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Summary Medulloblastoma is the most common malignant pediatric brain tumor. 
Current treatments including surgery, craniospinal radiation and high-dose chemotherapy 
have led to improvement in survival. However, the risk for recurrence as well as significant 
long-term neurocognitive and endocrine sequelae associated with current treatment 
modalities underscore the urgent need for novel tumor-specific, normal brain-sparing 
therapies. It has also provided the impetus for research focused on providing a better 
understanding of medulloblastoma biology. The expectation is that such studies will lead to 
the identification of new therapeutic targets and eventually to an increase in personalized 
treatment approaches.
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Approximately 400–500 new cases of medulloblastoma (MB) are recorded in the USA every year, 
primarily in children [1]. Current treatment includes surgery followed by radiation and chemother-
apy [2,3]. Event-free survival and overall survival vary based on histology: (desmoplastic/nodular MB 
[DNMB] or MB with extensive nodularity [MBEN], classic MB [CMB] and large-cell/anaplastic 
[LCA]), extent of resection and presence of metastatic disease at diagnosis. Mortality rates have 
declined with 60–80% of patients surviving the disease [4,5]. Unfortunately, survivors have poor 
quality of life associated with disease and therapy-related side effects including long-term physical, 
endocrine, intellectual and cognitive impairment [6]. Furthermore, these children are at risk for 
recurrence and secondary malignancies [6]. Children younger than 3 years of age also tend to have 
worse outcomes [7]. Thus, there is an urgent need to re-evaluate and recalibrate clinical practice 

Practice points

 ●  Medulloblastoma is a heterogeneous disease.

 ●  Molecular subgrouping and biology in conjunction with histopathology is increasingly driving prognostication.

 ●  Molecular mechanisms underlying metastatic disease remain to be fully understood.

 ●  Molecular subgrouping provides an opportunity for personalized medicine.

 ●  Combination chemotherapeutic approaches will be important to tackle treatment resistance.

 ●  Immunotherapy may be a novel tool for the treatment of pediatric brain tumors.
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to limit damage to the developing brain and 
to improve survival. The research and clinical 
community have mined human tumor samples 
to help determine a path forward. As discussed 
below, studies focused on genetic and epigenetic 
analyses of patient tumors have shown that MB 
is not a single disease [8]. This is further compli-
cated by intratumoral heterogeneity, leading to 
a growing recognition that in place of a uniform 
therapeutic approach for all MB patients, clini-
cal decisions should take into consideration his-
topathology and clinical staging in conjunction 
with knowledge of tumor biology [8,9].

Here, we provide an overview of emerging 
data from high-throughput analyses of patient 
tumors, studies on signaling pathways with 
animal models and efforts to identify novel 
molecular targets for clinical application. We 
also discuss the state of newly initiated clinical 
trials to test molecularly targeted therapies and 
immunotherapy, and efforts to integrate conven-
tional and novel treatment approaches (Figure 1).

Cerebellar development & MB subtypes
Earliest studies of MB patients suggested a link 
between perturbations in cerebellar development 
and genesis of the disease. Familial inheritance 
accounts for a subset of MBs and is seen in 
patients with Gorlin’s, Turcots and Li-Fraumeni 
syndrome [10]. Gorlin’s syndrome associated 
with inactivating mutations in the PTCH-1, -2 
and SUFU tumor suppressor genes, predisposes 
to MB development by deregulating the Sonic 
Hedgehog (Shh) developmental pathway [10]. 
Turcot’s syndrome is characterized by inactivating 
mutations in the APC gene, and results in consti-
tutive activation of the Wingless (Wnt) signaling 
pathway [10]. Finally, patients with Li–Fraumeni 
syndrome have germline mutations in the p53 
tumor supressor gene, which predisposes them to 
various cancers including MB [10]. These observa-
tions have led to the generation of the first geneti-
cally engineered mice (GEM) models for Shh and 
the Wnt driven MBs [11–13]. The animal models 
in turn have been critical for the identification 
of the granule neural precursors (GNPs) and the 
rhombic lip precursors as the cells of origin of 
Shh and Wnt tumors respectively, the identifica-
tion of downstream signaling cascade, and finally 
 investigations on targeted therapy.

