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Abstract

Rhythmic brain activity at low frequencies (<12 Hz) during rest are thought to increase in 

neurodegenerative disease, but findings in healthy neurocognitive aging are mixed. Here we 

address two reasons conventional spectral analyses may have led to inconsistent results. First, 

spectral-power measures are compared to a baseline condition; when resting activity is the signal 

of interest, it is unclear what the baseline should be. Second, conventional methods do not clearly 

differentiate power due to rhythmic versus non-rhythmic activity. The Better OSCillation 

detection method (BOSC; [10], [65]) avoids these problems by using the signal’s own spectral 

characteristics as a reference to detect elevations in power lasting a few cycles. We recorded 

electroencephalographic (EEG) signal during rest, alternating eyes open and closed, in healthy 

younger (18–25 years) and older (60–74 years) participants. Topographic plots suggested the 

conventional and BOSC analyses measured different sources of activity, particularly at 

frequencies, like delta (1–4 Hz), at which rhythms are sporadic (but topographies were more 

similar in the 8–12 Hz alpha band). There was little theta-band activity meeting the BOSC 

method’s criteria, suggesting prior findings of theta power in healthy aging may reflect non-

rhythmic signal. In contrast, delta oscillations were present at higher levels than theta in both age 

groups. In sum, applying strict and standardized criteria for rhythmicity, slow rhythms appear 

present in the resting brain at delta and alpha, but not theta frequencies, and appear unchanged in 

healthy aging.
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1 Introduction

Oscillations, rhythmic fluctuations in neuronal-population activity recorded with 

electroencephalographic (EEG) or magnetoencephalographic (MEG) sensors, are thought to 

play important roles in cognitive brain function [57]. Here we consider oscillations at delta 

(1–4 Hz), theta (4–8 Hz) and alpha (8–12 Hz) frequencies, which, in rest (the absence of a 

task), have been of particular interest in studies of neurocognitive aging. When reviewing 

studies of slow, rhythmic activity (under ~12 Hz), a paradox can be seen: task-related 

oscillations (particularly theta-band) are thought to support cognitive function, whereas 

oscillations at similar frequencies during rest may signify reduced brain function. However, 

closer inspection shows that our picture of slow oscillations in neurocognitive aging is 

unclear.

For example, theta oscillations [62] are of particular interest, as they accompany a rich set of 

higher cognitive functions including memory, spatial, exploratory and motor tasks and they 

modulate induction of synaptic plasticity [8]. Theta oscillations are likely important for 

multiple distinct neurocognitive functions (e.g., [11], [46], [64], [67]). Although evidence of 

task-related theta oscillations has almost exclusively been collected in young adult 

participants, there has been a recent surge of interest in slow rhythms, in both the theta, and 

the slower, delta band, in older adults during rest. There is accumulating evidence that slow 

rhythms could signal neurocognitive decline and predict the future course of 

neurodegeneration, but findings are somewhat inconsistent. With regard to theta activity in 

particular, it is unclear whether resting theta is a sign of healthy cognitive function or not. 

Our goal here was to understand slow EEG activity in healthy aging. In addition to 

elucidating healthy brain activity, this could also potentially serve as the 

electrophysiological comparison point for clinical populations. Specifically, we sought to 

distinguish rhythmic from non-rhythmic activity, which prior studies of resting EEG in 

aging have not explicitly done, to evaluate whether resting theta activity, as well as activity 

in the delta band and at other frequencies, is rhythmic or not, and to test for possible effects 

of healthy aging on both rhythmic and non-rhythmic resting brain activity.

Theta activity during rest

Increased amplitude and extent of resting theta-band activity may reflect the presence of 

Alzheimer’s Disease (AD) and may predict when individuals progress from healthy aging to 

Mild Cognitive Impairment (MCI) and probable AD, with a range of topographies, and 

using a variety of resting tasks and methods of quantifying power [13], [19], [21], [27], [26], 

[32], [47], [51]. However, the relationship between theta activity and cognitive function is 

less clear. For example, [32] correlated theta power (relative to total power) during eyes-

closed rest with scores on neuropsychological tests administered at a different time. They 

found that, in a sample including participants with probable AD, MCI and healthy controls, 

the correlation was negative in various regions for visuospatial and attention functions, but 

non-significant for memory tests. However, [23] found frontal theta power (in the 4–6.5 Hz 

band, normalized by total power) during eyes-closed rest correlated positively with cognitive 

function as measured by a separate behavioral battery in healthy older adults. [52] found 

mixed results, with absolute theta power correlating negatively with various cognitive scores 
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at frontal sites, but at temporal and occipital sites, correlating positively with perceptual 

organization and processing speed tasks. Their relative-power measures correlated 

negatively with verbal comprehension and working-memory tests with a widespread 

topography. [3], recording during a 5-minute eyes-closed condition, found no significant 

correlations between theta (4–8 Hz) power measured across the scalp and their separately 

administered neuropsychological tests, although they found statistically robust correlations 

at other frequencies, including delta and alpha. [37] found reduced, not increased, theta (4–8 

Hz) absolute power in left frontal and posterior recording sites in participants with the ε4 

allele of the Apolipoprotein E gene (ApoE ε4), a risk factor for AD, compared to non-

carriers. [25] found that hippocampal atrophy associated with dementia was accompanied by 

increases in frontal theta (4–8 Hz) power (without normalizing by total power) during a 10-

minutes eyes-closed rest condition. [16] found that theta (band defined relative to each 

participant’s alpha frequency as suggested by) [34] power (not normalized by total power) 

did not differ during a 3-minute eyes-open rest period, but was greater in their healthy older 

control group than in their amnestic MCI group during a recognition-memory task.

