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Abstract

Over the past two decades, comparative sequence analysis using codon-substitution models has been honed into a
powerful and popular approach for detecting signatures of natural selection from molecular data. A substantial body of
work has focused on developing a class of “branch-site” models which permit selective pressures on sequences, quantified
by the ! ratio, to vary among both codon sites and individual branches in the phylogeny. We develop and present a
method in this class, adaptive branch-site random effects likelihood (aBSREL), whose key innovation is variable para-
metric complexity chosen with an information theoretic criterion. By applying models of different complexity to different
branches in the phylogeny, aBSREL delivers statistical performance matching or exceeding best-in-class existing
approaches, while running an order of magnitude faster. Based on simulated data analysis, we offer guidelines for
what extent and strength of diversifying positive selection can be detected reliably and suggest that there is a natural
limit on the optimal parametric complexity for “branch-site” models. An aBSREL analysis of 8,893 Euteleostomes gene
alignments demonstrates that over 80% of branches in typical gene phylogenies can be adequately modeled with a single
! ratio model, that is, current models are unnecessarily complicated. However, there are a relatively small number of key
branches, whose identities are derived from the data using a model selection procedure, for which it is essential to
accurately model evolutionary complexity.

Key words: episodic selection, random effects model, evolutionary model, branch-site model, model complexity, variable
selection.

Introduction
Modern biologists take a keen interest in deciphering how
the action of various evolutionary processes generated the
patterns of variation in extant or fossil genetic sequences
(Kosiol and Anisimova 2012). Because of the foundational
importance of natural selection, a mature and diverse library
of computational approaches has been developed to infer its
targets and mechanisms at the molecular level (Delport et al.
2009; Anisimova and Kosiol 2009). Methods that quantify the
strength and type of natural selection by estimating the ratio
of nonsynonymous to synonymous substitution (!) using
phylogenetic codon-substitution models, pioneered by
Muse and Gaut (1994) and Goldman and Yang (1994),
have proven particularly popular and useful. In the context
of infectious diseases (see Aguileta et al. 2009 for a review),
these models have been used successfully to study transmis-
sion (Jonges et al. 2011), zoonosis (Demogines et al. 2012),
the evolution of drug resistance (Stanhope et al. 2008; Hill et
al. 2009; Murrell, De Oliveira, et al. 2012), escape from host
immune response (Frost et al. 2005; Cento et al. 2013),
the development of pathogenicity and virulence (Brault et
al. 2007), emergence of new strains (Schuh et al. 2014),
and evolutionary arms-races between viruses and

host antiviral defenses (Duggal et al. 2011; Daugherty et al.
2014).

A key feature of natural selection is its variability. The
strength and direction of selective effects differ from site to
site and change over time, and an ideal model should produce
reliable results in the presence of such variation. The original
Muse and Gaut (1994) model (MG94) estimated
nonsynonymous and synonymous substitution rates inde-
pendently for each branch b, allowing the average strength
of natural selection (quantified by branch-specific !b ratios)
to vary through time but not across sites. Conversely, Nielsen
and Yang (1998) introduced a model in which ! varied from
site to site, but was constant among branches. Combining the
two ideas, Yang and Nielsen (2002) published the first trac-
table “branch-site” model which incorporated limited varia-
tion in! both among sites and among branches and could be
used for detecting episodic positive selection. Considering
that this model and its refinements (Zhang et al. 2005;
Anisimova and Yang 2007) have been cited over 2,000
times in peer-reviewed literature, it is clear that many re-
searchers are using branch-site models to study the history
of natural selection in their systems. However, these models
have two key limitations. First, they explicitly disallow positive
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selection on a subset of “background” lineages. Second, they
only permit four configurations of branch-specific rate
parameters: 1) ! ¼ !0 < 1 everywhere on the tree, 2) ! ¼
!1 ¼ 1 everywhere on the tree, 3) ! ¼ !0 < 1 on back-
ground branches with ! ¼ !2 � 1 on foreground branches,
and 4) ! ¼ !1 ¼ 1 on background branches with ! ¼ !2

� 1 on foreground branches. We have previously shown that
these limitations can cause uncontrolled false positive rates
and loss of power when model assumptions are violated (i.e.,
when there are sites that do not conform to one of the above
four configurations, for instance, due to rate variation among
the background lineages) and simultaneously proposed a
method, branch-site random effects likelihood (BSREL), that
allowed all possible configurations of branch-specific rate pa-
rameters (Kosakovsky Pond et al. 2011).

The essential idea of the BSREL method is to endow each
branch with three ! parameters and to allow each site to
evolve under any of the three ! values. For a tree with B
branches, the resulting model considers 3B configurations of
! values at a given site (instead of only four configurations in
the original branch-site models), but remains tractable thanks
to an efficient algorithm for marginalizing the phylogenetic
likelihood function over all possible assignments of rates to
sites and branches, which requires the assumption that !
values are independent among branches.

By using a more complex model, BSREL avoids the uncon-
trolled false positive results that are obtained by previous
branch-site models in the presence of rate variation in back-
ground lineages, while achieving substantial improvements in
power. Although BSREL is no slower than previous models, it
is relevant to ask how complex should a model be for optimal
statistical performance?

In general, both the overall complexity and the specific
structure of the best model choice will depend on the parti-
cular data set. Consider only a single branch in the tree. If the
branch is very short, the number of substitutions observed
will not be very different at different sites, and it will not be
possible to accurately infer multiple rate categories. For longer
branches, site-to-site rate variation will become more evident
(Scheffler and Seoighe 2005), allowing a larger number of rate
categories to be inferred. At the other extreme, if the branch is
long enough for saturation to occur, the observed substitu-
tion rate will again become less informative so that fewer rate
categories can be inferred. The adaptive BSREL (aBSREL)
model developed and presented here exploits this phenom-
enon by adapting its complexity to the data set, inferring the
optimal number of rate categories to be used for each branch
through the small-sample Akaike Information Criterion
(AICc; Sugiura 1978). This approach was originally motivated
by our analyses of rapidly evolving viral pathogens (Wertheim
and Kosakovsky Pond 2011; Wertheim et al. 2013), whose
phylogenetic trees often exhibit characteristic patterns with
many short branches connecting recent isolates from a viral
species or a local epidemic, and several long branches which
relate different epidemics or different viral species, for exam-
ple, see figure 4 in Wertheim and Kosakovsky Pond (2011).