Sproadic MBs are driven by Shh pathway acti-
vation in approximately 20–25% of the cases, 
while Wnt pathway activation drives approxi-
mately 15% of these tumors. Amplifications 

in c-MYC and N-MYC occur in 5% of human 
MBs, while increased expression of gene or pro-
tein in the absence of amplification is common 
in 20–40% of tumors and is  associated with 
poor prognosis [14].

MB genomics
In one of the first application of high-through-
put methodologies to pediatric brain tumors, 
the Pomeroy group showed MBs and atypical 
teratoid rhabdoid tumors to be distinct disease 
entities [5]. The disconnect between histologi-
cal subtyping and outcomes subsequently pro-
vided the impetus for international collaborative 
genome-based studies and efforts to reclassify 
MBs based on their molecular profile. These 
genetic and transcriptional profiling studies have 
led to the identification of four distinct molecular 
subtypes of MB: WNT/Wingless, SHH/Sonic 
Hedgehog, Group 3 and Group 4 [14–26]. 
Whereas WNT subgroup of tumors displayed 
predominantly CMB histology, SHH tumors 
included the DNMBs, CMBs and LCA sub-
groups. Group 3 and 4 tumors present as CMBs 
or highly aggressive LCAs [14–26]. The molecular 
classification of MBs in combination with his-
topathology has also allowed better prediction 
of likelihood of metastasis. Thus, patients with 
WNT tumors rarely have metastasis and respond 
well to therapy, whereas a subset of children with 
Shh-driven tumors as well as children with high-
risk Group 3 and intermediate-risk Group 4 MBs 
have a significantly increased risk of developing 
disseminated disease [14–26].

Nevertheless, the same aggressive approach is 
used to treat all MB patients. SHH, Group 3 and 
Group 4 patients fail to benefit from the current 
treatment approaches [3]. Given the better out-
comes seen in patients with Wnt-driven tumors, 
the merits and demerits of treatment de-escala-
tion, specifically craniospinal radiation is being 
critically debated within the clinical community.

Time for paradigm shift in MB 
therapeutics?
MB genomics has not only signif icantly 
advanced our understanding of tumor biology, 
but also led to the molecular reclassification of 
these tumors and set the stage for recalibrat-
ing treatment based on specific needs of each 
patient. We summarize below the hallmarks of 
the various MB subgroups, preclinical investiga-
tions with mouse models and important clinical 
steps to help improve survival and quality of life.
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Figure 1. Overview of major signaling pathways and druggable nodels in medulloblastoma. Targets of drugs under clinical 
investigation in children with pediatric solid/brain tumors are circled.
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wNT subgroup
Wnt tumors characterized by constitutive acti-
vation of Wnt signaling exhibit mutations in 
CTNNB1, AXIN1 and CTNNB1-associated 
chromatin re-modelers such as SMARCA4 
and CREBBP and epigenetic silencing of genes 
encoding Wnt signaling antagonists, SFRP 
and DKK1 [23–29]. Mutations in p53 are seen 
in approximately 16% of WNT subgroup 
tumors [30].

GEM models have definitively shown that con-
stitutive activation of Wnt-β-Catenin signaling 
in cells of the lower rhombic lip drives develop-
ment of lesions with proliferating Zic1+ cells [13]. 
In agreement with data from patient samples, 
15% of these mice suffer concurrent deletion of 
p53, resulting in tumors that recapitulate features 

of human WNT subtype of tumors [13]. These 
studies also identified genes that maintain this 
cell lineage (DDX3X), as well as mutated genes 
that initiate (CDH1) or  cooperate (PIK3CA) in 
tumorigenesis [13].

Because patients with Wnt tumors have good 
prognosis and respond well to current standard 
of care, de-escalation of treatment has been pri-
oritized for clinical evaluation so as to maintain 
optimum cure rates while aiming for a reduction 
in side effects [3].