These mixed results about whether resting theta activity is a sign of neurodegenerative 

disease or healthy cognitive function are even more confusing, considering that studies of 

healthy neurocognitive aging also produce mixed results. [17] found frontal and central theta 

(4.88–6.84 Hz) power (not normalized) during a 3-minute eyes-open condition increased in 

young (18–27 years) compared to older (60–80 years) participants, both in rest and during a 

recognition-memory task. They did not report other frequencies, so these effects could 

possibly be broadband. [66] measured theta (4–7.5 Hz) power as well as other frequency 

bands, both absolute and relative measures, and during an eyes-closed condition as well as 

an eyes-open fixation condition. The eyes-closed condition produced no significant age 

effects, but during eyes-open, theta relative power was greater in young (mean=29) than 

older (mean=73 years) participants during rest. The picture changed when comparing rest to 

various cognitive tasks; for the young participants, theta relative power (distributed across 

electrodes) was lower in rest than during the tasks, but the reverse held for the older 

participants.

Clearly part of the cause of this variable set of findings is that parameters including rest 

conditions, recording sites and frequency band limits and ages vary across studies. However, 

we next consider an additional possible cause of mixed results: that measures of power may 

include both rhythmic and non-rhythmic signals.

Rhythmic versus non-rhythmic sources of power

One possible cause of ambiguous results is that spectral power observed during rest might 

not in fact be rhythmic, a question that has often been tagged as an important theme in EEG 

research (e.g., [34], [39]). According to Fourier’s Theorem, any signal, whether rhythmic or 

not, can be re-expressed as a weighted sum of periodic functions with varying frequency, 

amplitude and phase [6]. Consequently, for any EEG signal, there will be some non-zero 

value for power at any given frequency, but that does not confirm that there are any rhythms 

present. Narrow peaks in the power spectrum can be very good tell-tale signs of the presence 

of rhythmic activity [34], [39]. However, this has its limits. First, it is difficult to come up 
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with a clear criterion for how narrow the peak must be to signify a rhythmicity. More 

seriously, a clear peak in the spectrum would only be expected for oscillations that are both 

prevalent a large portion of the recording time, and that, over the times they occur, have 

little variability in frequency. Oscillations that are sporadic may get washed out by power at 

neighbouring frequencies. Oscillations that are clearly rhythmic for numerous consecutive 

cycles but can appear at a broad range of central frequencies would be expected to produce a 

very wide-band peak, which, for example, might be what produces some of the so-called 

“broadband gamma” activity (e.g. [7], [14], [29]). The Better OSCillation detection method 

(BOSC) was designed to impose more conservative criteria for identifying segments of EEG 

signal as rhythmic. It requires that power at a frequency, f, be elevated above a minimum 

threshold power value, PT(f) for a minimum duration, DT(f) thus requiring that the signal 

show some evidence of repeating. The thresholds are derived by modeling the statistical 

properties of the signal (see Methods). One advantage of the BOSC method is that it corrects 

for the “colored-noise” form of the power spectrum, wherein lower frequency components 

of the signal tend to be larger than higher frequency components. The BOSC method is 

sensitive to oscillations even when they are rare and fail to produce a clear peak in the power 

spectrum, and it is robust to electrode location, species, state of alertness and task condition 

[10], [12], [9], [15], [20], [30], [33], [43], [44], [48], [60], [63], [65].

Need for a baseline period

Next, consider that conventional measures of spectral power require some reference value 

for comparison. A resting baseline is often used as the reference, but if resting EEG includes 

rhythms, these rhythms will be subtracted from task-related activity. Moreover, what 

happens in the present situation, when the research question is about the resting state itself? 

Because absolute power depends on factors unrelated to brain-activity per se (e.g., geometry 

of the head and brain), it is uninformative to compare absolute power values between groups 

of participants. To eliminate these confounds, researchers often normalize (e.g., [3], [13], 

[19], [31]) by dividing each power value by the total power (the approach we take here for 

this conventional measure) or compute ratios of power (e.g., [56]) in one frequency to 

another (e.g., theta:alpha). Thus, prior measures of slow rhythmic activity during rest have 

always been relative to power at other frequencies. This introduces an ambiguity: an 

increase in a ratio could be due to an increase in the numerator or a decrease in the 

denominator. The BOSC method has an advantage in this regard: no additional “baseline” 

period is required, and the reference is based on the statistical characteristics of the signal 

itself. Granted, in one sense, the BOSC method also uses other frequencies as a reference. 

However, the way in which the power spectrum is used to generate the amplitude threshold 

values is highly constrained by prior knowledge of the form of the spectrum (1/fα form, and 

χ2(2) form of the distribution of power values at each frequency), keeping the cross-talk 

between frequencies to a minimum, and it is relatively robust to the presence of peaks in the 

spectrum [65].

We suggest that normalization and ratio-measures may be partly responsible for the mixed 

and even sometimes, contradictory, evidence about resting rhythmic activity in healthy older 

and younger participants. Thus, one reason to compare the BOSC method to a conventional 

power measure is to obtain a less confounded measure of rhythms during rest, which could 
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then be comparison states in studies of task-related rhythms (in both young and older 

participants), and the control data for investigations of resting rhythms in neurodegenerative 

disease.

Choice of rest “task”

Resting conditions have varied across studies. Some investigators ask participants to keep 

their eyes closed (e.g., [3], [23], [25], [47], [52], [53]), whereas others ask participants to 

keep their eyes open (e.g., [17], [16]). This procedural choice could be important, as the very 

large-amplitude posterior alpha rhythm increases in amplitude when the eyes close [5]. 

Because conventional spectral analyses compare power across frequencies, a large alpha 

peak could have a sizeable effect on measures of power at other frequencies. In contrast, the 

BOSC method should be relatively more robust to modulations in alpha power. We adopted 

a protocol [4], [45], [65], in which participants are asked to alternate eyes-open with eyes-

closed. In addition to enabling a comparison between resting conditions, asking participants 

to alternate eyes-open with eyes-closed also prevented participants falling asleep, a problem 

researchers have noted when using eyes-closed conditions [58].