We evaluate the aBSREL method using comprehensive sim-
ulated and large-scale empirical data collections, encompassing

six carefully chosen examples, and a set of 8,893 Euteleostomes
gene alignments, included in version 06 of the Selectome

database (Moretti et al. 2014) previously analyzed for evidence
of episodic selection. Finally, we compare the computational
performance of aBSREL, BSREL, with that of a highly tuned and
algorithmically sophisticated implementation of the Nielsen–
Yang class of branch-site models (Valle et al. 2014).

New Approaches

Evolutionary Model

At the heart of efficient episodic selection detection is adap-
tive model complexity, implemented in aBSREL as a branch-
wise model selection procedure. Branch-wise adaptation to
the complexity supported by the data set removes the as-
sumption that all branches, even of different lengths and
spanning various evolutionary events such as speciation, con-
tain evidence of the same degree of substitution rate hetero-
geneity. Instead, we infer an appropriate number of
substitution rate classes for each branch and use the
method originally described in Kosakovsky Pond et al.
(2011) to mix these rate classes according to the proportion
of sites they are inferred to describe. For this and other models
of codon substitution (Anisimova and Kosiol 2009; Delport
et al. 2009) the rate of instantaneous substitution from a
sense codon x to a sense codon y is described by the (x, y)
entry in the generator matrix ðQ ¼ fqxygÞ of the time-homo-
geneous, stationary, continuous-time, and time-reversible dis-
crete state Markov process, using the Muse–Gaut equilibrium
frequency parameterization (Kosakovsky Pond, Delport, et al.
2010),

qbs
xy ¼

rbsðx; yÞ�ij�
p
j ; x and y differ by one nucleotide;

0; x and y differ by 4 1 nucleotide;

�
X
z6¼x

qbs
xz; x ¼ y:

8>>>><
>>>>:

We make use of several common modeling assumptions
(see table 1 for notation and parameter definitions).
Only single nucleotide substitutions (from nucleotide
i 2 fA; C;G; Tg in codon x to nucleotide j in codon y)
have nonzero instantaneous rates (see Kosiol et al. 2007
for an example of models relaxing this assumption). We
use the general time-reversible model for nucleotide sub-
stitution rates, parameterized by five rate multipliers �ij

(the sixth parameter is confounded with time) and nine
position-specific nucleotide equilibrium frequency pa-
rameters �p

j (for codon positions p 2 f1; 2; 3g) derived
from observed proportions in the data using a bias-cor-
rected CF3� 4 estimator (Kosakovsky Pond, Delport, et
al. 2010). It can also be shown that the equilibrium
frequency of a particular codon is the product of posi-
tion-specific �p

j for the three constituent nucleotides, nor-
malized for the absence of stop codons in the model; see
Kosakovsky Pond, Delport, et al. (2010) for an extensive
discussion on the subject.
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Both BSREL and aBSREL focus their attention on
estimation of codon-level rates, denoted by rbsðx; yÞ, with
superscript bs used to make explicit the dependence of
model parameters on a specific branch in the phylogeny
(b) and a specific site in the alignment (s). In implementing
these methods, we made two further common
simplifying assumptions: Only synonymous and
nonsynonymous codon substitution rates are distinguished
(i.e., for fixed values of b and s and x 6¼ y; rbsðx; yÞ will
depend only on whether or not x and y encode the same
amino acid), and synonymous substitution rates do not vary
from site to site or from branch to branch. Both of these
assumptions can be readily relaxed without altering the
core of the model (Pond and Muse 2005; Delport et al.
2010), but doing so would complicate comparison with ex-
isting models.

In accordance with these assumptions, we set

rbsðx; yÞ ¼

(
�bðsÞ; x and y encode different amino acids;

1; x and y encode the same amino acid:

The rate �bðsÞ is drawn from a branch-specific discrete
distribution of ! values: �bðsÞ 2 f!

b
1; . . . ; !b

Kbg, with the

probability weights of !b
k denoted as f b

k

�XKb

k¼1
f b
k ¼ 1

�
.

The parameters !b
k and f b

k are estimated from the data.
In BSREL, this distribution was modeled as having three

rate categories (Kb ¼ 3) at each branch. The key difference in
aBSREL is that Kb is now allowed to vary from branch to
branch and is estimated from the data using a step-up pro-
cedure. The result of this procedure (described in detail
below) is a single branch-site REL model, in which each
branch b has been assigned a model complexity Kb ranging
from 1 to a predefined limit (10 in our implementation).
Using such a data-informed model is conceptually similar
to performing a maximum-likelihood tree search for an align-
ment and then using this fixed, but data-dependent, tree for
downstream inference.

Likelihood Calculation

To compute the likelihood of single alignment site Ds

under a branch-site REL model, M, it is necessary to

marginalize over all possible assignments of ! values to
individual branches.

PðDs jM; model parametersÞ

¼
X
~!

PðDs jM; model parameters ; ~!ÞPð~! jMÞ:

The sum is taken over all possible vectors ~! assigning !b
k

values to individual branches. Because there are generally

combinatorially many (K ¼
Y

b
Kb) such assignments, the

sum cannot be computed by brute force. For a particular

assignment, the likelihood PðDs jM; model parameters ; ~!~Þ
is computed efficiently with the canonical dynamic program-
ming pruning algorithm (Felsenstein 1981). Kosakovsky Pond
et al. (2011) showed that if Pð~! jMÞ is assumed to be the
product of individual f b

k terms—that is, ! vary independently
from branch to branch—then marginalizing over ~! is possible
in a single pass of the pruning algorithm. To do so, one defines
the transition probability matrix, Pb (for each branch b) as the
convex mixture of Kb transition matrices where in calculating
individual rate matrix entries qbs

xy 2 Qb
k , the distribution �bðsÞ

is replaced by individual !b
k parameters:

PbðtÞ ¼
XKb

k¼1

f b
k exp ½tQb

kð!
b
kÞ�:

Finally, assuming independence among sites, the likelihood
of the entire alignment is obtained as the product of individ-
ual site likelihoods.

To control the number of differentially constrained param-
eters during branch-wise testing for positive selection, only a
single rate class per branch is permitted to represent positive
selection. The range of possible parameter values for !b

k<Kb is
constrained to ½0; 1�, whereas !b

k¼Kb can take on any value in
½0;1Þ. Changing the model to enforce the absence of pos-
itive selection requires changing only the constraint on one
parameter, !b

k¼Kb , to [0,1].

