due to negative prediction errors. 

LTD mechanisms are also consistent with a key role for magnitudes and durations in coding 

positive and negative prediction errors, respectively. Positive prediction errors stimulate D2 

receptors directly, producing LTD in the indirect pathway. Negative prediction errors may 

not strongly affect D1 receptors, because D1 receptors may not be significantly stimulated 

by tonic dopamine. In the BG-GNG model, negative prediction errors instead produce LTD 

in the direct pathway indirectly, via their effects on D2 receptors (dependent on reuptake and 

therefore pause duration), and subsequent inhibition of the direct pathway by the indirect 

pathway, leading to activity-dependent LTD in the direct pathway.

In addition to the role of phasic dopamine in learning, tonic dopamine increases excitability 

in the direct (Go) pathway and decreases excitability in the indirect (NoGo) pathway, 

because D1 receptors are excitatory (at least for neurons receiving strong concomitant 

glutamatergic input53) and D2 receptors are inhibitory54. Increases in tonic dopamine 

therefore produce a Go bias, whereas decreases produce a NoGo bias. Simulations using the 

BG-GNG model show that these biases exert strong effects on action selection and reaction 

times12, 37, 55, with tonic dopamine promoting the execution and speed of actions 

(particularly actions with greater positive differences between their previously learned Go 

and NoGo associations). Dopamine therefore modulates not only learning, but also the 

expression of prior learning.

Although multiple parallel (albeit interacting56) CBGTC loops course through the BG33, a 

common division is into sensorimotor, associative, and limbic loops, which connect to, 

respectively, sensorimotor cortical areas, dorsolateral prefrontal cortex (DLPFC), and 

orbitofrontal cortex (OFC)/anterior cingulate cortex (ACC)57. The BG-GNG model has been 

applied not only to motor action selection, involving the sensorimotor loop, but also to the 

selection of cognitive ‘actions,’ particularly working memory updating58, 59, likely 

involving the associative loop. The idea in the latter case is that Go signals facilitate the 

gating of a stimulus into working memory, whereas NoGo signals prevent such gating 

(because, for example, the stimulus is not relevant for the task). Consistent with this idea, 

BG damage interferes with the ability to selectively gate only task-relevant stimuli into 

working memory60.

The limbic loop, which involves the ventral striatum, may implement the critic, as noted 

above, learning the values of states. It is tempting to speculate that the direct and indirect 

pathways learn the positive and negative values of states, respectively. Consistent with this 

idea, in a conditioned place preference task-which involves learning the values of places 

(states) and depends on the nucleus accumbens61 – learning a positive value for a place 

depended on neurotransmission within the direct, but not the indirect, pathway48. 

Furthermore, cocaine-induced conditioned place preference is increased by optogenetic 

activation of the direct pathway in the nucleus accumbens during learning, and it is 

decreased by activation of the indirect pathway62. The OFC has been hypothesized to 

implement working memory for state reinforcement values, helping to guide action selection 

when these values change rapidly, among other scenarios63. If so, the limbic loop may also 
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implement Go and NoGo for ‘actions’ that determine when the values maintained in OFC 

should be updated so as to ensure adaptive, flexible behavior.

CLINICAL APPLICATIONS

The ideas and models discussed above, when applied to both motor and cognitive domains, 

can explain a variety of findings across several disorders. Given dopamine’s central role in 

RL, we focus on disorders with strong dopaminergic involvement: Parkinson’s disease (PD), 

Tourette’s syndrome (TS), attention-deficit/hyperactivity disorder (ADHD), drug addiction, 

and schizophrenia. Of course these disorders often also involve non-dopaminergic 

disturbances. For example, TS involves abnormalities in striatal interneurons64, 65, ADHD 

involves noradrenergic abnormalities66, etc. Furthermore, in some cases, the dopaminergic 

disturbances themselves may be caused by abnormalities in upstream processes. For 

example, schizophrenia involves increased mesolimbic and decreased mesocortical 

dopamine67, 68, both of which may be caused, at least in part, by dysregulated cortical 

control of dopamine neurons due to NMDA-receptor abnormalities69. (NMDA 

abnormalities may in fact directly contribute to many of the symptoms of schizophrenia by 

disrupting the stability of cortical attractors70.) Comprehensive models of the 

pathophysiologies of these disorders and their relation to symptoms will ultimately have to 

integrate these various abnormalities. As we will see, however, even a more limited focus on 

the small number of principles articulated above concerning the computational functions of 

dopamine and CBGTC circuits provides substantial leverage to understand multiple aspects 

of these disorders.