Delta oscillations

Unlike theta activity, there is currently no consistent picture about whether delta activity 

increases or decreases with cognitive demands [57], although there are plenty of results 

suggesting that delta-band activity plays a role in cognition. For example, [59] found delta 

activity progressively reducing with repeated presentations of words in a continuous 

recognition-memory task [28], [35], see also. Such findings could mean that delta activity 

indicates poor performance, or alternatively, that delta activity reflects task difficulty, which 

reduces with repeated trials. Delta-band activity during rest also shows promise as an early 

marker of AD. Resting delta-band activity has been found to be greater in individuals with 

MCI and probable AD than healthy controls [3], [21], [27], [51] and may increase with the 

progression to MCI [13]. Some studies find no differences in resting delta activity [66]. And, 

[2] found increased delta activity in healthy older (51–85 years) than healthy young (18–50 

years) participants during rest, but [38] found decreased delta activity in older than younger 

participants. Clearly, our understanding of delta oscillations during rest in neurocognitive 

aging is just as unclear as it is for theta oscillations. We were therefore also interested in the 

delta band, asking whether or not delta-band signal during rest is rhythmic, and if delta 

rhythms or delta power differed between young and older participants.

Design of the study

We recorded EEG during rest, alternating 5-s intervals of eyes-open and eyes-closed, in 

Young adult participants and Older adult participants. We asked three research questions: 1) 

When do conventional spectral measures and the BOSC method agree, and when do they 

diverge? We predicted that for more dominant rhythms (larger amplitude and present for a 

greater proportion of the time), the measures would be most consistent, and for more 

sporadic rhythms, the two methods may diverge considerably. 2) Is there any detectable and 

meaningful rhythmic theta activity during rest? 3) Do healthy older adults have increased 

theta or delta power, and if so, is this low-frequency signal rhythmic?
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2 Methods

2.1 Participants

The human EEG is thought to stabilize by age 18, and then change further after age 60 [57]. 

We therefore recruited 18–30-year-old (“Young”) and 60–74-year-old (“Older”) 

participants. Participants were screened in a pre-intake phone interview for gross brain 

injury and head trauma, epilepsy, nervous system or psychiatric disorder (past, present, and 

family history), diabetes, and major heart attack. Younger participants were recruited from 

the introductory psychology pool at the University of Alberta, in exchange for course credit. 

N = Young participants were included in the analyses, after participants were excluded due 

to subjectively reported anxiety disorders and due to excessive artifacts. Older participants 

were recruited through ad placements in a local newsletter and by word of mouth, and were 

paid an honorarium. Older participants were pre-screened and were not tested if they 

reported anxiety disorders. N = Older participants were included in the analyses after 

exclusion due to excessive artifacts and were excluded because their Mini Mental State 

Examination (MMSE) score was in the impaired range (< 27/30). Procedures, including 

informed consent, were approved by a University of Alberta ethical review board.

2.2 Experimental procedure

Participants were administered a Personal Data Sheet and the Mini Mental State 

Examination (MMSE).

The final Young group had significantly higher MMSE scores than the final Older group, 

t(27)= 2.26, p < 0.05, mean ± standard deviation=29.6 ± 1.2 (Young) and 28.7 ± 1.2 (Older). 

Years of education did not differ significantly between groups, t(27)= −0.95,p > 0.1. The 

Young group had equal numbers of male and female participants (8 each), whereas the 

Older group had more females (N = 9) than males (N = 4). Participants next performed a 

recognition-memory task, not reported here.

Finally, to examine resting EEG, participants performed an alternating eyes-open/eyes-

closed task, which was a longer version of the procedure used by [65], presented in E-Prime 

(Psychology Software Tools Inc., Pittsburgh, PA). Participants received verbal and written 

instructions to begin with their eyes open, and to close (or open) their eyes gently upon 

hearing a beep. The beep was presented every 5 s, with 61 beep presentations in total, 

constituting 5 minutes.

2.3 Data collection

Participants were fitted with a 256-channel HydroCell geodesic sensor net (EGI; Electrical 

Geodesics Inc., Eugene, OR) with electrode impedances kept below 50 kΩ [22]. Participants 

were shown the recording artefacts produced by eye blinks, jaw clenching, limb movement, 

and other common tics to demonstrate the importance in remaining still. Signal was initially 

recorded referenced to Cz, amplified by the EGI NetAmps 300 amplifier with a 400-Hz anti-

aliasing hardware filter, digitized at 250 Hz and acquired via NetStation software using a 24-

bit A/D converter.
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2.4 Data analysis

Analyses were conducted in MATLAB (The Mathworks, Natick, MA), supplemented by 

EEGLAB [18]. Signal was digitally filtered (bandpass: 0.1–50 Hz). Bad channels were 

interpolated when necessary. Signal at each channel was re-referenced to the average across 

electrodes. Independent component analysis [41] was conducted to identify and remove 

artifacts such as eye blinks and saccades.

2.4.1 Conventional power analysis—The continuous recording was analyzed (without 

epoching) with a Morlet wavelet transform [24], with a wave number of 6 cycles and 

frequency sampled logarithmically over the 1–45 Hz range. Wavelet power values were log-

transformed, and normalized by dividing each mean log-power value by the sum of log-

power across the 1–45 Hz range. For each participant, one power value was obtained at each 

frequency, at each electrode, averaging over all central time samples in the 30 epochs of a 

given condition (eyes open or closed), and statistical tests were then done at the subject 

level.