Determining Model Complexity

Unlike BSREL, where Kb ¼ 3 for all branches, aBSREL begins
by fitting the baseline model with Kb ¼ 1 for all b. This is
conceptually equivalent to the original MG94 (Muse and

Table 1. aBSREL Model Parameters.

Parameter Notation Domain Estimation

Number of x classes per branch Kb Positive integers Greedy step-up (AICc)

Branch-specific x rates xb
k [0,1] for k < Kb MLE

½0;1Þ for k ¼ Kb

Branch-specific x proportions f b
k ½0; 1�;

X
k

f b
k ¼ 1 MLE

Branch lengths tb ½0;1Þ MLE

Nucleotide substitution rate multipliers hij ½0;1Þ MLE

Nucleotide frequency parameters p
p
j ½0; 1�;

X
j2fA;C;G;Tg

p
p
j ¼ 18p Transformed counts

NOTE.—MLE, maximum-likelihood estimation. b indexes branches in the phylogenetic tree. i, j enumerate nucleotides. p is the position of a given nucleotide in a codon (1, 2, 3). k
enumerates Kb.

1344

Smith et al. . doi:10.1093/molbev/msv022 MBE



Gaut 1994) model extended to handle different nucleotide
substitution rates, and the free ratio model of Yang (1998). To
improve computational performance and convergence, we
fix �ij parameters at their values estimated from the baseline
model for the duration of the model selection process, and
use !b

1 and tb estimates as initial values for subsequent opti-
mizations. The heuristic step-up procedure for aBSREL follows
these steps:

1) Sort all the branches by their length under the baseline
model in descending order and iterate over sorted
branches, that is, start with the longest branch.

2) Fix all current parameter estimates at their current esti-
mated values, except for those affecting the branch cur-
rently considered (b), namely !b

k; f b
k , and tb.

3) Increment Kb by 1, introducing two new parameters !b
Kb

and f b
Kb

. Determine the best initial values for the newly
introduced parameters by a rapid search over a fixed grid
of values. Our implementation uses a grid of 10� 6 pairs
for !b

Kb
� f b

Kb
.

4) Fully optimize all branch-level parameters (!b
k; f b

k and tb,
2Kb in total) and compute the AICc score.

5) If AICc is improved by adding the new class, accept the
new class and go to step 2 to test an additional class for
the same branch, otherwise reset Kb to the value with the
best AICc and move to step 2 for the next branch in the
sorted list.

This algorithm describes a standard stepwise variable ad-
dition procedure in that it uses a greedy search to maximize
the AICc score in a setting where the complete search over all
combinations of Kb is combinatorially complex. Step 2 is es-
sential for ensuring that aBSREL is computationally tractable;
otherwise we would be performing O(B) complete codon-
based optimizations, where B is the number of branches in
the tree. Because we restrict the optimization to the set of
parameters that affect a single branch in the tree, and because
the evolutionary model is time-reversible, the phylogenetic
likelihood calculations for the entire tree in step 4 are reduced
to those of a tree with three branches (see Kosakovsky Pond
et al. 2009 for details). This modification means that steps 3
and 4 run at speeds which are essentially independent of the
number of sequences in the full alignment, and that the entire
model selection algorithm runs in time comparable to the
time that would be needed for a single reoptimization of all
parameters on all branches.

Our greedy procedure will be sensitive to the order in
which parameters are considered. We consider longest
branches first because parameters added early on in the se-
lection process affect all downstream inference; short
branches are assumed to have relatively little impact on the
model likelihood and on inference at other branches.

Fitting the Full Model

Estimates obtained during the model complexity determina-
tion are used as a starting point to fully reoptimize all con-
tinuous aBSREL parameters (table 1). Because of known
convergence issues for complex mixture models, having a

good starting point is essential for reducing run-times and
avoiding convergence to suboptimal values (Anisimova and
Yang 2007; Kosakovsky Pond, Scheffler, et al. 2010; Yang and
dos Reis 2011). The final optimized model becomes the uni-
versal alternative hypothesis for tests of positive selection (see
below) and is the basis for branch length calculations. Branch
lengths for mixture aBSREL models are defined as

LðbÞ ¼
XKb

k¼1

f b
k Lðb j! ¼ !b

kÞ;

and the branch length for a particular value of! is computed
using the standard expression:

Lðb j! ¼ !b
kÞ ¼ �

X
i

�it
bqb

ii :

Testing for Episodic Positive Selection at Individual
Branches

We test for significant positive diversifying selection on each
branch by defining a null model in which no positive selection
rate class is allowed on that branch, and using the LRT to
determine whether the null model can be rejected in favor of
the universal alternative, defined by the full model.

Because the aBSREL hypothesis tests are performed under
a model whose complexity is inferred from the data, standard
theoretical results on the asymptotic distribution of the LRT
statistic are not applicable. For example, assume that the true
model at a branch has one ! component. Ignoring the effect
of other branches for the time being, consider two distinct
cases: The aBSREL complexity analysis could infer Kb ¼ 1 (the
correct model), or Kb 4 1 (an overfitted model). The distri-
bution of the LRT statistic is then dependent on the outcome
of model selection:

LRT~

0:5ð�2
0 þ �

2
1Þ; Kb ¼ 1;

X2Kb�1

i¼0

ci�
2
i ; Kb 4 1:

8>><
>>:

Both cases follow from Self and Liang (1987), except that
the mixing coefficients can be inferred analytically in the first
case but not in the second. The number of �2 mixture com-
ponents corresponds to the maximum numbers of degrees of
freedom that can be lost in a Kb-component mixture model,
which can occur when all estimates of!b

k are the same so that
only one parameter is identifiable. A further complication is
that incorrectly inferred model complexity on other branches
will have some biasing effects.

A practical solution is to infer an empirical distribution of
the LRT under the worst case null, namely a single != 1 at a
branch, under a range of other model parameters (described
below) and fit a �2 mixture to it, as we have previously done
in the context of site-wise mixture models (Murrell,
Wertheim, et al. 2012). We limit the consideration to a
three-component mixture, because in all of our simulations
the worst case of overfitting was by a single rate class (two
extra degrees of freedom; supplementary table S1,
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Supplementary Material online). The mixture which allocates
50% to�2

0, 20% to�2
1, and 30% to�2

2 is in excellent agreement
with the tail of the empirical LRT distribution based on 50,000
samples (10,000 replicates of five-branch trees) simulated
under a strict null (supplementary fig. S1A, Supplementary
Material online, see Simulated Data) and controls false posi-
tive rates in all simulated scenarios considered here. We stress
that it is very unlikely that biological sequences other than
pseudogenes ever evolve under the strict null (!= 1 every-
where) model; hence, the test is likely conservative in the vast
majority of practical scenarios.