SHH subtype
SHH-subtype MBs are distinguished by con-
stitutive activation of Shh signaling due to loss-
of-function mutations in PTCH1/2 and SUFU, 
gain of function mutations in SMO or GLI-1/2 
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amplification, and account for approximately 
50% of Shh driven MBs [13–26]. P53 muta-
tions are seen in a subset of patients with Shh-
driven MBs, and portends poor prognosis [30]. 
These tumors are frequently of the DNMB or 
MBEN histological subtypes, although a few 
LCA variants are seen. Indeed, DNMB and 
MBEN histological subtypes are seen exclu-
sively within the SHH subgroup of MBs. While 
the prognosis is generally good for patients with 
Shh-driven tumors, children that present with 
LCA tumors often have poor prognosis [13–26]. 
The mechanism(s) underlying this variability 
are not clear. Mutations in the gene encoding 
the telomerase reverse transcriptase were seen in 
approximately 83% of MBs obtained from adult 
patients, but had an interesting association with 
good prognosis [31].

GEM models carrying deletion of a copy 
of the PTCH1 gene or knock-in of commonly 
occurring SMO1 mutations in patients have 
unequivocally shown that Shh-driven MBs arise 
from cerebellar GNPs [11,12]. These animal mod-
els in conjunction with cell culture systems have 
unraveled the biology and regulatory network of 
Shh signaling, providing novel druggable nodes 
and the basis for numerous preclinical studies. 
For example, pharmacological inhibition of 
SMO blocks signal transduction and tumor cell 
proliferation [32–35]. However, even brief inhibi-
tion of Shh signaling in mouse models with the 
inhibitor HhAntag caused permanent defects 
in bone development in young mice, precluding 
further investigations [34]. MBs harboring muta-
tions in PTCH1 are responsive to SMO inhibi-
tors such as GDC-0449/vismodegib, whereas 
mutations (in SUFU) or amplification (of MYC-
N ) of downstream signaling molecules render 
tumor cells unresponsive to such agents [36,37]. 
Cholesterol and specific oxysterols are required 
for Shh pathway signaling, and pharmacologi-
cal inhibition of their synthesis blocks signal 
 transduction and tumor cell proliferation [38].

Receptor tyrosine kinases including IGF 
and HGF/c-Met signaling through PI3K are 
required for Shh-mediated tumorigenesis. PI3K 
inhibitors, AKT inhibitors, HGF-blocking 
antibodies alone or in combination with SHH 
ligand neutralizing antibodies, SMO antagonists 
and Gas and Survivin inhibitors have all elicited 
robust response in mouse models [39–45].

Although, the role of Notch signaling in MB 
genesis has been debated, a recent transcrip-
tome analysis of pediatric MB samples showed 

that HES1 overexpression is directly related to 
shorter survival [46–48]. Although, these analyses 
were not conducted specifically in the context 
of Shh-driven tumors, the observations that 
Notch2 regulates GCP proliferation and that 
it plays a role in tumor development in SmoA1 
mouse models suggest a role for Notch activa-
tion in Shh-driven tumors [47,49]. Interestingly, 
studies with a novel GEM model have shown 
Shh group of MBs to be generated by activation 
of Notch signaling in neural stem cells and or 
in glial cells [50]. If true, pharmacological inhibi-
tion of Notch signaling in tumor stem cells or in 
the tumor microenvironment could be applied 
for treatment of patients with Shh subgroup of 
MBs [51]. There is now evidence for negative 
regulation of Wnt signaling by SUFU, indicat-
ing cross-talk between Shh and Wnt signaling 
pathways as well [52]. These factors will impact 
the effectiveness of Shh inhibitors in patients and 
should be considered during trial design.