2.4.2 BOSC analysis—The BOSC method identifies segments of signal during which 

wavelet power at a given frequency, f, exceeds a power threshold, PT(f), for a minimum 

duration, of DT(f) consecutive time samples. DT(f) scales with frequency: DT = 3/f. PT(f) is 

derived from the theoretical background distribution of power values at each frequency as 

follows. The background EEG spectrum is assumed to be colored noise, Power(f) = Af−α 

typical of natural autocorrelated signals [55]. This assumption means we can estimate the 

background spectrum by fitting it with a linear regression in log–log coordinates. PT(f was 

set to the 95th percentile of the expected χ2(2) distribution of power values at each frequency 

with the distribution mean set to the estimated mean from the linear regression step. The 

reason for the χ2(2) distribution is that wavelet-power values are squared wavelet 

coefficients, which in turn, are complex numbers. The real and imaginary parts of these 

complex numbers inherit the approximately Gaussian-distribution of voltage values in the 

time domain. Squaring these complex numbers produces values that are sums of pairs of 

squared Gaussian values, one for the real part and one for the imaginary part of the complex 

number, hence a χ2 distribution with 2 degrees of freedom [50]. DT was calculated based on 

the duration of three complete oscillation cycles at each frequency, 3/f. Episodes for which 

both PT(f) and DT(f) were exceeded were tagged as oscillations. An open-source MATLAB 

library is freely available in the supplementary materials associated with [65]. Our primary 

measure, Pepisode(f) was the proportion of time during which oscillations at a given 

frequency, f, were detected. To avoid signal due to the auditory event-related potential 

response to the beep stimuli, the 1000 ms following each beep was excluded from all 

analyses. As with power, for each participant, one Pepisode value was obtained at each 

frequency, at each electrode, averaging over all central time samples in the 30 epochs of a 

given condition (eyes open or closed), and statistical tests were then done at the subject 

level.

Topographic maps were rendered with interpolated 3-D splines, in a 2-D spherical view, 

using EEGLAB’s topolot.m function [18].
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3 Results

We examine rhythmic activity at two electrodes of interest, comparing conventional spectral 

analysis with the BOSC method, and comparing Older versus Young participants (Figures 

1–4) to evaluate all our research questions. We then examine the topographic patterns of 

activity (Figures 5–7) to test if the two methods may be sensitive to different underlying 

sources, further speaking to research question #1.

3.1 Single-electrode analyses

The upper panels in Figures 1 and 3 plot spectra based on a conventional analysis: the 

logarithm of power (normalized by total power), measured with wavelets, as a function of 

frequency, at two example electrodes (Oz and Fz, respectively). One can clearly see the so-

called colored-noise form of the power spectrum, where power values are higher for slower 

frequencies than faster frequencies. Both groups also exhibited the expected alpha-band 

peak (8–12 Hz, typically ~10 Hz) which was larger with eyes closed than open. The delta 

and theta bands clearly had non-zero power values, but without a plainly visible peak in the 

power spectrum, it is unclear if all or any of the power at those frequencies reflects actual 

rhythms. The BOSC method was then applied to the signal (lower panels). To visualize 

individual variability, we include single-participant plots in Figures 2 and 4. The measure, 

Pepisode(f), is the proportion of recording time during which oscillations were detected, as a 

function of frequency, f. The BOSC plots are much flatter than the power spectra (apart from 

the peaks), showing that the colored-noise background has been corrected for. The alpha 

peak remains, suggesting that it indeed reflected rhythmic activity.

Alpha band (~10 Hz)—The “alpha rhythm,” associated with visual idling or inattention, 

is one of the most dominant features of the human EEG [57]. Thus, we expected it to be 

detected comparably with both spectral analysis methods (research question #1). It appeared 

as a peak at Oz (Figure 1), both in the conventional spectrum and with the BOSC measure, 

and as expected, it synchronized further when the eyes closed. As in [65], the BOSC method 

confirmed that there were long runs of alpha-band rhythms, lasting around 50% of the time 

during eyes-closed. The peak frequency was not dependent on age, and during eyes-closed, 

we found no significant difference between Older and Young participants, in line with prior 

studies [57].

Theta band (4–8 Hz)—As can be seen in Figures 1 and 3, the conventional power 

measure did not show a clear theta-band peak, as usual [34], but neither did the BOSC 

measure. At Oz during both eyes-open and eyes-closed, the conventional measure showed 

significantly greater theta-band power (at 5.66 Hz at Oz, and at both 5.66 Hz and 4.76 Hz at 

Fz) for Young than Older participants; however, this difference did not survive the 

additional criteria applied with the BOSC method. In addition, the Pepisode values within the 

theta band were low, quite near the false-detection rate one expects due to the 95th percentile 

power threshold, which caps the false-detection rate at 0.05, followed by the duration 

threshold, which reduces that upper limit a bit further. Therefore, our recordings showed 

little evidence of the presence of theta rhythms at all, answering research question #2, and 
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suggests that prior reports of age-differences in theta power are due to non-repeating signal 

(research question #3).

Delta band (1–4 Hz)—The wavelet power spectrum was sizeable in the delta-frequency 

range. This could also be observed with the BOSC method, suggesting that activity at low 

frequencies may indeed reflect rhythms. Interestingly, at both Fz and Oz, there was 

significantly more power at numerous delta frequencies in the Young group. However, this 

effect did not remain when the BOSC measure was used. This may be in part due to the 

normalization in the conventional method over-correcting for power differences at other 

(beta, in this case) frequencies. This demonstrates how conventional methods can be 

misleading. In fact, although non-significant, the BOSC measure during eyes-open was 

nominally higher in the Older group at frequencies under 2 Hz. It is possible that this is 

related to prior reports of “slowing” of the EEG in healthy aging [57]. Unexpectedly, at 2.38 

Hz, at Oz during eyes-closed, the BOSC measure showed more oscillations in Young than 

Older participants. Overall, we found no evidence of increased delta activity, rhythmic or 

non-rhythmic, in older participants (research question #3).

Beta/Gamma band (>12 Hz)—Although we had not anticipated it (but not 

unprecedented; see Discussion), there were age differences in the beta band. Older 

participants exhibited more beta-band power during both eyes-open and eyes-closed, 

although only significantly with the BOSC measure in the eyes-open condition. One can see 

in Figure 4 that the beta effects are not due to one or two participants, but also that not all 

Older participants have elevated levels of beta oscillations. Further, this figure shows that 

the beta oscillations do not appear as a clearly distinct peak; rather, some participants’ beta 

oscillations might be an extension of either of the two peaks (alpha and gamma) that 

sandwich it.

