
Integrated Metabolomics and Genomics: Systems Approaches 
to Biomarkers and Mechanisms of Cardiovascular Disease

Svati H. Shah, MD, MHS1,2 and Christopher B. Newgard, PhD1,2,3

1Duke Molecular Physiology Institute, Duke University, Durham, NC

2Division of Cardiology, Department of Medicine, Duke University, Durham, NC

3Department of Pharmacology and Cancer Biology; Division of Endocrinology, Department of 
Medicine; Sarah W. Stedman Nutrition and Metabolism Center, Duke University, Durham, NC

Abstract

The genetic architecture underlying the heritability of cardiovascular disease (CVD) is 

incompletely understood. Metabolomics is an emerging technology platform that has shown early 

success in identifying biomarkers and mechanisms of common, chronic diseases. Integration of 

metabolomics, genetics and other ‘omics’ platforms in a systems biology approach holds potential 

for elucidating novel genetic markers and mechanisms for CVD. We review important studies that 

have utilized metabolomic profiling in cardiometabolic diseases, approaches for integrating 

metabolomics with genetics and other molecular profiling platforms, and key studies showing the 

potential for such studies in deciphering CVD genetics, biomarkers and mechanisms.
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Metabolomics, or the profiling of intermediary metabolites, is emerging as an important 

technology platform for understanding of mechanisms underlying common chronic diseases 

such as diabetes, obesity and cardiovascular disease (CVD). Metabolomics measures 

chemistry, and chemistry represents an integrated readout of upstream genetic, 

transcriptomic, and proteomic variation.1 It is also becoming apparent that metabolomics 

can be integrated with these other ‘omic’ technologies to identify novel biological pathways 

and disease mechanisms. At the simplest level, metabolite biomarkers can be combined with 

genetics, other biomarkers, and/or clinical variables to provide incremental gain in 

diagnostic or risk prediction models. At another level, metabolites can serve as intermediate 

phenotypes for genetic studies. And finally, at a more biologically and analytically complex 

level, metabolomics can be integrated with multiple “‘omic” platforms in a systems biology 

approach. A major goal of systems biology is to assemble a global map of the functional 

relationships and interactions between physical entities in the cell (genes, proteins, 
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metabolites, etc.), as well as a roadmap of the interaction of different tissue and organ 

systems for affecting physiologic homeostasis.2

The promise of metabolomics and integrated ‘omics’ analyses for chronic disease research is 

just beginning to be realized. Initial successes have fueled a surge in interest, but 

investigators need to be aware of study design, analytic and interpretative challenges. Here 

we review the status of this emergent area, as illustrated by provocative proof-of-principle 

examples.

Genetics and Metabolomics of CVD

It is well established that CVD is heritable. Prior to the Human Genome Project, hundreds of 

candidate gene studies were published, but few variants were consistently associated with 

disease and fewer still with detailed functional data. After publication of the initial draft of 

the human genome, many genomewide association studies (GWAS) for CVD were 

conducted, consistently identifying the same intergenic locus on chromosome 9p21.3 

However, the effect size of this single nucleotide polymorphism (SNP) is modest and has 

unclear functional effects. Larger GWAS through collaborative consortia have uncovered 

additional variants with weaker effects, but their impact on functions related to CVD, and 

their overall impact on development of disease remain to be determined.

While “static” genetic biomarkers are key components of heritability, it makes biological 

sense that with a chronic, systemic disease like CVD with early manifestations which can 

begin to develop in childhood, molecular signals more “proximal” to the disease process 

might serve as stronger biomarkers. Certainly, proteins reflecting the diverse biological 

processes of CVD are commonly used in practice (i.e. hsCRP, proBNP, troponin). The 

strong association of CVD with broad metabolic perturbations such as hyperglycemia and 

hyperlipidemia suggests that a more extensive survey of metabolic variation through 

application of metabolomics could identify metabolites with diagnostic and mechanistic 

relevance.

Indeed, metabolomics has already been used with some success to identify cardiometabolic 

disease biomarkers. An early study uncovered differences in NMR-derived metabolite peaks 

in a small group of patients with coronary artery disease (CAD) compared with controls.4 

Enthusiasm for the approach was tempered when a subsequent study found that the original 

association was likely confounded by statin medication use and subject gender5, 

emphasizing the importance of evaluating medications, comorbidities, diet, and other 

confounders. Fortunately, several subsequent studies have emerged that include validation 

cohorts identifying biomarkers strongly associated with CVD and contributing conditions 

including insulin resistance, diabetes, and inflammation.