Parkinson’s Disease

Dopaminergic cell death in PD results in reduced striatal dopamine, thereby producing an 

exaggerated tendency for NoGo12, 37, 71. Simulations using the BG-GNG model demonstrate 

that this tendency explains not only the hypokinetic symptoms of PD but also a variety of 

cognitive deficits that accompany this disorder12, 37, 72. For example, as noted above, the 

model suggests that Go and NoGo signals in the associative loop respectively facilitate and 

prevent working memory updating58, 59. The hyperexcitable NoGo pathway in PD should 

therefore produce a deficit in working memory updating, while simultaneously producing 

increased resistance to distractors. Furthermore, 1-dopa and dopamine agonists should 

reverse these effects. Empirical studies confirmed these predictions73, 74.

Subjects’ tendency to learn better from positive or from negative feedback (Go and NoGo 

learning, respectively) can be assessed using the probabilistic selection task72 (Figure 3). 

Healthy controls are equally good at learning to obtain positive outcomes (Go learning) and 

avoid negative outcomes (NoGo learning) in this task5, 72 (although there are individual 

differences in Go versus NoGo learning among healthy controls, which are predicted by 

genetic variations affecting dopamine function in the direct and indirect pathways47, 75). 

Consistent with the predictions of the BG-GNG model, unmedicated Parkinson’s patients 

are better at NoGo learning than at Go learning72. Medication reverses these biases: 

medicated patients are better at Go than at NoGo learning, and are worse at NoGo learning 

than unmedicated patients or controls5, 72. These medication effects were also predicted by 

the model, under the assumption that dopaminergic medications reduce dopamine dips 
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during negative prediction errors (because dopaminergic medications result in continued 

occupation of postsynaptic dopamine receptors during pauses in firing of dopamine 

neurons)72. Such blunting of negative prediction errors reduces learning from negative 

outcomes, producing the deficit in NoGo learning. Similar findings for both unmedicated 

and medicated patients have been obtained using other tasks that also assess the degree to 

which subjects learn more from positive or negative outcomes76–79. These asymmetries in 

learning from positive and negative outcomes may also have clinical implications. For 

example, the medication-induced tendency to learn more from positive than from negative 

outcomes may help explain why medication induces pathological gambling in a subset of 

Parkinson’s patients80.

The BG-GNG model also suggests that the subthalamic nucleus (STN) - the key node in the 

hyperdirect pathway - provides a ‘Global NoGo’ signal that transiently inhibits all actions 

during action selection45. Activation of the STN, and therefore the Global NoGo signal, is 

dynamically modulated by the amount of response conflict (see also ref. 43). The Global 

NoGo signal therefore plays an especially important role in situations of high conflict, in 

which actions with relatively similar reinforcement histories are being considered. In such 

situations, the Global NoGo inhibition provides time for the best action to win the 

competition, preventing premature, suboptimal actions from being facilitated. The model 

therefore predicted that disruption of STN processing - e.g., by deep brain stimulation 

(DBS) - would disrupt subjects’ ability to slow down in such high-conflict situations, 

resulting in faster but suboptimal responses5. This prediction was confirmed experimentally 

in Parkinson’s patients undergoing DBS of the STN (and the deficit resolved when DBS was 

turned off)5. Furthermore, as predicted by the model, dopaminergic medications and DBS 

had doubly dissociable effects: medications affected the asymmetry in learning from 

positive and negative outcomes but not the ability to slow down in high-conflict situations, 

and DBS had the opposite effects5. The adverse effects of medications and DBS on real-life 

behavior in a subset of Parkinson’s patients may therefore be due to distinct mechanisms.