3.2 Topographic patterns and presumed sources

The BOSC method is more selective for rhythmic (repeating) activity than conventional 

power-spectrum measures. We reasoned (research question #1) that for oscillations that are 

high-amplitude and present for much of the recording time, the two measures should agree, 

since the power would clearly be mainly measuring power of that rhythmic activity. For 

frequencies for which oscillations are sporadic, we expected the two measures to diverge. 

Thus, for sporadic oscillations, power may be predominantly measuring a characteristic of 

non-rhythmic (non-repeating) activity (within a narrow spectral band), and thus, potentially 

different sources of brain-activity as well. The topographic plot of the measure gives some 

indication of its source.1

One can see in Figure 5 that the topographic patterns, for eyes-closed alpha activity, are 

moderately similar between the power and BOSC measures. This holds for both Young and 

Older participants, but the topographies did differ in potentially important ways, suggesting 

that the two measures may also be sensitive to different sources, even when the very robust 

1This deserves some caveats. First, measures derived from power are all positive. Thus, one does not expect to see dipole patterns, in 
which polarity changes across the dipole; rather, both poles would have the same sign. Second, due to the well known inverse 
problem, there is always some degree of ambiguity about the generators of a signal recorded extracranially.
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alpha rhythm is present. Unexpectedly, there was considerable alpha-band power at anterior 

electrodes, but much of that anterior power apparently was not due to rhythmic, repeating 

signals, as Pepisode values were quite low at anterior sites. In Figure 6, one can see what 

happens when rhythmic activity is deemed to be rare; in this case, the topographic profile of 

theta power is quite different than the topographic profile of theta oscillations as detected 

with the BOSC method. Finally, in the delta band (Figure 7), the topographic plots were also 

quite different between measures. Although the BOSC method detected levels of rhythmic 

delta-band activity that were comfortably above the false-positive rate, suggesting that delta 

rhythms were in fact present, they were still somewhat rare. At such low frequencies, delta 

power was evidently mostly measuring something very different than the delta-band 

rhythmic activity detected by the BOSC method.

To quantify the similarity of these topographic patterns (expressed as value as a function of 

electrode), we use the mean-centered (mean value across all electrodes is subtracted from 

the value at each electrode), normalized dot product.2 This normalized dot product between 

two topographies can thus take on values from −1 to +1, and can be interpreted much like a 

Pearson correlation. The higher the dot product, the greater the similarity. Mean dot 

products between the power and BOSC measures for Young participants were (mean ± SD) 

alpha-band: 0.43 ± 0.27; theta-band: 0.05 ± 0.26, and these were significantly different by a 

paired-samples Mann-Whitney U test: U = 213, df =15, z = 3.20, p < 0.01. The delta-band 

also had relatively low dot products: 0.11 ± 0.32, also significantly below the dot products in 

the alpha band, U = 203, df =15, z = 2.83, p < 0.005. For Older participants, mean dot 

products between the power and BOSC measures were, alpha-band: 0.38 ± 0.32; theta-band: 

0.11 ± 0.31; and these were also significantly different, U =124, df =11, z = 2.03, p < 0.05. 

Dot products for the delta-band were also somewhat low: 0.28 ± 0.32 but not significantly 

lower than the alpha-band dot products.

To get a more complete picture of how the topographic similarity depends on frequency, 

Figure 8 plots the dot products between wavelet power and BOSC topographic maps at all 

frequencies, for both eyes-open and eyes-closed, and for both Young and Older participants. 

The dot products were fairly constant, rising somewhat at low delta frequencies, and were 

highest during eyes-closed at alpha frequencies. This is consistent with the idea that the 

more prevalent an oscillation is, the more the conventional power measure will be driven 

primarily by that rhythmic activity, whereas conversely, the more sporadic rhythmic activity 

is, the more conventional power measures and the BOSC method must be measuring 

different brain-activity, as we had predicted for our research question #1 (see similar 

reasoning by [49]).

4 Discussion

The BOSC method, with its improved selectivity for rhythmic (repeating) signals, and lack 

of need to normalize by total power, was able to confirm the presence of oscillations in the 

2For two topographic patterns, written as vectors, x and y, each with n dimensions, where n =the number of electrodes, the dot product 

is defined as  and the normalized dot product is defined as (x · y)/(|x‖ y|), where ‖ denotes the vector 

magnitude, . This is equivalent to the cosine of the (n-dimensional) angle between the two vectors.
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alpha, delta and beta bands, but cast doubt on the presence of truly rhythmic theta-band 

activity during rest. Age differences using the conventional power measure appear to be 

largely due to normalization artifacts [31], a problem avoided by the BOSC measure. Our 

findings suggest that low-frequency rhythmic activity during rest remains stable across 

healthy adulthood.

Theta activity in rest

Theta-band resting activity is being investigated as an early marker of neurodegeneration, 

decline or other sources of cognitive dysfunction. Because this seemed at odds with the 

more common findings linking task-related theta activity to effective cognitive function, we 

asked if there were theta rhythms during rest in healthy young and older adult brains 

(research question #2). Without a clear peak in the theta band [34], conventional power 

measures cannot speak directly to this question. With the BOSC method, our findings 

suggest that there are no theta oscillations exceeding the false-positive rate. This may 

explain failures to find correlations between theta power and fMRI signal during rest (e.g., 

[36]). Interestingly, [54] found frontal theta was inversely related to BOLD signal in the 

default mode network, which may be due to methodological differences, but we note that 

these authors defined the theta band as 2–9 Hz, which overlaps both with the conventional 

delta band and the conventional alpha and delta bands. It is unclear if their results were due 

to power in the theta band at all. In any case, our findings suggest that, at least in healthy 

young and older adults, theta-band power during rest may not reflect rhythmic activity, and 

perhaps not activity in a single, simple source. Our findings thus inform our understanding 

of applied studies; if rhythmic theta were to be confirmed as a feature of AD or MCI (i.e., 

satisfying the BOSC method’s criteria for rhythmicity), our findings suggest that this should 

be understood as an additional brain-activity pattern that is absent in healthy aging, rather 

than an exaggeration of a signal associated with healthy aging.