This test statistic is more conservative than the 50:50 mix-
ture of�2

0 and�2
1 used in the original BSREL paper (Kosakovsky

Pond et al. 2011). Applying the same fitting procedure to the
distribution of LRT under the null using three-rate BSREL (sup-
plementary fig. S1B, Supplementary Material online), we find
that a mixture which allocates 50% to�2

0, 5% to�2
1, and 45% to

�2
2 controls false positive rates, and we have updated publicly

available versions of BSREL to use this distribution.
Note that if none of the!b

k estimates under the alternative
model exceeds 1, then the alternative and the null models
coincide for branch b, and we fail to reject the null with
P = 0.5. If more than one branch is being tested, the Holm–
Bonferroni sequential rejection procedure is used to control
the family-wise error rate. Other, less restrictive procedures
could be used to bound the false discovery rate; these cor-
rections are straightforward to obtain from raw P values for
individual tests.

Results

Simulated Data

The following properties of aBSREL were demonstrated by an
analysis of 10,000 simulated alignments with 500 codons each:

1) The false positive rate for detecting episodic positive se-
lection, when all branches in the tree are tested, was well
controlled at less than 5% using a nominal test size of
0.05. This rate applied to the worst case scenario of strict
neutrality on all branches and did not depend on the
length of the branch being tested (supplementary fig. S2,
Supplementary Material online). The empirical test

mixture statistic derived from null simulations on the
four-taxon tree also controlled false positive rates (3.9%
at P � 0:05) on independently generated replicates with
32-taxon trees. Note that our null hypothesis is not strict
neutrality, but rather neutral evolution or negative selec-
tion, that is, all !b

k � 1 at a branch. As expected, the rate
of false detection was significantly below 5% for branches
where the largest !b

k was much less than 1, and it ap-
proached 5% for branches with largest !b

k close to 1
(results not shown).

2) The power of aBSREL to identify branches subject to
episodic diversifying selection has a clear dependence
on the amount of evidence present in the branch, dic-
tated usually by three parameters: the strength of selec-
tion (!b

k 4 1), the extent of selection (f b
k ), and the

branch length (proportional to the tb parameter). This
dependence is well known and applies to all !-based
methods (Scheffler and Seoighe 2005; Yang and dos
Reis 2011; Murrell, Wertheim, et al. 2012). Episodic selec-
tion was found for 80–90% of the branches unless they
were simulated under weak positive selection
(!b

k < 2:5), with a small proportion of sites subject to
positive selection (f b

k < 0:1) or along short (<0.15 sub-
stitutions per site) branches (fig. 1).

3) The model selection procedure is not prone to overesti-
mating model complexity. For example, only 2% of
branches simulated under a single rate class were inferred
to have more than one rate class (supplementary table
S1, Supplementary Material online). For branches simu-
lated with more than one rate class, 47% of rate classes
beyond the first were recovered by aBSREL. This includes
scenarios where recovery was potentially confounded by
rate classes with very low proportions, very small differ-
ences between ! values, or by very short branches with
very few total substitutions.

Empirical Data Sets
Model Performance
As expected, the step-up procedure successfully optimized
AICc, yielding the best scoring result among the three

A B

FIG. 1. The power of aBSREL to correctly detect branches with diversifying positive selection from the simulated alignments as a function of selection
strength (!) and proportion of sites subject to selection (A), or selection strength and the length of the simulated branch (B).
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models compared (table 2). In all cases, the three-rate BSREL
appears to be vastly overparametrized. We also applied the
“training” and “hold-out” cross-validation sets technique
from machine learning to explore the generalizability of the
model. We trained the aBSREL model on randomly chosen
50% of alignment sites (the training set), and then fitted that
(now fixed) model to the remaining 50% of the sites (valida-
tion). This generally yielded a simpler model than that in-
ferred from the entire alignment, but for sufficiently large
data sets (Ebola virus [EBOV], measles virus [MeV], avian
influenza virus [AIV]), this model which no longer depended
on the data had the best AICc (see the 50% AICc column in
table 2), implying that the model selection procedure cap-
tures generalizable complexity patterns.

Mammalian Cluster of Differentiation 2
This alignment includes sequences from ten mammalian
species coding for the extracellular domain of the cluster of
differentiation 2 (CD2) receptor found in the T-helper and
natural killer cells. It is known to play an important role in
the innate and adaptive immune responses (Davis et al.
2003). This alignment was originally analyzed by Lynn et
al. (2005) and used as a test case in Anisimova and Yang
(2007) and Kosakovsky Pond et al. (2011). In all previous
analyses, several branches were identified as targets of ep-
isodic diversifying selection. The aBSREL model selection
procedure identifies 7/16 (44%) branches with Kb ¼ 2,
and 9/16 which were adequately described by the baseline
MG94 model (Kb ¼ 1). With only 14 additional parameters
relative to the baseline model with no site-to-site rate var-
iation, aBSREL captured most of the likelihood

improvement seen with the full BSREL model, which uti-
lized 64 additional parameters (table 2). The reduction in
model complexity also resulted in a dramatic improvement
in run times, with aBSREL testing all branches for evidence
of positive selection 2:7� faster than BSREL. Both methods
found the same three branches to be under positive selec-
tion (fig. 2) at P � 0:05, suggesting that despite a much
simpler model structure, aBSREL does not miss important
patterns of evolutionary rate variation. In all cases, it is clear
that branches in the phylogeny assumed to have Kb ¼ 3
under the BSREL model do not support this level complex-
ity. For example, the short (0.002 substitutions/site) branch
leading to “baboon” (fig. 2) was inferred to have a single !
¼ 0:0 under aBSREL (no nonsynonymous substitutions). A
more complex model is likely to overfit the data, and an
examination of the parameter estimates for the three-rate
distribution under BSREL supports this expectation as the
distribution collapses to a point mass at 0. Other branches
may have partially resolved BSREL-deduced distributions,
for example, for “pig”: !1 ¼ 0:00 ðf1 ¼ 0:19Þ; !2 ¼ 0:00
ðf2 ¼ 0:26Þ; !3 ¼ 2:82 ðf3 ¼ 0:55Þ, which comprises two
distinct rate classes, but there is no statistically significant
(based on AICc) evidence for more than one rate class,
leading aBSREL to assign a single ! ¼ 1:27 to this branch.
Even on long branches inferred to be under selection, for
example, “cat,” aBSREL was able to collapse two of the rate
classes inferred by BSREL, from !1 ¼ 0:00 ðf1 ¼ 0:31Þ; !2

¼ 1:00 ðf2 ¼ 0:31Þ; !3 ¼ 6:59 ðf3 ¼ 0:38Þ to !1 ¼ 0:33 ðf1
¼ 0:57Þ; !2 ¼ 5:94 ðf2 ¼ 0:43Þ. Finally, we note that the
inclusion of variable selection pressures in the model

Table 2. Comparative Model Performance on Empirical Data Sets.