Tourette’s Syndrome

TS is characterized by recurrent, stereotyped movements and vocalizations, known as tics. 

Tics have been hypothesized to reflect abnormal activation of subsets of striatal neurons that 

provide Go signals for the tic81. Evidence from clinical pharmacology in TS and from 

experimental work in animals suggests that tics may be due to excessive excitability and/or 

plasticity in the direct (Go) relative to the indirect (NoGo) pathway. First, D2 blockers, the 

standard pharmacological treatment for TS, boost the indirect pathway (because the D2 

receptor is inhibitory). Second, administration of dopamine, amphetamine, or a combination 

of D1 and D2 agonists into the striatum - all of which simultaneously boost the direct 

pathway (via D1 receptors) and inhibit the indirect pathway (via D2 receptors) - causes 

stereotypies in animals82, 83. Several findings suggest that the effects on the two pathways 

work synergistically to induce stereotypies; for example, stereotypies induced by striatal 

amphetamine administration are reduced by pretreatment with either D1 or D2 

antagonists82.
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Excessive Go relative to NoGo activity in TS could be a consequence of excessive 

dopamine or dopaminergic receptor sensitivity in the striatum. Indeed, TS has been 

associated with increases in dopamine release, dopaminergic innervation, and D2 receptors 

in the striatum (although the evidence for the latter two alterations is somewhat inconsistent 

across studies)68, 84. All of these alterations would result in a boosted Go relative to NoGo 

pathway. Consistent with a possible excess of striatal dopamine, unmedicated TS patients 

learn better from rewards than from punishments78. These biases are the opposite of those 

shown by unmedicated Parkinson’s patients5, 72, 78, mirroring the fact that the symptoms of 

these two disorders are also, to a limited extent, the opposite: PD is a hypokinetic disease, 

whereas TS is a hyperkinetic disease. In fact, medication inverts these learning biases, 

making Parkinson’s patients medicated with 1-dopa and dopamine agonists perform like 

unmedicated TS patients (learning better from rewards than from punishments), and making 

TS patients medicated with D2 blockers perform like unmedicated Parkinson’s patients 

(learning better from punishments than from rewards)78. The mechanistic explanation for 

the former finding has already been discussed; the latter finding is consistent with the results 

of simulations showing that D2 blockade increases excitability and plasticity of the indirect 

pathway, thereby promoting NoGo learning12. This enhancement of NoGo learning by D2 

blockade suggests that acute administration of D2 antagonists may be an effective adjunct 

for behavioral therapies that work by assigning negative value to tics (e.g., contingency 

management, in which tics are followed by punishment or the absence of tics is positively 

reinforced, or massed negative practice, in which tics become aversive due to fatigue85). 

Whether acute D2 blockade would also be useful as an adjunct to habit reversal training - 

the best current behavioral treatment for TS - is unclear, because this procedure does not 

obviously involve aversive learning.

Excessive Go relative to NoGo activity in the motor CBGTC loop may also explain the 

premonitory urges that are a prominent feature of TS86. These urges are hypothesized to be 

caused by abnormal activation in the supplementary motor area (SMA), because electrical 

stimulation of the SMA causes similar urges87. Consistent with this idea, the SMA is active 

prior to tics88, and SMA activation is greater with tics than with movements that mimic tics 

(and that are visually indistinguishable from tics) performed by healthy controls (Wang et 

al., submitted manuscript). The SMA is the primary target of the motor CBGTC loop33, so 

abnormal SMA activation could be a consequence of excessive relative Go activity in that 

loop. Alternatively, or additionally, the abnormal SMA activation could be driven by the 

corticocortical projections between the state and the SMA (or preSMA), as in the BG-GNG 

model (see Figure 2b). In the model, these connections are learned via Hebbian mechanisms, 

so repeated gating of a tic by the BG in one or multiple states (initially due to excessive Go 

relative to NoGo activity) would strengthen the connections between those states and that 

tic’s motor plan in the SMA. That SMA motor plan would then tend to become activated in 

those states, producing the urge (which could then be gated by the BG into an actual tic 