Delta activity during rest

Unlike theta activity, delta activity satisfied the BOSC method’s additional criteria to be 

considered rhythmic, and at a rate that comfortably exceeded the false-positive rate. Delta-

band power did differ between ages, but in the “wrong” direction, with more power in 

Young than Older participants. We suggest this was due to the normalization. By 

normalizing by total power, one allows measures of one frequency (in our case, beta-band 

power) to influence the measure at other frequencies. Interestingly, recording MEG during a 

fixation eyes-open resting task, [61] found an unusual result: low-frequency power (< 7 Hz) 

correlated inversely with age. Inspection of their power spectra, however, suggests that this 

might be an artifact of their normalization, as we discussed in the introduction. They 

normalized by mean power (broadband), and their older participants seem to have increased 

beta-band activity (which the authors believed was noise due to a nearby railway). Whether 

or not this beta activity is noise (and our findings and others suggest that it may be 

legitimate), this would clearly introduce a confound, because older participants’ mean power 

would be greater than younger participants’ power, due to the older participants’ excess beta 

activity. It is hard to know for sure, but it is possible that the low-frequency effects are due, 

at least in part, to the influence of the beta-band activity on the normalization step.
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According to the BOSC criteria, delta oscillations did not differ significantly between our 

two healthy age groups. Our findings suggest that, assuming no confounds due to 

normalization procedures, conventional measures of power might, in part, be measuring 

delta rhythms, but also other sources of potentially non-rhythmic, delta-band power, as the 

topographic patterns differed considerably between the conventional power measure and the 

BOSC measure. In turn, prior findings of increased delta-band activity associated with the 

onset or progression of AD may either reflect an increase in the prevalence or amplitude of 

those same delta rhythms, or the addition of a different source of delta rhythms, or it could 

reflect increases in non-repeating signals with energy in the delta band. Future clinical 

studies could resolve this ambiguity by quantifying both power and specifically rhythmic 

activity, using the BOSC method. One might even obtain a purer measure of bandpass 

activity in non-rhythmic sources by first excluding segments of the recording during which 

the BOSC method deems oscillations to be present.

Choice of resting protocol

As mentioned in the introduction, resting-state studies differ in whether they ask participants 

to keep their eyes open or closed. [58] used a classifier to detect neural signatures of sleep in 

a number of studies. They found that resting states lasting at least a few minutes have a high 

prevalence of participants presumably falling asleep. This was true for eyes-open as well as 

eyes-closed conditions. They cited this as a problem because sleep is associated with patient 

populations for which resting activity is being considered as a diagnostic measure or early 

marker. We chose our procedure, alternating several seconds of eyes open with eyes closed, 

in part to guard against participants falling asleep. [58] noted that resting states wherein 

participants are asked to maintain visual fixation (e.g., [21], [66]) guard against falling 

asleep. However, one could argue that active fixation conditions go against the spirit of 

resting-state research by asking participants to maintain vigilance. Although that may also 

be partly true for our resting condition, we suggest that it may strike a good balance between 

unconstrained eyes-open or eyes-closed resting conditions in which participants tend to fall 

asleep [58] and actual tasks. Our participants could not fall asleep, and yet their eye opening 

and closing was signalled by an auditory tone, so participants had no need to stay vigilant, 

only to respond when the tone arrived. Five-second intervals are long enough that one can 

avoid the auditory evoked potential and still have enough recording time in between eye 

opening and closing events to be able to adequately analyze oscillations. And, we can 

confirm that in at least one respect, our task resembles other resting tasks: alpha oscillations 

were present at high rates, particularly during the eyes-closed periods.

It is important to note that the five-second time scale limits our frequency resolution at the 

low end. Importantly, we did not epoch the data before wavelet-transforming, which would 

have been even more limiting, as well as introducing edge artifacts. Still, the 5-second 

alternations may have introduced non-stationarity at about 0.2 Hz. That is, with this 

protocol, we would be unable to measure power or oscillations at ultra-low frequencies, 

which may correspond to resting activity found in other studies (e.g., [1]), particularly with 

the duration threshold, requiring multiple cycles of sustained, elevated power. For theta 

frequencies, the window of analysis was sufficiently long, and for the frequencies we report 

(down to 1 Hz), we found little sign of slow rhythms increasing in prevalence in healthy 
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aging. However, it is nonetheless possible that large aging effects would emerge at even 

lower frequencies, beyond our bandwidth. For this reason, future studies may find it 

advisable to slow down the protocol to alternate every 10 seconds or more, to be measure 

such lower-frequency power and oscillations.

Beta oscillations

We did not expect increased beta oscillations in Older than Young participants, but there 

are, in fact, precedents in the literature. [27] found increased beta activity in older compared 

to younger participants, but then no difference in beta activity between older participants 

and patients with Alzheimer’s-like dementia. That suggests that elevated beta activity may 

be a sign of healthy aging, and not a marker of dementia. Our findings add to this, 

suggesting that beta activity associated with healthy aging is indeed rhythmic. [19] found an 

increase in beta power (percent of total power) in healthy elderly (65–80 years) compared to 

a healthy younger group (40–65 years). [42] similarly found an increase in beta activity 

during eyes-closed rest in one group of older participants (mean=61 years) compared to a 

younger control group (mean=30 years) but beta activity was lower again for an even older 

group (mean=79 years), although beta activity correlated with age across the 50–70 year 

range of their “young–old” group. Thus, the relationship between beta rhythms and age may 

not be straight-forward. Finally, these findings should be interpreted with caution, because 

beta-band activity can reflect muscle-movement artifact rather than brain activity [40], [57].