In one of the first studies to show therapeutic 
potential of targeting MB metabolism, Gershon 
and colleagues demonstrated PI3K signaling-
dependent induction of aerobic glycolysis in 
tumors in Smo-M2 mice [53]. Loss of aerobic 
glycolysis blocked tumor growth and promoted 
long-term survival in tumor-bearing mice. Shh 
signaling has been linked to the regulation of 
the MB epigenome by promoting increased 
transcription and sustained activation of his-
tone deacetylases (HDACs) leading to increased 
GNP proliferation [54]. Thus, HDAC inhibi-
tors may have applications in the treatment of 
 Shh-driven MBs.

The variable responsiveness of MBs to chemo-
therapy and radiation has been attributed to its 
heterogeneity and the presence of a population 
of cells called tumor-propagating cells [55]. These 
cells are often stem cell-like and are marked 
by the cell surface antigen CD15/SSEA-1. In 
PTCH mutant mice, CD15+ tumor-propagat-
ing cells have dysregulated expression of Aurora 
kinase and Polo-like kinases (PLK), proteins 
involved in control of G2-M transit [55]. This 
vulnerability could be targeted by pharmacologi-
cal inhibition using the PLK antagonist BI2536, 
which also enhanced the sensitivity of tumor 
cells to conventional chemotherapy in vitro and 
in vivo [55,56].

PI3K/AKT activation is important in MB dis-
semination and radio-resistance in mice [57–60]. 
In preclinical studies, the drugs (PIK-75 and 
YM024) targeting the p110α catalytic subunit 
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of PI3K suppressed MB growth [59]. In addi-
tion, YM024 and IC87114 (an inhibitor of 
the p110δ subunit of PI3K) impaired MB cell 
migration and invasion. The mTORC1 inhibi-
tor RAPA (rapamycin) also suppressed prolifera-
tion and migration of MB cells, although the 
novel mTORC1/2 inhibitor-pp242 appeared 
to have greater efficacy in inhibiting these pro-
cesses [59]. Targeting the AKT kinase PDK1 
alone with OSU03012 or in combination with 
the RAPA analog CCI-779 also synergistically 
blocked AKT activation resulting in potent sup-
pression of MB growth in vitro and in vivo [59]. 
Interestingly, an association between elevated 
expression of the chromatin remodeler, REST, 
and leptomeningeal disease development was 
shown in a subset of patients with Shh-driven 
tumors [61]. A similar observation was made by 
a separate study, although not necessarily in the 
context of constitutive Shh activation, which 
raises the possibility that REST may have a role 
in driving metastatic disease [62]. REST is associ-
ated with a number of druggable activities such as 
HDAC1/2, the histone methyl transferase-G9a 
and the histone lysine demethylase LSD1, and 
REST-high MBs are more sensitive to HDAC 
inhibitors compared to low-REST isogenic 
cells [61]. REST also represses the transcription 
of the anti-proliferative deubiquitylase USP37, 
and drugs that reactivate USP37  expression may 
have therapeutic applications [63].

Preclinical studies directed at understanding 
therapeutic resistance in Shh-driven MBs have 
identified mutations in SMO, GLI-2 amplifica-
tion and activation of PI3K signaling as major 
contributors to drug resistance [36]. For example, 
resistance to the SMO inhibitor vismodegib was 
attributed to D473H point mutation in SMO [37]. 
However, resistance to the drug saridegib was 
independent of the D473H mutation and Gli2 
amplification, and was attributed to induction 
of P-glycoprotein activity [35]. Resistance to the 
SMO antagonist NVP-LDE225 in vivo could 
be countered by inhibiting PI3K activity using 
either NVP-BKM120 (a PI3K inhibitor) or 
NVP-BEZ235 (a dual PI3K and mTOR inhibi-
tor) and mitigated by PTEN loss, suggesting that 
PI3K activation constitutes a mechanism of drug 
resistance in Shh-driven MBs [64,65].

Group 3
These tumors account for 25% of all MBs and 
occur more commonly in males and young chil-
dren, and hardly ever comprise adult patients 

[13–26]. They frequently encompass the LCA 
and CMB histologic subtypes, with 50% of the 
patients exhibiting metastasis at presentation 
[13–26]. Survival is the lowest in children in this 
group and is currently at a dismal 20% [13–26].

