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Summary

There is increasing evidence that the complement system plays an important
role in diabetes and the development of diabetic vascular complications. In
particular, mannan-binding lectin (MBL) levels are elevated in diabetes
patients, and diabetes patients with diabetic nephropathy have higher MBL
levels than diabetes patients with normal renal function. The MBL-
associated serine proteases (MASPs) MASP-1, MASP-2 and MASP-3 and
MBL-associated protein MAp44 have not yet been studied in diabetes
patients. We therefore measured plasma levels of MASP-1, MASP-2, MASP-3
and MAp44 in 30 children with type 1 diabetes mellitus (T1DM) and 17
matched control subjects, and in 45 adults with T1DM and 31 matched
control subjects. MASP-1 and MASP-2 levels were significantly higher in
children and adults with T1DM than in their respective control groups,
whereas MASP-3 and MAp44 levels did not differ between patients and con-
trols. MASP-1 and MASP-2 levels correlated with HbA1c, and MASP levels
decreased when glycaemic control improved. Because MASP-1 and MASP-2
have been shown to interact directly with blood coagulation, elevated levels
of these proteins may play a role in the enhanced thrombotic environment
and consequent vascular complications in diabetes.
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Introduction

There is increasing evidence that the complement system,
which is part of the innate immune system, plays an impor-
tant role in diabetes and the development of diabetic vascular
complications (please refer to the excellent reviews by Phieler
et al. [1] and Hertle et al. [2]). Plasma concentrations of
several proteins of the complement system are elevated in
patients with type 1 diabetes mellitus (T1DM) and type 2 dia-
betes mellitus (T2DM), including the central component C3
[3,4]. Furthermore, deposits of complement activation prod-
ucts have been found in tissues from diabetes patients [5,6].
Many studies have shown that high levels of circulating com-
plement factors and increased complement activation are
associated with vascular complications of diabetes such as car-
diovascular disease and diabetic nephropathy.

We have an interest in the lectin pathway of the comple-
ment system, which may play a role in the development of
these complications. Mannan-binding lectin (MBL) and
ficolins are the pattern recognition molecules in the lectin

pathway. Upon binding of MBL or ficolins to a target mol-
ecule, activation of the lectin pathway is mediated by the
MBL-associated serine proteases (MASPs) MASP-1 and
MASP-2. The role of MASP-3 is not yet fully understood
[7–9]. Two MBL-associated proteins, MAp19 and MAp44,
which are alternative splicing variants of the MASP2 and
MASP1 genes, respectively, have no protease activity.
MAp44 was reported to have a regulatory function by dis-
placing MASPs from the MBL complex and inhibiting lectin
pathway activation [10,11].

Of the proteins mentioned above, MBL and ficolins have
been studied so far in diabetes. MBL levels are elevated in
patients with T1DM [12] and T2DM [13]. Among diabetes
patients, MBL and H-ficolin levels were higher in patients
with diabetic nephropathy than in patients with normal
renal function [14–16]. In a prospective study, high MBL
levels were associated with progression to end-stage renal
disease [17].

This evidence for a role of MBL in diabetes and diabetic
vascular complications inevitably leads to the question of
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whether or not levels of MASPs are also altered in diabetes
and may contribute to diabetes complications. In the lectin
pathway, MBL acts through its associated serine proteases,
and MASPs circulate in plasma to a major extent in
complex with MBL; yet MASP levels have never been meas-
ured in diabetes patients. To our knowledge, there is only
one study available in which MASP-2 levels were measured
in patients with T2DM who suffered from myocardial
infarction [18]. Patients were then followed for a median
period of 2·1 years for further cardiovascular events.
Patients who suffered from cardiovascular events during
that period had significantly lower MASP-2 levels at admis-
sion, but the significant association was lost after adjust-
ment for cardiovascular risk factors. We have shown earlier
that levels of MASP-1 and MASP-2 are altered in patients
with cardio- and cerebrovascular diseases [19].

The aim of our present study was to measure plasma
levels of MASP-1, MASP-2, MASP-3, and MAp44 for the
first time in patients with T1DM and investigate possible
associations with glycaemic control.