Data Set N L Model log L df AICc 50% AICca T Kb 4 1, % # pos.sel.b Tc

CD2 10 187 MG94d
�3,450.4 46 6,995.1 3,549.7 1.74 0.0 — —

aBSRELe
�3,415.0 60 6,954.0 3,552.7 2.30 44.0 3 (6) 00:02:35

BSREL �3,410.2 110 7,054.2 3,642.6 2.51 100 3 (6) 00:07:05 (2:7�)

BRCA 10 1,162 MG94d
�13,270.5 48 26,637.4 13,227.2 0.66 0.0 — —

aBSRELe
�13,260.2 52 26,624.9 13,230.1 0.74 11.8 0 (1) 00:01:59

BSREL �13,255.0 116 26,744.3 13,348.9 0.74 100 0 (1) 00:15:48 (7:9�)

Lysozyme 19 130 MG94d,e
�1,012.6 80 2,190.6 1,168.3 0.23 0.0 — —

aBSRELd,e
�1,012.6 80 2,190.6 1,168.3 0.23 0.0 0 (0) 00:00:59

BSREL �1,009.2 212 2,483.8 1,513.7 0.25 100 0 (0) 00:02:25 (2:8�)

MeV 122 525 MG94 �12,044.3 496 25,088.3 12,727.8 4.47 0.0 — —

aBSRELd,e
�11,914.5 518 24,882.5 12,689.5 5.22 4.6 1 (6) 00:39:32

BSREL �11,909.3 1,460 26,806.8 14,698.7 5.33 100 0 (6) 03:05:16 (4:7�)

EBOV 32 463 MG94 �6,660.9 136 13,596.3 7,150.7 4.47 0.0 — —

aBSRELd,e
�6,604.4 150 13,512.0 7,131.3 1; 623:05f 11.0 0 (1) 00:12:47

BSREL �6,603.2 380 13,986.4 7,601.9 5.34 100 0 (1) 00:19:58 (1:6�)

AIV 267 419 MG94 �44,366.15 1,076 90,905.21 45,094.7 9; 921:99f 0.0 — —

aBSRELd,e
�43,568.56 1,140 89,440.61 44,515.8 301:74f 6.0 1 (7) 09:33:38

BSREL �43,531.1 3,200 93,650.7 48,859.5 3; 647f 100 0 (8) 36:08:50 (3.8�)

aModel AICc on the validation subset of the alignment (see text).
bThe numbers in parentheses show the counts based on uncorrected P< 0.05.
cTime to run the complete analysis and test all branches for selection (HH:MM:SS format).
dFor each data set, the model with the best AICc on the validation subset of the alignment (see text).
eFor each data set, the model with the best AICc.
fAt least one branch in the tree was saturated, that is, had an estimated length equivalent to numerical infinity (Wertheim and Kosakovsky Pond 2011).

1347

Adaptive Branch-Site REL . doi:10.1093/molbev/msv022 MBE



increases the estimated total path length of the tree to 2.3
expected substitutions per site, compared with 1.74 under
the baseline model.

Breast Cancer 1, Early Onset
We reanalyzed the alignment of ten mammalian (including
eight primate) BRCA1 (Breast Cancer 1, Early Onset) se-
quences of exon 11 of the gene, previously examined with
Nielsen–Yang branch-site models by Yang and Nielsen (2002)
and Zhang et al. (2005). A more recent analysis that consid-
ered the full gene sequence and studied over 40 sequences
reported extensive adaptive evolution at this locus among
primates, using the same class of models and population ge-
netic tests (Lou et al. 2014). In an even more dramatic exam-
ple of model reduction than CD2, aBSREL found only 2/17
branches with evidence of more than one (two each) ! clas-
ses and yielded the best AICc score among the three models
compared (table 2) using 64 fewer parameters than BSREL,
performing the tests on all branches 7:9� faster. Neither
aBSREL nor BSREL identified any branches as subject to epi-
sodic diversifying selection, although the branch leading to
the Primate clade (fig. 3) had an uncorrected P< 0.01 for
both models. Support for the original hypothesis of Huttley
et al. (2000), that the human and chimpanzee lineages may be
under positive selection, was not supported by this aBSREL
analysis; as none of the branches in this group had uncor-
rected P values of 0.05 or below for rejecting the null hypoth-
esis of neutral or negative selection only.

Primate Lysozyme c
This canonical data set (Messier and Stewart 1997) was used
by Yang (1998) to illustrate the power of models allowing !
to vary from branch to branch. The initial analysis showed
elevated ! on a subset of branches relative to the rest of the
tree, but when it was later reanalyzed by Zhang et al. (2005)
using branch-site models, no evidence of positive selection
had been found. Because of the short gene length and the
relatively low levels of sequence divergence (table 2), aBSREL
deduces the most extensive model simplification possible—
none of the branches is assigned more than a single ! class,
that is, 132 parameters are eliminated. aBSREL tested all 33
branches 2:3� faster than BSREL, and similarly found no
branches under selection.

Rapidly Evolving Viral Pathogens
aBSREL performed as expected on gene alignments of AIV,
MeV, and EBOV previously analyzed in Wertheim and
Kosakovsky Pond (2011). In all three cases, only a small
proportion of branches (5–11%) supported models with
multiple ! rate classes; invariably, these branches include
long internal branches (supplementary fig. S2,
Supplementary Material online), which span long evolu-
tionary time periods and whose lengths are underestimated
by selection-agnostic models (Wertheim and Kosakovsky
Pond 2011). aBSREL is always preferred to BSREL by AICc
and yields a 1:6� 4:7� speedup; because of the large
number of tests, branches with significant uncorrected P
� 0:05 rarely survive multiple testing corrections. In the
cases of MeV and AIV, a single branch remains significant
for aBSREL, whereas none do for BSREL (using the more
appropriate mixture statistic defined in this article).