Recent data suggest that cerebellar GNPs 
may give rise to Group 3 tumors, although the 
drivers for this subgroup of tumors are likely 
to be distinct from constitutive Shh activa-
tion [66–68]. Mutations in p53 that are seen in 
Shh and Wnt tumor subgroups are absent in 
subgroup 3 tumors [30]. Gains in chromosome 
1q, 7 and 17q and deletions of 10q,11, 16q and 
17p are frequently detected, indicating a high 
level of genomic instability [66–68]. Elevated 
c-Myc expression often with focal amplification 
of the locus, PVT1-Myc fusion, elevated expres-
sion of OTX2, as well as an increased frequency 
of mutations in histone H3 lysine (K)-27 dem-
ethylases are hallmarks of Group 3 MBs [66–68]. 
OTX2 overexpression and knockdown is associ-
ated with up- and downregulated expression of 
several polycomb genes including EZH2, EED, 
SUZ12 and RBBP4 and genes encoding H3K27 
demethylases: KDM6A, KDM6B, JARID2 and 
KDM7A [66,69]. A novel genetically engineered 
mouse model with constitutive OTX2 expres-
sion in the postnatal hind-brain showed accu-
mulation of clusters of proliferative cells origi-
nating from neural progenitors of the rhombic 
lip (dorsal brain stem) and migrating GNPs in 
cerebellar white matter [70]. OTX2 knockdown 
in human MB cells increased survival of tumor-
bearing mice, indicating that OTX2 is neces-
sary for tumor maintenance [71]. Studies such as 
these not only provide insights into mechanisms 
by which chromatin remodeling is involved in 
tumor development, but also provide a new class 
of drug targets. For example, the OTX2 target-
EZH2 can be pharmacologically manipulated 
by GS2816126, an agent under clinical inves-
tigation for adult patients with hematological 
malignancies [72].

A novel mouse xenograft model (HD-MB03) 
established from a patient tumor with molecu-
lar features Group 3 MBs including isochro-
mosome 17q and MYC amplification revealed 
strong expression of a number of HDACs, 
including HDAC-2, -5, -8 and -9 [73]. Consistent 
with these findings, HD-MB03 cells displayed 
increased sensitivity to the HDAC inhibitors, 
vorinostat and panobinostat [73]. These inhibi-
tors also conferred increased radiation sensitiv-
ity to HD-MB03 cells, providing support for 
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the use of HDAC inhibitors for the treatment 
of patients with Group 3 MBs [73].

Molecules that contribute to leptomeningeal 
disease development in Group 3 tumors are 
understudied [74,75]. Myc is a prime candidate 
because of its known roles in regulating migra-
tion, invasion and angiogenesis, processes critical 
to tumor metastasis. Myc inhibition for cancer 
therapy has been investigated over the years 
with little success. Nevertheless, agents that tar-
get Myc such as S2T1–6OTD, a telomestatin 
derivative that can bind to the c-Myc promoter, 
as well as agents that can modulate Myc expres-
sion including all-trans-retinoic acid (ATRA), 
the quassinoid analog NBT-272, the anti-
convulsant and HDAC inhibitor-valproic acid 
(VPA), the polyphenol resveratrol, have shown 
efficacy in vitro and in mice, and their further 
investigation in MYC-high MBs may be war-
ranted [76,77]. The availability of three separate 
Myc-driven mouse models of LCA MB should 
further aid in such preclinical studies [78–81].