For example, our group has demonstrated association of a cluster of branched chain amino 

acids (BCAA) and related metabolites with insulin resistance.6–8 Similar association has 

been observed in the Framingham Heart Study9, and a subsequent study made the important 

observation that baseline BCAA levels predicted future development of type 2 diabetes.10 

Baseline BCAA levels also predict improvement in insulin resistance with weight loss11, 

and BCAA levels are lower in metabolically healthy versus metabolically unwell 
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overweight/obese individuals.12 Interestingly, BCAA levels decrease more dramatically in 

response to bariatric surgery compared to a dietary intervention, even when matched for 

amount of weight loss, consistent with the greater impact of the surgical intervention on 

glucose homeostasis.13 Finally, levels of BCAA and related metabolites are associated with 

CAD independent of type 2 diabetes mellitus.14, 15 The potential mechanistic implication of 

these findings is illustrated by feeding studies in rats, in which supplementation of high fat 

diets with BCAA promoted insulin resistance despite lesser weight gain compared to rats fed 

unsupplemented high fat diet.7

More recently, metabolomic studies have identified additional biomarkers of obesity and 

diabetes. One study demonstrated a strong association of 2-aminoadipic acid levels and 

incident diabetes that remained significant when corrected for BCAA levels.16 2-

aminoadipic acid is a lysine metabolite. The reasons for its association with new-onset 

diabetes are not known, but interestingly, this metabolite was shown to increase insulin 

secretion in rodent and human islet cells. The authors suggest that elevated levels of 2-

aminoadipic acid in the prediabetic state could cause hyperinsulinism, leading to insulin 

resistance. Further studies are required to test this mechanism. Another recent study 

identified β-aminoisobutyric acid (BAIBA) as a metabolite secreted from myocytes with 

forced expression of the transcriptional coactivator PGC-1α.17 BAIBA levels were found to 

increase in response to exercise and BAIBA infusion was found to induce the appearance of 

brown fat. These studies suggest that BAIBA can act as a small molecule myokine that 

increases energy expenditure and participates in exercise-induced protection from metabolic 

diseases.17 Interestingly, one potential source of BAIBA is valine metabolism, but it can 

also be generated by degradation of thymine. BAIBA levels in obese and insulin resistant 

states have not been investigated, and such studies will be required in order to fully 

understand its relationship to metabolic function.

In CVD itself, several biomarkers have emerged from metabolomics efforts, some with 

mechanistic implications. An early study capitalized on a human model of “planned MI”: 

plasma was collected at several time points before and after alcohol septal ablation 

performed for management of hypertrophic cardiomyopathy, a surrogate model for 

spontaneous MI.18 Several metabolites changed in blood, including a signature consisting of 

aconitic acid, hypoxanthine, trimethylamine N-oxide and threonine, with metabolites 

increasing as early as 10 minutes after initiation of MI and earlier than traditional markers 

(i.e. troponin). While the pathophysiology of the planned MI model differs from that of 

“spontaneous” MI, levels of this same set of metabolites were also different in patients with 

spontaneous MI as compared with patients undergoing angiography who were not having 

MI. Thus, these metabolites may serve as earlier and more sensitive markers of MI.18

Metabolomic profiling has also identified markers predicting incident CVD events, a 

phenotype where clinical prediction models are incomplete. Using targeted mass 

spectrometry-based metabolic profiling in baseline blood samples from 314 patients with 

CAD, we found that a cluster of short-chain dicarboxylacylcarnitines (SCDA) discriminated 

the 74 individuals who went on to suffer death or MI, with over a twofold increased risk of 

CVD events for every 1 unit increase in levels of the SCDA metabolic signature.1 These 

results were validated in a case-control cohort (N=129)1, in a sequential cohort of 2023 
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individuals15 and in patients undergoing coronary artery bypass grafting (Figure 1a and 

1b).19 While many studies show independent association of biomarkers (i.e. after adjusting 

for relevant clinical variables), we demonstrated that SCDA metabolites added incremental 

predictive capabilities on top of clinical models. Specifically, 27% of individuals who would 

have classified as intermediate risk from a robust model including 23 clinical variables, were 

correctly reclassified into low or high risk by inclusion of metabolites (Figure 1c).15 Such 

analyses of incremental discrimination/prediction are important in assessing the significance 

of ‘omic biomarkers and will facilitate the translation of these biomarkers into clinical 

practice. Interestingly, little is known about the source of SCDA metabolites and how they 

link to CVD at a mechanistic level, but studies are underway in both areas.