A Large-Scale Analysis of Mammalian Genes

An aBSREL analysis of 8,893 Euteleostomi coding alignments
from the Selectome database (Moretti et al. 2014) revealed

FIG. 2. Selection analyses of the extracellular domain of the mammalian
CD2 receptor with the standard BSREL and the aBSREL models. Each
branch b is annotated according to the inferred !b distribution; the
total length of the branch is partitioned according to the proportion of
sites in a particular class (f b

k ), and the color of the segment depicts the
magnitude of the corresponding !b

k . Branches which are thicker than
others are those which have P< 0.05 (corrected for multiple testing) for
rejecting the null hypothesis of all !b

k � 1 on that branch, that is,
identified as having experienced diversifying positive selection.
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FIG. 3. Selection analyses of exon 11 of the BRCA1 gene with BSREL and
the aBSREL models. Annotation is the same as in figure 2.
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that a substantial majority of individual branches (84.5%) can
be adequately modeled with a single! rate class (Kb ¼ 1, see
table 3). On average, across 493,172 analyzed branches, Kb was
1.16 (compared with Kb ¼ 3 for BSREL), implying greatly re-
duced model complexity and improved run times. Branches
with three rate classes were exceedingly rare (about 1 in 3,600
tested), and there was not a single branch with Kb 4 3,
implying that inference based on a single branch is necessarily
limited in site-level resolution (Murrell, Wertheim, et al. 2012).

Branches inferred to have multiple! rate classes tended to
come from longer alignments (fig. 4A, P< 0.001 analysis of
variance [ANOVA]), as expected because sites are modeled as
independent and identically distributed samples from an un-
derlying distribution, and increasing sequence length

increases sample size and power (e.g., Scheffler et al. 2014),
although pushing model complexity past Kb ¼ 3 may require
sequence lengths far exceeding a typical gene length. There
was also a pronounced trend to choose Kb 4 1 more fre-
quently for longer branches (fig. 4B, p< 0.001 ANOVA),
which confirmed both our prior intuition and well-known
simulation-based results which require some minimum diver-
gence level (branch lengths) for codon-based methods to gain
power (e.g., Anisimova et al. 2001; Murrell, Wertheim, et al.
2012; Scheffler et al. 2014). We also noticed a drop in the
proportion of branches with more than one! as the number
of sequences was increased (fig. 4C, P< 0.001 ANOVA). One
possible explanation of this behavior is that increasing the
density of taxonomic sampling, that is, shortening the average
branch length by adding more sequences, dilutes the power
to detect Kb 4 1. The confounding effect of this behavior
depends on the data set at hand: For instance in many viral
applications deep internal branches segregating viral species
or subtypes are going to be unaffected by additional sampling
of recent isolates (Wertheim and Kosakovsky Pond 2011),
whereas the effect of adding new taxa to a fixed clade
(Selectome) is more complex, and should be considered
before undertaking exploratory selection analyses. Finally,
figure 4D confirms the trend that nearly all significant results
for episodic positive selection arise on branches with Kb 4 1.

Examining the results from the standpoint of individual
alignments, aBSREL evinced episodic selection along at least
one branch in 2,079 alignments or 23.4% of the total. This
number increases to 7,109 (80.0%) if no multiple testing cor-
rection is carried out. Previous analyses with Nielsen–Yang
branch-site analyses using uncorrected P values found at least
one branch under selection in 3,747 of these alignments at
P � 0:05, suggesting that episodic positive selection is far
more prevalent than previously reported and that aBSREL
has far higher sensitivity. According to aBSREL there was ev-
idence of episodic selection along a mean of 0.3 branches (2.3
branches without multiple testing correction) per alignment.
Comparing the results of aBSREL with those reported by the
Selectome pipeline (both using uncorrected P values), we
found that the methods agreed on 17.7% of the alignments
with no evidence of episodic selection, and 39.8% with evi-
dence of selection along at least one branch. aBSREL reported
a positive finding of positive diversifying selection (vs. a neg-
ative finding by selectome) for 39.8% of the alignments,
whereas the reverse was true only for 2.3% of the alignments.
Restricting aBSREL inferences by requiring that P values pass
multiple testing correction, something not done by the

Table 3. Branch-Level Statistics for the aBSREL Analysis of the 8,893 Selectome Coding Alignments (493,172 total branches), Stratified by the
Inferred Number of x Classes (Kb).

Kb % of Total Median (interquartile range) % with P � 0:05

Branch Length Sequence Length, Codons Branch Count Corrected Uncorrected

1 84.51 0.02 (0.005–0.05) 145 (89–226) 67 (55–77) 0.0043 0.054

2 15.46 0.16 (0.08–0.42) 190 (124–293) 63 (51–73) 3.5 26.6

3 0.028 0.46 (0.07–5.3) 232.5 (139–412.5) 67 (55–77) 9.6 78.6
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FIG. 4. Correlates of signal for evolutionary process complexity in the
selectome data sets. Each panel depicts the fraction of all align-
ments reported by aBSREL as having more than one! rate class selected
by the step-up procedure (Kb), as a function of (A) the length of the
alignment (codons), censored at 2,000 due to sparse sampling after-
wards (binned in increments of 50 codons); (B) branch length (expected
substitutions per site [binned in increments of 0.01]); (C) the number of
sequences (binned in increments of 2 sequences); (D) uncorrected P
value for episodic positive selection (binned in increments of 0.005).
Each point represents an average over at least 100 individual branches.
Lowess smoothing polynomials (smoothing span 0.25) are shown in
solid light gray.
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Selectome pipeline, we still found that 8.9% of the data sets
are reported as selected by aBSREL but not Selectome (the
reverse was now true for 27.6% of the data sets).

Computational Performance Comparison with
Nielsen–Yang Branch-Site Models

Recently, Valle et al. (2014) developed a highly tuned imple-
mentation of the Nielsen–Yang branch-site models for de-
tecting diversifying episodic selection. We benchmarked our
implementation of aBSREL versus fastCODEML 1.1 on the
six empirical data sets discussed previously. We measured the
time it took to test all internal branches in the tree one at a
time (as fastCODEML iterates only over internal tree
branches when no specific foreground is specified), as well
as peak resident memory usage. Because the statistical meth-
ods implemented in the two programs differ in a variety of
key features (evolutionary models, hypothesis testing
implementation, optimization, and parallelization algo-
rithms), our comparison is not that of algorithmic or
implementation efficiency, but rather of methodological effi-
ciency for typical practical applications. It is clear that aBSREL
runs dramatically faster (up to three orders of magnitude) on
the same hardware, using comparable or smaller memory
footprints, with increasing benefits for larger data sets
(table 4).