Immunotherapy is being increasingly viewed 
as a weapon for use in combination therapy or 
as an alternative to conventional treatments 
[82–85]. The ability of immune cells to traffic 
also increases their attractiveness for treatment 
of metastatic disease. However, MBs appear to 
be immunosuppressive in comparison to other 
pediatric brain tumors and have fewer infil-
trating immune cells, which are dominated by 
immunosuppressive M2 macrophages, CD8+ 
and CD4+ T cells [86]. The elevated expression 
of the nonclassical MHC CD1d gene, which 
encodes a receptor for a class of cytotoxic T cells, 
was recently leveraged to show tumor regres-
sion in an Shh mouse model and could be an 
attractive option for other metastatic MB sub-
groups as well [87]. The application of T cells for 
MB treatment could however be hampered by 
the low expression of HLA-I in neural tumors. 
The use of chimeric antigen receptor (CAR)-T 
cells avoids this problem and the use of CAR-T 
cells specific for HER2 showed efficacy against 
MB in a murine model [88]. The requirement 
for tumor-associated antigens (TAAs) can 
also be circumvented by harnessing the power 
of components of the innate immune system, 
such as natural killer (NK) cells [89–91]. NK 
cells have been tested successfully in cell culture 
systems [89–91].

Because B-cell function appears to be unaf-
fected in MB patients, antibodies specific for a few 
TAAs can be evaluated alone or in conjunction 

with radiation or chemotherapy [92]. SHH and 
HGF blocking antibodies have been studied for 
efficacy in murine xenograft models [41]. Finally, 
antibodies against immunosuppressive mol-
ecules or drugs such as HDAC inhibitors that 
can increase tumor immunogenicity and alter 
the sensitivity of MBs to immune cells appear 
attractive for MB treatment [93].

Group 4
Group 4 tumors occur more frequently in older 
children and accounts for 35% of all MBs. 
Tumors are frequently of CMB histology with 
a few instances of LCA [23–29]. Metastasis is 
observed in 33% of these cases at diagnosis [23–
29]. Mutations in p53 have not been described [30]. 
These tumors exhibit a neuronal molecular sig-
nature and exhibit elevated expression of OTX2, 
N-Myc, FST and CDK6 [13–26]. Isochromosome 
17q and deletion of 17p is a common occur-
rence [13–26]. Children with Group 4 tumors 
have an intermediate prognosis [13–26]. Group 4 
tumors in adult patients have a particularly poor 
prognosis [13–26]. Although, these MBs are the 
most commonly occurring tumors, their biology 
is the least understood.

N-Myc expression is elevated in human Group 
4 MBs and its overexpression driven by the hind-
brain specific Glt-2 promoter in postnatal neural 
stem cells resulted in non-Shh dependent, dis-
seminated tumors with classic and LCA histol-
ogy. Metastatic disease development combined 
with elevated N-Myc and their non-Shh signa-
ture suggest that these tumors may resemble 
human subgroup 4 MBs [79].

Bmi-1 is a polycomb group repressor complex 
gene overexpressed across all MB subgroups 
but most significantly in Group 4 tumors and 
is associated with deregulation of cell adhe-
sion molecules. In vitro assays identified Bmi-1 
dependent perturbation of cell adhesion and 
motility through repression of bone morphoge-
netic proteins (BMPs) [94]. In vivo, Bmi-1 con-
trolled invasion in a novel xenograft model of 
human MB [94]. Thus, BMP agonists may have 
potential application in the treatment of Group 
4 MBs [94].