Conclusion

In sum, we did not observe a greater presence of low-frequency oscillations in healthy 

aging. Rather, low-frequency rhythmic activity, in both the delta and alpha bands, was 

present during rest and remained stable between our two healthy age groups. The clearest 

age effect we found was increased oscillations in the beta band in healthy Older compared to 

healthy Young participants. The BOSC method offered two chief benefits to the goal of 

studying resting EEG. First, because rest is, in a sense, its own “baseline” condition, power 

normalization is challenging. Normalizing by total power can introduce confounds [31], 

allowing activity at one frequency to produce spurious influences of measures of activity at 

other frequencies. The BOSC method avoided this problem by using the statistical properties 

of the signal itself to set oscillation-detection criteria modeled on the non-rhythmic, 

background, colored-noise spectrum. Second, the BOSC method provides principled criteria 

that are consistent with other studies to classify signals as rhythmic, in the sense that power 

exceeds a threshold, derived from the theoretical distribution of power values, for a 

minimum duration of several cycles. This produced a measure of brain activity that, being 

more selective for rhythmicities, can be distinguished from conventional measures of power, 

which are more inclusive; consequently, topographic patterns, which are indicative of the 

neural source, differed substantially between the BOSC measure and the conventional power 

measure for frequencies at which rhythms were sporadic. By including both conventional 

power measures and BOSC-derived measures in a resting EEG study, one can obtain greater 

specificity in the measure, potentially fine-tuning early markers of AD and improving our 

understanding of healthy resting EEG across the lifespan.
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Highlights

• Rhythmic EEG during rest may increase in aging and age-related 

neurodegeneration.

• Previous studies have not clearly distinguished rhythmic from non-rhythmic 

signal.

• We use a rhythm-selective method (BOSC) to disentangle these in healthy 

aging.

• Theta oscillations were not present above expected false-positive rates.

• Delta rhythms were present but showed little evidence of age effects.
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Figure 1. 
Resting-state rhythms at Electrode Oz for Young and Older participants. a and b plot 

conventional power-analysis measure: wavelet power (log-transformed and then normalized 

by total log-power) as a function of frequency (also on a logarithmic scale). c and d plot the 

BOSC measure, Pepisode, or proportion of time occupied by oscillations at each frequency. 

Error bars are standard error of the mean. * - significant difference between Young and 

Older groups (Mann-Whitney U test, df = 26, p < 0.05, uncorrected).
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Figure 2. 
Resting-state rhythms plotted for individual participants at electrode Oz. Each panels plots 

the BOSC measure as a function of frequency (Pepisode, or proportion of time occupied by 

oscillations at each frequency), for Young (a,b) and Older (c,d) participants, during eyes-

open (a,c) and eyes-closed (b,d). These plots correspond to the means and standard errors 

that are plotted in Figure 1c,d. Each line graph is for a different participant, and colours 

cycle through Matlab’s default colour sequence.
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Figure 3. 
Resting-state rhythms at Electrode Fz for Young and Older participants. a and b plot 

conventional power-analysis measure: wavelet power (log-transformed and then normalized 

by total log-power) as a function of frequency (also on a logarithmic scale). c and d plot the 

BOSC measure, Pepisode, or proportion of time occupied by oscillations at each frequency. 

Error bars are standard error of the mean. * - significant difference between Young and 

Older groups (Mann-Whitney U test, df = 26, p < 0.05, uncorrected).
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Figure 4. 
Resting-state rhythms plotted for individual participants at electrode Fz. Each panels plots 

the BOSC measure as a function of frequency (Pepisode, or proportion of time occupied by 

oscillations at each frequency), for Young (a,b) and Older (c,d) participants, during eyes-

open (a,c) and eyes-closed (b,d). These plots correspond to the means and standard errors 

that are plotted in Figure 3c,d. Each line graph is for a different participant, and colours 

cycle through Matlab’s default colour sequence.
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Figure 5. 
Alpha activity. Topographic plots (spline-interpolated) of conventional, wavelet power (a,c) 

versus the Pepisode of oscillations based on the BOSC method (b,d) comparing alpha (9.51 

Hz) activity for Young (a,b) and Older (c,d) participants. Colour scale denotes log(power) 

(a,c) or Pepisode (b,d), but these are dimensionless, since the topographic patterns were 

normalized to unit vector-length for each participant prior to averaging. Scales are adjusted 

to the range of values for each panel separately, to best visualize the topographic patterns. 

Note that although sources of EEG signal are usually dipoles, because power and the BOSC 
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method start by squaring voltage, a dipole appears not as a positive pole next to a negative 

pole, but like two positive poles.
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Figure 6. 
Theta activity. Topographic plots (spline-interpolated) of conventional, wavelet power (a,c) 

versus the Pepisode of oscillations based on the BOSC method (b,d) comparing theta (6.73 

Hz) activity for Young (a,b) and Older (c,d) participants. Colour scale denotes log(power) 

(a,c) or Pepisode (b,d), but these are dimensionless, since the topographic patterns were 

normalized to unit vector-length for each participant prior to averaging. Scales are adjusted 

to the range of values for each panel separately, to best visualize the topographic patterns. 

Note that although sources of EEG signal are usually dipoles, because power and the BOSC 
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method start by squaring voltage, a dipole appears not as a positive pole next to a negative 

pole, but like two positive poles.
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Figure 7. 
Delta activity. Topographic plots (spline-interpolated) of conventional, wavelet power (a,c) 

versus the Pepisode of oscillations based on the BOSC method (b,d) comparing delta (1.19 

Hz) activity for Young (a,b) and Older (c,d) participants. Colour scale denotes log(power) 

(a,c) or Pepisode (b,d), but these are dimensionless, since the topographic patterns were 

normalized to unit vector-length for each participant prior to averaging. Scales are adjusted 

to the range of values for each panel separately, to best visualize the topographic patterns. 

Note that although sources of EEG signal are usually dipoles, because power and the BOSC 
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method start by squaring voltage, a dipole appears not as a positive pole next to a negative 

pole, but like two positive poles.

Caplan et al. Page 28

Neuroimage. Author manuscript; available in PMC 2016 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8. 
Mean dot product of topographic patterns (e.g., Figs. 5–7) between the log(power) and 

BOSC measures, for Young (a) and Older (b) participants, computed separately for eyes-

open (o) and eyes-closed (×) conditions. Error bars denote standard error of the mean. 