emission, but could also be prevented from doing so). This account, if correct, would 

explain important clinical features of TS. For example, it would explain the state-

dependency of tics (i.e., the fact that tics do not occur equally frequently in all contexts). It 

would also explain why treatments that prevent tic performance, such as habit reversal 

training, over time result in reduction of the urges: repeated activation of the tic-eliciting 
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states without corresponding tic emission would produce Hebbian unlearning of the 

association between those states and the tics. More broadly, this account suggests that TS 

involves a vicious cycle: performing a tic strengthens the urges to perform that tic (through 

corticocortical Hebbian learning), which in turn increases the tendency to tic (through 

corticocortical activation of the tic motor plan in the SMA, which increases the likelihood of 

BG gating of that tic).

Attention-Deficit/Hyperactivity Disorder

ADHD is characterized by abnormal levels of inattention, hyperactivity, and/or impulsivity. 

The classical theory of ADHD is that it results from a primary deficit in inhibitory control, 

which causes several deficits in executive function89. Another prominent theory is that 

ADHD results from excessive discounting of delayed rewards90. ‘Multiple-pathway’ 

accounts suggest that executive dysfunction and excessive delay discounting both play a 

role91. ADHD seems to involve a hypofunctioning dopaminergic system13, 92.

One RL theory suggests that tonic dopamine in the ventral striatum determines the discount 

factor (the degree to which future reinforcers are discounted relative to immediate ones) in 

an RL system that can look ahead because it includes an internal model of the 

environment93. Reduced tonic dopamine in the ventral striatum in ADHD would produce a 

smaller discount factor, causing excessive discounting of delayed rewards93. This idea 

seems consistent with some circumstantial evidence: Systemic administration of dopamine 

blockers increases delay discounting94, 95, and increasing dopamine via administration of 

psychostimulants or selective dopamine reuptake inhibitors generally (though not always) 

decreases delay discounting94–97. Given the lesion studies implicating the nucleus 

accumbens core in delay discounting96, it seemed reasonable to hypothesize that the effects 

of the systemic dopaminergic manipulations might be mediated by the nucleus accumbens. 

However, dopamine depletion in the nucleus accumbens does not seem to produce excessive 

delay discounting98, whereas dopamine depletion in the OFC does99. Excessive delay 

discounting in ADHD may therefore be caused by low dopamine in the OFC.

Biophysically realistic neurocomputational models suggest that dopamine stabilizes 

representations in PFC100. Given the key role of top-down biases from PFC in attention, 

cognitive control (including inhibitory control), and working memory101, 102, the 

hypothesized low PFC dopamine in ADHD could underlie deficits in all of these executive 

functions. (This idea contrasts with the idea that the primary problem in ADHD is with 

inhibitory control, with problems in the remaining areas being secondary89.) Cognitive 

deficits in ADHD need not be caused solely by low PFC dopamine, however: low striatal 

dopamine in the associative loops may cause, for example, reduced gating of working 

memory13. Conversely, PFC dysfunction need not cause solely executive dysfunction: the 

lateral PFC appears to be involved in the ability to choose delayed rewards103, 104 (as is the 

OFC), so a dysfunctional PFC could also contribute to excessive delay discounting. The 

relation between neurobiological abnormalities and cognitive and motivational deficits may 

therefore not be one-to-one, and may vary across patients.
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Drug Addiction

The key role of fast, phasic-like changes in striatal dopamine in the reinforcing effects of 

drugs105 makes addiction a natural candidate for RL modeling. An influential RL theory 

suggests that these fast increases function as positive prediction errors that occur every time 

the drug is received16. This effect of drugs contrasts with the effect of natural rewards, for 

which the prediction error becomes zero after the reward is expected. The recurring drug-

induced positive prediction errors produce a boundless increase in the values of states 

(and/or actions) that lead to drug receipt, prompting compulsive drug use. This theory 

explains important features of addiction16, but a subsequent study disconfirmed one of its 

key predictions. The theory predicted that when drugs are used as the unconditioned 

stimulus (US), blocking should not occur. Blocking is a paradigm in which first a stimulus A 

is paired with a US, and subsequently simultaneous presentations of A and another stimulus 

B are paired with the US. Usually, no learning occurs for B106, because A already predicts 

the US, so there is no prediction error to support new learning. If, however, drugs always 

produce a positive prediction error, then subjects should learn to associate B with the US - 

but they do not107. This finding prompted a search for alternative RL accounts of 

addiction17, 108.