Tumor biology drives novel clinical trials
Despite considerable preclinical data for tar-
geted therapy, only few agents have been 
investigated as single agents or in combina-
tion with standard of care drugs in pediatric 
clinical trials. The SMO inhibitor GDC-0449/
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vismodegib was recently evaluated in a Phase I 
clinical trial (NCT00822458) involving chil-
dren with refractory or relapsed MB [95–98]. The 
drug was well tolerated with a recommended 
Phase II dose of 150 or 300 mg. Two dose-
limiting toxicities were observed [98]. A partial 
response was seen in a participant with meta-
static MB [98]. It is under active evaluation in 
combination with temozolomide in a Phase I/II 
study in children (NCT01878617) and adults 
(NCT01601184) with MB. NVP-LDE225 (son-
idegib) is another SMO inhibitor under clinical 
investigation as monotherapy in pediatric and 
adult MB patients (NCT01125800) [99]. It was 
well tolerated and response was observed in a 
few patients [98]. A Phase I study of sonidegib 
in combination with buparlisib (PI3K inhibi-
tor) in adults with advanced solid tumors is 
ongoing (NCT01576666). The AKT inhibi-
tor MK-2206 was evaluated in a Phase I/II 
trial of pediatric patients with refractory solid 
tumors (NCT01231919); study results remain 
to be released. mTOR inhibitors have been 
scrutinized in a number of trials for pediat-
ric solid tumors. In a Phase I study, the drug 
everolimusin was well tolerated with a maxi-
mum tolerated dose (MTD) of 5 mg/m2 [100]. 
deforolimus, another mTOR inhibitor, was 
well tolerated in a Phase I trial of pediatric 
patients with advanced cancers, with one partial 
response several instances of stable disease [101]. 
The Phase I study of a third mTOR inhibitor, 
temsirolimus, revealed safety. However, an 
MTD was not obtained, and the drug failed 
to meet criteria for its use as a single agent [102]. 
Temsirolimus has also been paired with irino-
tecan and temozolomide (NCT01141244, 
COG-ADVL0918) in a completed Phase I study 
for young patients with relapsed or refractory 
solid tumors; study results have not been posted. 
The most recent mTOR inhibitor under evalu-
ation in a Phase I trial is ridaforolimus, both 
alone (NCT01431534) and in combination 
with dalotuzumab (NCT01431547). Results of 
these studies have not been posted. A Phase I 
(NCT01670175) studying the combination of 
rapamycin (sirolimus), cyclophosphamide and 
topotecan, in pediatric and young adults with 
relapsed and refractory solid tumors is currently 
open. sirolimus was previously studied in com-
bination with vinblastine (NCT01135563); no 
results have been published to date.

The Notch pathway is known to be impor-
tant for maintenance of tumor stem cells, a 

population believed to contribute to treatment 
resistance [103]. Notch inhibition by the agent 
MK-0752 was evaluated in a recently completed 
Phase I trial of pediatric patients with recurrent 
CNS tumors [103]. Though safety was demon-
strated efficacy was modest, thus undermining 
its use in future trials [103].

HDAC inhibitors have been investigated 
in two separate Phase I trials in pediatric 
patients with relapsed/refractory CNS tumors. 
The HDAC inhibitor vorinostat was well 
tolerated when combined with either temo-
zolomide or bortezomib (NCT01076530, 
NCT00994500) [104,105]. The combination 
of vorinostat, isotretinoin and chemotherapy 
is under investigation in young patients with 
embryonal tumor (NCT00867178).

Immunotherapy has been gaining ground as 
a therapeutic approach for CNS malignancies. 
The intrathecal infusion of lymphocyte-acti-
vated killer (LAK) cells from allogeneic donors 
in a cohort of six patients with disseminated 
MB showed some success with three patients 
displaying no disease or neurological toxicity 
following treatment [106]. One other case report 
also echoed this success, warranting further 
investigation of LAK cells for pediatric CNS 
tumors [107]. A novel clinical trial investigating 
the safety and feasibility of fourth ventricular 
infusion of ex vivo expanded and activated NK 
cells has recently received US FDA approval 
and is anticipated to begin accruing pediatric 
patients with recurrent/refractory tumors of the 
posterior fossa.

131I conjugated GD2 antibodies have been 
evaluated for the treatment of MB, although a 
major drawback has been neuropathy associated 
with the use of GD2 as a target [108]. The use of 
high-dose chemotherapy followed by autologous 
stem cell transplant currently being pursued in 
multiple clinical trials holds promise, and has 
been attributed to the ‘resetting’ of the immune 
system [109]. However, the high relapse rates 
underscore the need for new combinations to 
augment the host antitumor immune response.

Conclusion & future perspective
The above discussion has provided a panoramic 
view of the preclinical studies that have exam-
ined the feasibility of targeting MBs. Of these, 
a few novel agents targeting Shh signaling and 
PI3K pathway have been explored in Phase I 
clinical trials in children (Figure 1). At present, 
very few have been studied in Phase II/III trials. 
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