Asterisks denote dot product significantly non-zero (p < 0.05, Mann-Whitney U test with df 

= 15 and 11 for Young and Older groups, respectively).
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Table 1

Resting-state rhythms at Electrode Oz for Young and Older participants.

a @ Oz: Eyes Open (Power) b @ Oz: Eyes Closed (Power)

c @ Oz: Eyes Open (BOSC) d @ Oz: Eyes Closed (BOSC)

a and b plot conventional power-analysis measure: wavelet power (log-transformed and then normalized by total log-power) as a function of 
frequency (also on a logarithmic scale). c and d plot the BOSC measure, Pepisode, or proportion of time occupied by oscillations at each 

frequency. Error bars are standard error of the mean.

* - significant difference between Young and Older groups

(Mann-Whitney U test, df = 26, p < 0.05, uncorrected).
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Table 2

Resting-state rhythms plotted for individual participants at electrode Oz.

a @ Oz: Eyes Open (Young) b @ Oz: Eyes Closed (Young)

Each panels plots the BOSC measure as a function of frequency (Pepisode, or proportion of time occupied by oscillations at each frequency), for 

Young (a,b) and Older (c,d) participants, during eyes-open (a,c) and eyes-closed (b,d). These plots correspond to the means and standard errors that 
are plotted in Figure 1c,d. Each line graph is for a different participant, and colours cycle through Matlab’s default colour sequence.
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Table 3

Resting-state rhythms at Electrode Fz for Young and Older participants.

a @ Fz: Eyes Open (Power) b @ Fz: Eyes Closed (Power)

c @ Fz: Eyes Open (BOSC) d @ Fz: Eyes Closed (BOSC)

a and b plot conventional power-analysis measure: wavelet power (log-transformed and then normalized by total log-power) as a function of 
frequency (also on a logarithmic scale). c and d plot the BOSC measure, Pepisode, or proportion of time occupied by oscillations at each 

frequency. Error bars are standard error of the mean.

* - significant difference between Young and Older groups

(Mann-Whitney U test, df = 26, p < 0.05, uncorrected).
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Table 4

Resting-state rhythms plotted for individual participants at electrode Fz.

a @ Fz: Eyes Open (Young) b @ Fz: Eyes Closed (Young)

c @ Fz: Eyes Open (Older) d @ Fz: Eyes Closed (Older)

Each panels plots the BOSC measure as a function of frequency (Pepisode, or proportion of time occupied by oscillations at each frequency), for 

Young (a,b) and Older (c,d) participants, during eyes-open (a,c) and eyes-closed (b,d). These plots correspond to the means and standard errors that 
are plotted in Figure 3c,d. Each line graph is for a different participant, and colours cycle through Matlab’s default colour sequence.
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Table 5

Alpha activity.

Alpha (9.5 Hz), Eyes Closed

Young Participants

a Power b Pepisode (BOSC)

Older Participants

c Power d Pepisode (BOSC)

Topographic plots (spline-interpolated) of conventional, wavelet power (a,c) versus the Pepisode of oscillations based on the BOSC method (b,d) 

comparing alpha (9.51 Hz) activity for Young (a,b) and Older (c,d) participants. Colour scale denotes log (power) (a,c) or Pepisode (b,d), but these 

are dimensionless, since the topographic patterns were normalized to unit vector-length for each participant prior to averaging. Scales are adjusted 
to the range of values for each panel separately, to best visualize the topographic patterns. Note that although sources of EEG signal are usually 
dipoles, because power and the BOSC method start by squaring voltage, a dipole appears not as a positive pole next to a negative pole, but like two 
positive poles.
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Table 6

Theta activity.

Theta (6.73 Hz), Eyes Closed

Young Participants

a Power b Pepisode (BOSC)

Older Participants

c Power d Pepisode (BOSC)

Topographic plots (spline-interpolated) of conventional, wavelet power (a,c) versus the Pepisode of oscillations based on the BOSC method (b,d) 

comparing theta (6.73 Hz) activity for Young (a,b) and Older (c,d) participants. Colour scale denotes log (power) (a,c) or Pepisode (b,d), but these 

are dimensionless, since the topographic patterns were normalized to unit vector-length for each participant prior to averaging. Scales are adjusted 
to the range of values for each panel separately, to best visualize the topographic patterns. Note that although sources of EEG signal are usually 
dipoles, because power and the BOSC method start by squaring voltage, a dipole appears not as a positive pole next to a negative pole, but like two 
positive poles.
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Table 7

Delta activity.

Delta (1.19 Hz), Eyes Closed

Young Participants

a Power b Pepisode (BOSC)

Older Participants

c Power d Pepisode (BOSC)

Topographic plots (spline-interpolated) of conventional, wavelet power (a,c) versus the Pepisode of oscillations based on the BOSC method (b,d) 

comparing delta (1.19 Hz) activity for Young (a,b) and Older (c,d) participants. Colour scale denotes log(power) (a,c) or Pepisode (b,d), but these 

are dimensionless, since the topographic patterns were normalized to unit vector-length for each participant prior to averaging. Scales are adjusted 
to the range of values for each panel separately, to best visualize the topographic patterns. Note that although sources of EEG signal are usually 
dipoles, because power and the BOSC method start by squaring voltage, a dipole appears not as a positive pole next to a negative pole, but like two 
positive poles.
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Table 8

Mean dot product of topographic patterns (e.g., Figs. 5–7) between the log(power) and BOSC measures, for 

Young (a) and Older (b) participants, computed separately for eyes-open (o) and eyes-closed (×) conditions.

a Young b Older

Error bars denote standard error of the mean. Asterisks denote dot product significantly non-zero (p < 0.05, Mann-Whitney U test with df =15 and 
11 for Young and Older groups, respectively).

Neuroimage. Author manuscript; available in PMC 2016 May 15.