One approach108 moved from standard TD learning to average-reward RL109. In average-

reward RL, reinforcements are evaluated relative to an average reinforcement value R̄t 
calculated using a slowly changing weighted average of past reinforcements. The ‘effective’ 

reinforcement at time t is therefore rt – R̄t, where rt is the received reinforcement. Part of the 

motivation for this approach to addiction was to capture the decrease in sensitivity to natural 

rewards that long-term drug use induces. Intuitively, if drugs are extremely reinforcing, 

long-term drug use inflates R̄t, making natural rewards less reinforcing. The model, 

however, added further to this effect by artificially inflating R̄t even more with each drug 

use. The model showed decreased sensitivity to natural rewards following long-term drug 

use, and also showed blocking and other relevant effects108.

The search for simple, single-factor RL theories of addiction will undoubtedly continue, but 

multiple aspects of RL likely play a role in addiction17, 110. For example, chronic drug use 

induces functional and structural changes in several RL brain regions, such as the OFC and 

ventral striatum111, 112, thereby further dysregulating RL processes and potentially 

contributing to the maintenance or aggravation of addiction. As another example, 

optogenetic findings in mice demonstrate that direct and indirect pathway stimulation during 

drug administration respectively increases and decreases the reinforcing effects of the 

drug62, suggesting that reduced indirect relative to direct pathway activity could be a risk 

factor for addiction. In fact, reduced indirect pathway activity would also explain the 

reduced sensitivity to negative outcomes that characterizes addiction.

Schizophrenia

Schizophrenia is characterized by positive symptoms (e.g., delusions and hallucinations), 

negative symptoms (e.g., anhedonia and avolition), and cognitive symptoms (e.g., 

disturbances in attention and cognitive control). Schizophrenia involves excessive dopamine 

and D2 receptors in the striatum, but reduced dopamine in PFC67, 68.
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One theory, based on the idea that dopamine signals incentive salience113, suggests that 

dysregulated dopaminergic firing in schizophrenia imbues percepts, thoughts, and memories 

with abnormal salience, and that such abnormal salience experiences underlie delusions and 

hallucinations114. Another theory suggests that psychosis results from abnormal prediction 

errors that produce inappropriate associations, causal attributions, and attentional 

salience115. Patients with psychosis do exhibit abnormal neural activity during prediction 

errors116, 117, but a causal relation between these abnormalities and psychosis remains 

hypothetical.

Negative symptoms might conceivably reflect reduced reward sensitivity, but the evidence 

for this is mixed. Consistent with this hypothesis, schizophrenia patients exhibit reduced 

neural responses to positive prediction errors, with weaker putamen responses associated 

with greater avolition118. Schizophrenia patients also exhibit reduced Go learning15, 55, 119, 

but these deficits do not seem to correlate with negative symptoms55, 119. In these studies, 

negative symptoms were instead associated with indicators of PFC dysfunction15, 55. 

Anhedonia, in particular, was associated with reduced uncertainty-driven exploration (in 

which alternative actions are explored in proportion to the uncertainty about their 

reinforcement statistics relative to the uncertainty about the reinforcement statistics of the 

currently preferred action)119. This may reflect the fact that the anhedonia assessment used 

partly relies on the frequency with which patients engage in pleasurable activities, which 

may depend on strategic processes such as exploration.