Materials and methods

Patients and control subjects

We included 30 children and 45 adults with T1DM, and 17
children and 31 adults were included as non-diabetic, age-
and sex-matched controls. All diabetes patients and control
subjects were recruited at the University of Leeds. Control
subjects were recruited through advertisement in the same
hospital and unit where the patients were recruited. Other
than background retinopathy, there were no significant
microvascular complications in patients with T1DM and
none were on any treatment other than insulin. We aimed
to improve glycaemic control by adjusting insulin doses and
regular patient contact, and collected repeat blood samples
during the adult patients’ routine clinic follow-up, usually
occurring in 3–4 months. Due to loss to follow-up or
missed appointments, repeat blood samples were obtained
from only 26 adult patients.

Blood sampling was performed mid-morning after a light
breakfast. Citrated plasma was separated within 2 h of col-
lection and stored frozen in aliquots until analysis. All par-
ticipants, and in the case of underage individuals also their
parents, gave written informed consent in accordance with
the Declaration of Helsinki. The study was approved by the
local ethics committee.

Laboratory measurements

We measured levels of MASP-1, MASP-2, MASP-3, and
MAp44 in citrated plasma samples which had been stored
frozen in aliquots at −80°C until analysis. MASP-1 was
determined with a competition enzyme-linked immuno-
sorbent assay (ELISA) using a MASP-1-specific antibody, as

described earlier [20]. Plasma levels of MASP-2 and
MASP-3 were measured with commercial ELISA kits
(Hycult Biotech, Uden, the Netherlands). MAp44 was deter-
mined with a time-resolved immunofluorometric assay
(TRIFMA) using a catching antibody and a biotinylated
detecting antibody in a sandwich-type assay, as described
previously [10]. Interassay coefficients of variance of all
assays were below 15%. Routine parameters were deter-
mined in the routine diagnostic laboratories of the Leeds
General Infirmary hospital.

Statistical analysis

Statistical analysis was performed with IBM spss software,
version 21. We used Kolmogorov–Smirnov and Shapiro–
Wilk tests to check the data for normal distribution.
Because most parameters did not follow the normal distri-
bution in all groups, all data are displayed as median with
interquartile range (25th percentile; 75th percentile). The
appropriate parametric or non-parametric statistical tests
were applied as indicated. Bivariate correlations of param-
eters were analysed using Pearson’s or Spearman’s correla-
tion coefficients. Parameters were compared between two or
multiple groups using the appropriate parametric [t-test or
analysis of variance (anova)] or non-parametric (Mann–
Whitney or Kruskal–Wallis tests) methods. Differences
between paired samples were tested by Wilcoxon’s or
Friedman’s tests. The χ2 test was used to compare categori-
cal parameters between groups. A P-value of less than 0·05
was considered statistically significant.

Results

Characterization of diabetes patients and control
subjects

Our study population comprised the following groups: (1)
children with T1DM and healthy control subjects matched
for age and sex; and (2) adults with T1DM and healthy
control age- and sex-matched subjects. Demographic and
clinical characteristics of these groups are shown in Tables 1
and 2.

Plasma levels of MASPs and MAp44 in diabetes
patients and controls

MASP-1 and MASP-2 levels were significantly higher in
children (Table 1) and adults (Table 2) with T1DM than in
their respective control groups, whereas MASP-3 and
MAp44 levels did not differ between patients and controls.
When we compared MASP levels between all groups,
MASP-1 levels were lowest in non-diabetic children and
highest in adults with T1DM (Fig. 1a). MASP-2 levels were
lowest in non-diabetic children and young adults, and
highest in adults with T1DM (Fig. 1b). MASP-3 levels did
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not follow this trend, and were lower in adults than in chil-
dren irrespective of T1DM (Fig. 1c).