Discussion
The aBSREL method presented here is the first branch-site
approach to allow the complexity of the model to be inferred
from the data together with continuous model parameters.
By reducing the total number of parameters relative to exist-
ing models, applications of aBSREL benefit from improved
computational tractability and numerical stability, while pro-
ducing the same or better inferences. The ability to accurately
and efficiently detect positive selection with aBSREL in sub-
stantially less time than other complex branch-site codon
models makes possible more detailed analyses with longer
and more sequences than before.

Using comprehensive simulation data, we establish that
aBSREL is statistically well behaved, and that it matches or
exceeds the statistical performance of the original (fixed

complexity) branch-site REL method (Kosakovsky Pond et
al. 2011), while using 20–60% fewer parameters. We exploit
several optimization techniques to accelerate the model se-
lection problem, so that it performs selection tests several
times faster than BSREL, and up to 3 orders of magnitude
faster than highly tuned and algorithmically sophisticated
implementations of the Nielsen–Yang class of branch-site
models (Valle et al. 2014), reducing an estimated run time
from an intractable 1.5 years on a medium size Avian influ-
enza virus data set to a much more manageable 6.5 h.

Unlike previous work by us and others (Anisimova and
Yang 2007; Kosakovsky Pond et al. 2011; Yang and dos Reis
2011; Lu and Guindon 2014), where a small number of “rep-
resentative” scenarios are considered in simulations, we have
explored the statistical performance of the test by sampling
from the parametric space in a systematic manner. This per-
mitted us to discover “edge” cases and revealed that the
asymptotic distribution for the likelihood ratio statistic is
more complex than we had previously thought, because
multicomponent mixture models, such as aBSREL or the orig-
inal BSREL (Kosakovsky Pond et al. 2011), possess null likeli-
hood ratio test (LRT) distributions which are best described
by multicomponent �2 mixtures. In particular, we realized
that the test statistic in the BSREL method (Kosakovsky
Pond et al. 2011) could lead to anticonservative behavior in
worst-case scenarios (strict neutrality along the entire se-
quence), which, while highly unlikely in biological data,
must still be accounted for in the design of the test statistic.
We estimated a more conservative null LRT distribution using
an empirically determined mixture of �2 components, which
controls the worst case false positive rate, but lowers the
power of the BSREL test somewhat. In practical applications,
this change means that some results previously close to the
significance level (e.g., P = 0.03) are no longer significant
(P 4 0.05). The new implementation referenced here uses
this new test statistic, and this finding also highlights that
simulations used to validate new tests must be systematic,
and not only limited to a few preselected sets of parameter
values.

As is often the case in evolutionary analyses, the model
used to perform tests on the evolutionary process is a “nui-
sance” parameter. Our procedure infers the aBSREL model

Table 4. Comparative Performance of aBSREL versus an Efficient Implementation of Nielsen–Yang (NY) Branch-Site Models by Valle et al. (2014)
in Testing for Selection on all Internal Branches of the Tree.

Data Set Number of Tests Run Time Peak Memory Use, MB

aBSREL NY � aBSREL NY �

CD2 6 113 s 225 s 2 23.6 15.1 0.64

BRCA1 7 2 min 15 min 7.5 27.6 49.3 1.79

Lysozyme 14 1 min 30 min 30 26.1 16.2 0.62

EBOV 29 7 min 9 h &77 51.4 81.2 1.58

MeV 119 0.5 h &2 weeksa &670 190.8 331.0 1.73

AIV 264 6.5 h &1:5 yearsb &2; 000 195.3 596.4 3.05

NOTE.—� factors are relative to the aBSREL baseline, that is, larger factors mean that NY was slower or used more memory.
aRun times were extrapolated from testing ten branches, because of long run times of the NY method.
bRun times were extrapolated from testing three branches, because of long run times of the NY method.
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from the data and uses the inferred model for further testing
on the same data. This shortcut could introduce potential
statistical artifacts, but is very common in the literature: For
example, the popular approach of using ModelTest to select
the best-fitting model of sequence evolution (Posada and
Crandall 1998) and then using this model for further tree
inference or other analyses commits the same statistical
transgression. More robust approaches including model-
averaging in information theoretic (Posada 2008; Delport et
al. 2010) or Bayesian (Li and Drummond 2012) frameworks
are not practical in the context of codon-substitution
branch-site models because of the computational complexity
of fitting even a single model. Although we cannot exclude
the possibility of scenarios in which errors in model inference
affect the identification of branches under selection, such
pathological scenarios are biologically unrealistic. A further
encouraging point is the congruence between the inferences
of aBSREL and the BSREL model of fixed complexity on
biological data.

aBSREL appears markedly more sensitive in detecting ep-
isodic selection than Nielsen–Yang branch-site methods, and,
in line with our prior expectations, longer branches in phy-
logenies and longer sequences tend to support more complex
models of variation. aBSREL analyses also draw attention to
previously underappreciated points. First, the majority of
branches (70–90%) are adequately handled by simple
models, but for the few branches where more complex selec-
tion patterns can be inferred, the complexity should be cap-
tured. Not doing so may decrease power to detect positive
selection and reduce the accuracy of branch length inferences.
Second, there appears to be an upper bound to practical
model complexity on any single branch—we have not
found a single instance when the inclusion of four or more
!b values on a single branch was justified. Both of these points
indicate that adaptive model complexity is essential for study-
ing episodic diversifying selection. This also makes aBSREL an
attractive alternative to other strategies that have been de-
veloped to capture selection rate heterogeneity, including the
covarion models of Guindon et al. (2004) and the full Bayesian
treatment of Rodrigue et al. (2010), because these models are
computationally costly and often parameter rich.