Reduced striatal responses to positive prediction errors118 and reduced Go learning15, 55, 119 

in schizophrenia are suggestive of reduced phasic striatal dopamine. Increased tonic striatal 

dopamine, as in schizophrenia67, may reduce phasic dopamine via inhibitory 

autoreceptors120. In fact, schizophrenia patients exhibit an overall Go bias (consistent with 

increased tonic striatal dopamine) coupled with decreased Go learning (consistent with 

decreased phasic striatal dopamine)55. In the associative loop, the tonic Go bias may 

produce excessive updating of PFC representations with irrelevant information. Reduced 

PFC dopamine likely adds additional lability to PFC representations100. The resulting 

extreme lability of PFC representations may underlie cognitive symptoms and contribute to 

positive symptoms.

Preclinical Animal Models: Conditioned Avoidance and Antipsychotics

RL models can also shed light on preclinical animal models used to test novel medications. 

One example is the use of conditioned avoidance to screen antipsychotics121. In conditioned 

avoidance, a CS is followed by shock unless animals perform a certain avoidance response 

after the onset of the CS but before the shock. The avoidance response produces a transition 

from a state with negative value (in which shock is expected) to a state with neutral value (in 

which no shock is expected), so it elicits a positive prediction error29, 122. These positive 

prediction errors are hypothesized to strengthen the S-R association between the CS and the 

avoidance response in an actor-critic architecture29, 122. Consistent with this idea, lesions of 

the ventral striatum (expected to damage the critic) and of the nigrostriatal dopaminergic 

projection (expected to prevent delivery of prediction errors to the actor) disrupt avoidance 

learning123–125. Disrupting dopaminergic signaling in the dorsal striatum only following 
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training (through, for example, nigrostriatal lesions or dorsal striatal D2 blockade) does not, 

however, disrupt avoidance performance123, 124, 126. These findings are also consistent with 

the predictions of the actor-critic account, because dopaminergic signaling of prediction 

errors in the dorsal striatum is necessary for S-R learning, but not for S-R expression.

Unlike in the dorsal striatum, D2 blockade in the nucleus accumbens following training 

disrupts avoidance performance126. In fact, the standard use of conditioned avoidance to test 

antipsychotics is to administer them following training. The standard finding is that low 

antipsychotic doses disrupt avoidance but not escape from ongoing shock121, 127, an effect 

that is mediated by the nucleus accumbens121. Dopamine in the nucleus accumbens can 

modulate the activation of instrumental behavior128, 129, possibly via the striato-nigro-

striatal spirals that allow the nucleus accumbens to influence the dorsal striatum56, 129. The 

disruption of avoidance responding by antipsychotics may therefore reflect a decrease in the 

activation of instrumental behavior. Escapes would be less affected because the immediacy 

of pain would activate an innate flight response. An analogous situation is found in the 

appetitive domain: systemic or intra-accumbens administration of low doses of dopamine 

antagonists disrupts instrumental lever-pressing for food without affecting food approach or 

consumption128.

Other Disorders

This review focused on a small number of RL principles and showed how they can shed 

light on multiple disorders. Much more, in fact, could have been said about each disorder, 

even using only these RL principles. Other aspects of RL and related computational 

approaches, however, seem likely to also be relevant for psychiatric and neurological 

disorders. For example, models of the role of the OFC in reversal learning63 may be relevant 

for obsessive-compulsive disorder, which involves prominent OFC disturbances130 and 

neural abnormalities during reversal learning131; models of the role of serotonin in RL22, 132 

may be relevant for the many disorders that involve serotonergic abnormalities; and models 

of Pavlovian conditioning and extinction133, 134 may be relevant for some anxiety disorders 

(and have in fact already been shown to explain surprising findings in fear conditioning in 

humans135).

CONCLUSIONS

RL models have been used to explain a wealth of findings across several psychiatric and 

neurological disorders. Although disorders as seemingly disparate as PD, TS, ADHD, 

schizophrenia, and addiction might seem to have little in common, they all involve 

disturbances in dopamine and CBGTC loops. The work reviewed above demonstrates that a 

mechanistic, computationally grounded understanding of the functions of these circuits 

sheds important light on all of these disorders. This approach relates to the new NIMH 

Research Domain Criteria (RDoC) initiative136, which calls for research that cuts across 

diagnostic criteria and focuses instead on neurocognitive domains and how they go awry in 

a variety of DSM-defined conditions. The work reviewed above exemplifies this strategy. 