Effect of glycaemic control on levels of MASPs
and MAp44

There were significant correlations between MASP-1 levels
and HbA1c in children with T1DM [Spearman’s correlation
coefficient 0·456 (P = 0·011)] and in adults with T1DM
(0·482, P = < 0·001). In adults with T1DM, there was also a
correlation between MASP-2 levels and HbA1c (0·437,
P = < 0·001), and both MASP-1 and MASP-2 levels corre-
lated with the duration of T1DM (MASP-1 0·346, P = 0·004;
MASP-2 0·359, P = 0·003). Neither MASP-3 nor MAp44
levels correlated with HbA1c in any patient group.

In a subgroup (n = 26) of adult patients with T1DM, we
measured levels of MASPs and MAp44 at baseline and
16 ± 3 weeks after improving glycaemic control (shown in

Table 3). Overall, a moderate but statistically significant
reduction in HbA1c was not associated with significant
reductions in MASP levels. However, patients whose HbA1c
improved by at least 10% of the baseline value showed sig-
nificant intra-individual reductions in MASP-1 and
MASP-3. There was also a trend towards a reduction in
MASP-2 levels, but the large variation in MASP-2 levels may
be the reason for a non-significant result.

Taken together, these results suggest that blood glucose
levels may represent a determinant of MASP levels, and in
particular MASP-1 levels, in T1DM.

Discussion

Although MBL is well known to be elevated in diabetes
patients and thought to be involved in vascular complica-
tions of diabetes, plasma levels of the MBL-associated serine
proteases, MASP-1, MASP-2 and MASP-3, and the regulator

Table 1. Characteristics and plasma levels of mannan-binding lectin-associated serine proteases (MASPs) in children with type 1 diabetes mellitus

(T1DM) and matched controls.

T1DM children Controls

P-value*n = 30 n = 17

Age (years) 14·9 (12·7; 15·6) 14·4 (11·9; 15·4) 0·319

Weight (kg) 58·7 (52·4; 63·5) 50·8 (39·9; 60·2) 0·068

BMI (kg/m2) 21·9 (20·6; 22·9) n.d. –

Total cholesterol (mmol/l) 4·6 (4·0; 5·2) n.d. –

Diabetes duration (months) 73·1 (34·2; 104·2) n.a. –

HbA1c (%) 9·3 (8·1; 10·1) n.d. –

MASP-1 (μg/ml) 11·1 (9·3; 13·7) 7·9 (6·2; 11·5) 0·007

MASP-2 (ng/ml) 420·9 (325·5; 509·8) 278·4 (201·3; 423·2) 0·008

MASP-3 (μg/ml) 8·2 (7·0; 9·3) 7·6 (7·1; 9·2) 0·364

MAp44 (μg/ml) 1·9 (1·5; 2·1) 1·8 (1·4; 1·9) 0·298

Continuous data are shown as median (25th percentile; 75th percentile). Map44 = mannose-binding lectin-associated protein; n = number;

n.d. = not determined; n.a. = not applicable; BMI = body mass index. *Mann–Whitney U-test; HbAlc = glycated haemoglobin type A1c.

Table 2. Characteristics and plasma levels of mannan-binding lectin-associated serine proteases (MASPs) in adults with type 1 diabetes mellitus

(T1DM) and matched controls.