Selective pressure acting on functional sequences can be
expected to vary from site to site on any given branch, and
the importance of recognizing this variation by incorporating
site-to-site variation of nonsynonymous rates into codon-
based models has long been recognized (Nielsen and Yang
1998). However, when we also want to incorporate rate var-
iation over time, we can no longer aggregate information over
the whole phylogeny; the information available for inferring
site-to-site rate variation at a single branch is limited. As a
consequence, aBSREL tends to infer only a small number of
rate categories (usually one or two, and never more than
three) for any given branch. When aBSREL infers only a
single rate category it may be the case that there is little
site-to-site rate heterogeneity on that branch (e.g., the
strength of selection is similar at almost all sites), but a
single rate category can also be inferred even when there is
substantial site-to-site heterogeneity. For multiple rate

categories to be inferred, there must be evidence that differ-
ent sites have experienced different numbers of substitutions,
and this will not be the case for branches that are too short
(all sites having close to zero substitutions) or too long (the
number of substitutions appearing to be similar at all sites due
to saturation). With aBSREL we are able to identify and assign
complex models to those branches that are informative for
site-specific selection inference. These branches will be neither
too short nor too long, and display sufficient site-to-site rate
heterogeneity; it is only these branches for which it is advan-
tageous to infer complex rate distributions and where suffi-
cient evidence for inferring positive and/or purifying selection
is likely to be available.

There are several features that may add additional sensi-
tivity or specificity to applications of aBSREL, such as synon-
ymous substitution rate heterogeneity or nonuniform amino
acid substitution rates. It has frequently been shown that
substitution rate heterogeneity exists not just between non-
synonymous classes of sites but also synonymous sites which
are frequently assumed to be selectively neutral and serve as
the basis for most positive selection inference methods.
Selective forces such as mRNA secondary structure
(Tuplin et al. 2002) or overlapping genes (Miyata and
Yasunaga 1980) can affect inferences of positive selection,
especially for viral sequences. Similarly, different organisms
are going to have different amino acid substitution rates
much like nucleotide substitution rates. Incorporating these
features into aBSREL could return increased power from
greater biological realism, at the expense of additional com-
putation complexity.

Materials and Methods

Simulated Data

We investigated the statistical performance of aBSREL on sim-
ulated data; in the case of step-up variable selection, it is parti-
cularly important to ensure that we do not overfit the data or
consistently misindentify the model because of the greedy
nature of the method. To investigate false positive rates in
the worst case, we simulated 10,000 alignments with 1,000
codons each using a balanced four-taxon tree assuming
!= 1 along every branch in the tree, and 400 alignments
with 1,000 codons each using a balanced 32-taxon tree (see
below for the distribution of branch lengths). Despite its sim-
plicity, we previously used the same four-taxon setup to dem-
onstrate undesirable statistical behaviors of the Yang and
Nielsen (2002) class of models when model assumptions had
been violated. The model parameters (table 1) under which
these sequences were simulated were randomly drawn from
probability distributions selected to approximate empirical
data sets.

To systematically explore model parameter space, we im-
plemented a rejection sampling method to ensure a mini-
mum level of uniformity in sampling the space of parameter
value combinations. This procedure involved binning all po-
tential combinations by strength of positive selection, pro-
portion of sites under positive selection, and branch length
into a three-dimensional histogram with 18, 18, and 14 bins,
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respectively. Rejecting branches that fall within a bin already
occupied by 50 other branches drove sampling of other,
more extreme combinations of parameter values. The
three-dimensional histogram was collapsed by one dimension
for each of the power heatmaps in supplementary figure S3,
Supplementary Material online, resulting in at least 50
branches per hexagon. The distributions from which param-
eter values were drawn largely reflected the necessary uniform
sampling. Branch lengths were drawn from a uniform distri-
bution between 0 and 2 and rate class proportions were
drawn from a Dirichlet distribution. All ! values were limited
to ½0; 10�, and all but one rate class for each branch was
further limited to between 0 and 1. Positive selection
strengths for branches with a single rate class and fewer
than ten rejections were drawn from an exponential distribu-
tion with a rate parameter of 2, whereas parameter values for
branches with more than one rate class or with one rate class
and more than ten rejections were drawn from a uniform
distribution. The number of rate classes was drawn from a
Poisson distribution (�= 2) truncated to take values in {1, 2,
3}. After 500 rejections, the number of rate classes for a
branch was automatically increased to 3 to add additional
uniformity in proportion sampling.

We tabulated false positive error rates and power to detect
selection from analyzing these alignments as functions of
model parameters.

Empirical Data Sets

To demonstrate the performance of aBSREL on biological
data and compare it with other models, we selected the
three empirical data sets we had used in the BSREL manu-
script (Kosakovsky Pond et al. 2011), and the three alignments
of viral genes where we had previously demonstrated the
importance of modeling temporally variable selection in the
context of molecular dating (Wertheim and Kosakovsky Pond
2011).

To test whether or not the findings from the six empirical
data sets are generalizable, we also ran aBSREL on 8,893 of the
coding sequence alignments from Euteleostomi included in
version 06 of the Selectome database (Moretti et al. 2014).

Computational Performance Comparison

One of the expected advantages of performing model selec-
tion prior to testing for selection is the significant reduction in
run times of the method. To test this expectation, we com-
pared the run times of aBSREL with those of BSREL on the six
empirical data sets of varying sizes. For comparison purposes,
we modified BSREL to take advantage of the same procedure
for finding a good starting point for full model optimization as
aBSREL except that Kb ¼ 3 for all branches (as in the original
method). We did not count the time needed to find the
starting point in BSREL runtime metrics, thereby biasing the
comparison against aBSREL. Additionally we evaluated how
aBSREL compares with highly tuned parallelized implementa-
tion of the Nielsen–Yang class of branch-site models, in pack-
age fastCodeML v 1.1 (Valle et al. 2014) on the same
six data sets.

Implementation and Availability

aBSREL is implemented in the HyPhy software package
(Kosakovsky Pond et al. 2005) and the Datamonkey.org web-
server http://www.datamonkey.org/absrel (Kosakovsky Pond
and Frost 2005). As part of HyPhy, it uses OpenMP, pthreads,
MPI, SIMD intrinsics, and other technologies to parallelize
individual likelihood calculations and independent optimiza-
tion tasks. A simple aBSREL tutorial (with links to compo-
nents and documentation) can be found at http://bit.ly/
hyphy-tutorial-aBSREL, last accessed February 25, 2015.

All speed comparisons were performed on a Mac Pro
(2013) with a six-core Intel Xeon E5 processor clocked at
3.5 GHz, 16 GB of DDR3 ECC RAM, running Mac OS X version
10.9.4, and gcc-4.8.3 to compile both HyPhy and
fastCodeML.

Supplementary Material
Supplementary table S1 and figures S1–S3 are available at
Molecular Biology and Evolution online (http://www.mbe.ox-
fordjournals.org/).
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