This work also amply demonstrates the new level of theoretical sophistication that 

computational psychiatry and computational neurology bring to the venerable disciplines of 
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psychiatry and neurology. Such theoretical sophistication and depth is essential if we are to 

fulfill the promise of a neuroscience-based, mechanistically detailed approach to diagnosis 

and treatment, which many agree should characterize the psychiatry and neurology of the 

future.
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Figure 1. 
Principles of computational psychiatry and computational neurology, (a) The starting point 

in computational psychiatry and computational neurology is a model of normal function that 

captures key aspects of behavior and/or neural activity. Models at various levels of 

abstraction can be useful (e.g., algorithmic models from machine learning or neural models 

from computational cognitive neuroscience). Several complementary approaches can then 

be pursued, (b) With detailed neural models, pathophysiological processes can be simulated 

by making principled changes to the model that mimic biological alterations in the disorder 
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under consideration (e.g., alterations in striatal dopaminergic innervation or D2 receptor 

density). The systems-level and behavioral implications of these changes can then be 

explored using the model, leading to testable predictions. We call this approach ‘deductive,’ 

because the models are used to recreate the mechanistic link between causes (the biological 

abnormalities) and their consequences (abnormalities in behavior and/or systems-level 

neural activity). This approach can elucidate whether the observed biological abnormalities 

are sufficient to explain a behavioral phenotype. (c) A second approach involves using a 

model to try to infer the causes of the observed behavioral phenotype and/or of the observed 

alterations in neural activity. We call this approach ‘abductive,’ because it involves 

reasoning from consequences (the behavior or systems-level neural activity) to their possible 

causes (the underlying biological abnormalities). In this approach, alternative a priori 

hypotheses concerning possible biological abnormalities in a given disorder can be 

compared to determine which, if any, produce the same set of abnormalities in behavior 

and/or neural activity that is found in the disorder (Maia and Peterson, submitted 

manuscript), (d) A third approach, used more often with algorithmic than with neural 

models (largely because the former tend to have fewer parameters), involves fitting the 

model’s parameters to the behavior of individual subjects on a suitable task or set of tasks, 

and then determining if there are parameter differences between diseased and healthy 

subject groups, or correlations between parameters and disease severity. We call this 

approach ‘quantitative abductive,’ because it also involves reasoning from behavior to its 

mechanistic causes. A fourth, related approach (not shown graphically) also involves fitting 

a model’s parameters to subjects’ behavior, but the goal is to then calculate, on a trial-by-

trial basis, each subject’s putative internal representation of the quantities calculated by the 

model (e.g., state values or prediction errors). These predicted internal representations are 

then used as regressors in functional imaging (e.g., fMRI, EEG), to find their neural 

correlates, which are then compared across the diseased and healthy groups. Each of these 

four approaches can also be adapted to study the effects of treatments (e.g., medication or 

neurosurgery). Furthermore, additional leverage can sometimes be gained by the synergistic 

use of different approaches and/or models at different levels of abstraction. For example, the 

deductive or abductive approaches are especially powerful with neural models, because 

these models embody mechanistic details that permit direct simulation of biological 

abnormalities. Such models, however, sometimes include too many parameters to make a 

quantitative abductive approach feasible. In some cases, a useful strategy is to construct an 

algorithmic model that includes parameters that reflect distinct mechanisms in the neural 

model (e.g., a Q-learning model with different learning rates for positive and negative 

prediction errors has been used to capture the prediction from a neural model of the basal 

ganglia that these two types of learning rely on distinct mechanisms75). The neural model’s 

deductive predictions concerning how a disorder affects these parameters can then be 

verified using the quantitative abductive approach with the algorithmic model.
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Figure 2. 
(a) Anatomy of cortico-basal ganglia-thalamo-cortical loops. Striatal medium spiny neurons 

(MSNs) in the direct pathway (‘Go’ neurons) express mostly D1 receptors50 and project 

directly to the globus pallidus internal segment (GPi) and the substantia nigra pars reticulata 