T1DM adults Controls

P-valuen = 45 n = 31

Age (years) 22·0 (19·0; 26·0) 23·0 (22·0; 26·0) 0·390*

Weight (kg) 71·9 (64·7; 78·8) 71·0 (63·0; 80·0) 0·747*

BMI (kg/m2) 23·2 (20·8; 25·7) 23·2 (21·7; 25·0) 0·865*

Smoking, yes : no (%) 8:36 (18:82) 1:30 (3:97) 0·102†

Microvascular complications, yes : no (%) 10:31 (24:76) 0:31 (0:100) 0·004†

Creatinine (μmol/l) 89·5 (82·0; 100·0) 89·0 (79·0; 95·0) 0·273*

Total cholesterol (mmol/l) 4·4 (3·9; 5·2) 4·1 (3·7; 5·0) 0·142*

Diabetes duration (months) 108·0 (55·5; 162·0)) n.a. –

HbA1c (%) 9·0 (8·0; 9·9) 5·4 (5·1; 5·5) <0·001*

MASP-1 (μg/ml) 12·5 (10·6; 15·5) 9·7 (8·3; 13·6) 0·003*

MASP-2 (ng/ml) 400·1 (330·7; 580·8) 290·4 (198·3; 390·1) 0·001*

MASP-3 (μg/ml) 4·8 (4·2; 5·6) 5·6 (4·4; 6·7) 0·058*

MAp44 (μg/ml) 1·7 (1·5; 1·9) 1·6 (1·5; 1·8) 0·725*

Continuous data are shown as median (25th percentile; 75th percentile). BMI = body mass index; Map44 = mannose-binding lectin-associated

protein; n.a. = not applicable. *Mann–Whitney U-test; †χ2 test; HbAlc = glycated haemoglobin type A1c.
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MAp44, have not yet been studied in patients with diabetes.
Here we show for the first time that MASP-1 and MASP-2
are elevated in patients with T1DM, that MASP-1 and
MASP-2 levels correlate with HbA1c, and that glycaemic
control may modulate MASP levels.

Our results suggest that levels of MASPs, in particular
MASP-1 and MASP-2, may be linked to blood glucose levels.
Recent data on MBL obtained in mouse models support this
conclusion. MBL plasma levels were measured in mice before
and 7 weeks after inducing diabetes by streptozotocin. Diabe-
tes induction led to an increase in MBL-C that was associated
with the increasing plasma glucose levels. This study suggested
that MBL levels increase in mice as a consequence of diabetes
[21]. Other studies have shown that MBL knock-out or
insulin treatment protected hyperglycaemic mice from cardiac
complications [22,23].

A possible link between hyperglycaemia and complement
activation has been suggested by Fortpied et al. [24]. They
could show that MBL binds with high affinity to the
glycation product fructoselysine, and that this binding is
associated with complement activation. Advanced glycation
end-products (AGEs) have been considered responsible for
various adverse outcomes associated with insulin resistance
and diabetes, such as inflammatory processes, endothelial
damage, activation of blood coagulation and vascular com-
plications [25–27].

Based on the results of our present study we conclude
that diabetes features not only elevate plasma levels of MBL,
but also its associated serine proteases. The increase of
MASPs in diabetes may be induced by the same underlying
mechanisms that are responsible for the increase of MBL as
a consequence of hyperglycaemia, or MASP levels increase
secondary to the increase of MBL as their binding protein.
The circulating complexes of MBL and MASPs bind to
AGEs, and this induces conformational changes leading to
activation of MASP-1 and consequently MASP-2. We and
others have shown that both MASP-1 and MASP-2 interact
directly with blood coagulation factors prothrombin,
fibrinogen, factor XIII and thrombin-activatable fibrinolysis
inhibitor, and hence can promote fibrin formation (as sum-
marized recently by us [9]). This could result eventually in
thrombotic complications. We therefore hypothesize that
the axis ‘hyperglycaemia → elevated levels of MBL,
MASP-1, MASP-2 → binding to AGEs → activation of
MASP-1 and MASP-2 → increased fibrin formation’ may
represent an important link between diabetes and its
thrombotic vascular complications.

Limitations of our study include the case–control design
and the relatively small sample size. As there were no data in
the literature on levels of MASPs and MAp44 in patients
with diabetes, our intention was to perform this as a pilot
study. The data presented in this work pave the way for
future larger, prospective as well as mechanistic studies
to determine the role of MASP levels and lectin pathway
activation in the development of diabetes and its vascular
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Fig. 1. Plasma levels of mannan-binding lectin-associated serine

proteases (MASPs) in patients with diabetes and control subjects

showing (a) MASP-1, (b) MASP-2 and (c) MASP-3 levels. Boxes

represent median, 25th and 75th percentiles, whiskers show the 10th

and 90th percentiles and dots are values outside these percentiles.

Groups were compared using the Mann–Whitney U-test and the

P-value is indicated; n.s. = non-significant.
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complications, with the potential to discover new therapeu-
tic targets.
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