(SNr). [The GPi and the SNr have similar functions, so we treat them as a single complex 

(GPi/SNr).] Go neurons inhibit the GPi/SNr, which in turn results in disinhibition of the 

thalamus, thereby facilitating execution of the corresponding action. Striatal MSNs in the 

indirect pathway (‘NoGo’ neurons) express mostly D2 receptors50 and project to the globus 

pallidus external segment (GPe), which in turn projects to the GPi/SNr. NoGo neurons 

produce a focused removal of the tonic inhibition of the GPe on the GPi/SNr, thereby 

disinhibiting the GPi/SNr, which in turn results in suppression of the corresponding action in 

the thalamus. Neurons in the subthalamic nucleus (STN) receive direct projections from the 

cortex in the hyperdirect pathway and project to both the GPe and GPi/SNr. The projections 

from the STN to the GPe and GPi/SNr are diffuse35, so they are believed to modulate all 

actions rather than a specific action, (b) The basal ganglia Go/NoGo model37'45. The 

synaptic connections in the model are consistent with the anatomical connections shown in 

(a). The model learns to map inputs, which represent the current stimuli and/or situation 

(i.e., the current state), to actions represented in the pre-supplementary motor area 

(preSMA). Corticocortical projections from the input layer to preSMA activate in preSMA 
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candidate actions that are appropriate for the current state. The basal ganglia then act to 

facilitate (‘gate’) the best action - i.e., the action with the best reinforcement history for the 

current state - while simultaneously suppressing the other actions (at the level of the 

thalamus). Distributed populations of Go and NoGo units represent, respectively, the 

positive and negative evidence for the candidate actions in the current state. Lateral 

inhibition between the Go and NoGo pathways ensures that the probability of selecting a 

given action is a function of the difference between the positive and negative evidence for 

that action. The positive and negative evidence for each action in each state is learned on the 

basis of past reinforcement history, through the actions of dopamine on D1 and D2 receptors 

in striatal Go and NoGo units, respectively (see text). The synaptic weights in the 

corticocortical projections from the input layer to preSMA are themselves learned, but 

through Hebbian mechanisms, thereby allowing these corticocortical projections to activate 

candidate actions in preSMA in proportion to their prior probability of being executed in the 

given state. Thus, the candidate actions generated by these corticocortical projections for a 

given state tend to be those that have previously often been gated by the basal ganglia in that 

state. When two or more actions become strongly activated in preSMA because they have 

similar reinforcement histories, this response conflict activates the STN via the hyperdirect 

pathway (consistent with the evidence for direct anatomical connections between the 

preSMA and the STN, and their co-activation in high-conflict situations137). The STN then 

provides a ‘Global NoGo’ signal that prevents premature facilitation of suboptimal 

responses45.
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Figure 3. 
The probabilistic selection task72. The probabilistic selection task is used to assess whether 

participants learn better from positive or negative outcomes. During training, in each trial 

participants are presented with one of the three pairs shown on top (AB, CD, and EF), and 

select one of the two stimuli. Feedback then indicates if the choice was correct or incorrect. 

The probabilities of each stimulus leading to correct feedback are indicated in the figure. 

Participants may learn to perform accurately during training (i.e., learn to select A, C, and E) 

by learning which stimulus in each pair is associated with positive feedback (Go learning), 

by learning which stimulus in each pair is associated with negative feedback (NoGo 

learning), or both. The test phase assesses the degree to which participants learned better 

from positive or from negative feedback. Participants are presented with novel pairs of 

stimuli consisting of either an A or a B paired with each of the other stimuli (C through F, 
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which on average had 50% probability of positive feedback during training). No feedback is 

provided during testing. If participants perform better on the pairs that include A than on 

those that include B, that indicates that they learned better to select the most positive 

stimulus (A) than to avoid the most negative stimulus (B), so they learn better from positive 

feedback (Go learning). If they perform better on the pairs that include B, they learn better 

from negative feedback (NoGo learning). Indeed, individual differences in neural responses 

to negative outcomes predict individual differences in performance on the pairs that include 

B (but not on those that include A)47.
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