Interest has emerged on the role of the gut microbiome in development of chronic 

cardiometabolic diseases. For example, using nontargeted metabolomics, higher circulating 

levels of trimethylamine N-oxide (TMAO), choline and betaine were observed in 

individuals suffering CVD events.20 The dietary lipid phosphatidylcholine is the primary 

dietary source of choline, and catabolism of betaine and choline by intestinal microbes leads 

to TMAO production. Dietary supplementation with these metabolites in mice promoted 

atherosclerosis, and ablation of the microbiota with antibiotics prevented the effect of 

dietary choline in enhancing atherosclerosis. Consistent with these results, antibiotic 

treatment caused TMAO levels in humans to decrease in response to an oral 

phosphatidylcholine challenge.21 Moreover, TMAO levels were higher in humans after L-

carnitine ingestion (a trimethylamine abundant in red meat). Carnitine can also serve as a 

TMAO precursor via microbial metabolism.22 Interestingly, different proportions of 

bacterial taxa were present in the feces of vegetarians as compared to omnivores, and several 

of these taxa were associated with plasma TMAO concentrations. This suggests that diet 

could modulate intestinal microbiota composition and concomitantly, the ability to 

synthesize TMA and TMAO from dietary L-carnitine, thus providing a mechanistic link 

between diet, the gut microbiome and atherosclerosis.22

Several studies have also linked the microbiome to metabolic diseases. A recent study of 

twins discordant for obesity involving transplantation of fecal material into germ-free mice 

revealed that mice harboring the transplanted microbiota from the obese twins had higher 

circulating BCAA levels and higher muscle acylcarnitine levels, an indicator of muscle 

insulin resistance.23 Remarkably, transcriptomic analysis of the microbiota revealed 

induction of the entire pathway of BCAA biosynthesis in the obese microbes (this pathway 

is present in bacteria but not in mammals), and metabolomic analysis of the obese 

microbiota demonstrated higher BCAA production.23 While the relationship between 

microbial metabolite synthesis/production and changes in host metabolism requires further 

study, these new findings highlight the importance of the interactions between microbial and 

host genetics and metabolism.

A more integrated ‘omics approach might also contribute to better understanding of the 

genetic architecture underlying CVD heritability. While large CVD genetics meta-analyses 

are able to identify statistically significant genetic variants, they have primarily relied on 

“lumping” of CVD phenotypes, often resulting in a low effect size for the variants. Such 

studies are certainly vital for elucidating the polygenic nature of CVD, but there is also a 
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need for parallel evaluations that “split” CVD into more discrete intermediate phenotypes. 

Metabolomic profiling holds great potential for enabling such phenotyping by reporting on 

subclinical cellular dysfunction that may not be embodied in more traditional measures. 

Metabolic profiling could also identify pathophysiologic changes at earlier time points in the 

CVD temporal continuum.

‘Omics Technologies and the Concept of Systems Biology

Advances in our understanding of disease pathophysiology, normal human physiology, and 

environmental influences on both have been driven recently by application of high-

throughput molecular technologies (Figure 2).24 It is now possible to measure millions of 

genetic variants in thousands of samples in a short period of time (GWAS). Next generation 

sequencing allows analysis of the entire exome or genome, with many centers having the 

ability to perform studies on hundreds to thousands of samples, in contrast to the handful of 

individuals sequenced for the initial draft of the Human Genome Project. Sequencing 

technologies have also advanced the scientific community’s ability to measure a larger and 

more comprehensive number of RNA transcripts and microRNAs. Technologies are 

likewise evolving for high-throughput epigenetic profiling. These tools are only recently 

being applied to cardiometabolic diseases, but show great promise for shedding light on 

gene/environment interactions. Finally, in parallel, steady advances in nuclear magnetic 

resonance (NMR) and mass spectrometry (MS) methods have enabled more accurate and 

comprehensive profiling of metabolites and proteins in tissues and blood.

The concept of systems biology moves beyond studying individual molecules or single 

reactions, integrating orthogonal data from diverse biological datasets including the genes, 

epigenetic modifications, RNAs, proteins, metabolites, environmental inputs, clinical 

variables and other factors, providing an analytic snapshot into normal and dysregulated 

biological function. The molecular phenotypes can be tested for relationships to each other 

and/or to clinical traits/diseases. These concepts are particularly relevant to cardiometabolic 

diseases with their dynamic temporal nature and multiple, varying environmental inputs. 

Such a systems biology approach may help the field to overcome the somewhat 

disappointing lack of clarity about genetic architecture of CVD derived from studies of 

‘static’ DNA variation in isolation. It seems reasonable to postulate that clear understanding 

of the genetic underpinnings of CVD pathophysiology will benefit from a more holistic 

analysis of gene expression, proteomic and metabolic consequences of altered gene 

expression, and the role of incremental clinical/environmental inputs.

Additionally, while individual genetic loci identified from GWAS of disease endpoints can 

be tested mechanistically using traditional molecular biology experiments, this approach is 

difficult given the modest effects of the identified variants and the uncertainty surrounding 

the specific gene or gene modifier that is driving the specific SNP association. Systems 

biology approaches can be useful in this regard, enabling analysis of molecular interactions 

in the context of multiple genetic polymorphisms influencing traits and disease25, a model 

more directly relevant to the common, complex cardiometabolic diseases being studied. 

While these molecular pathway approaches will not replace mechanistic experiments, they 

are complementary and hypothesis-generating.
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Applications of Integrated Metabolomic-Genetic Analysis

Metabolomics and genetics can be integrated for different purposes including: (1) improving 

clinical risk models; (2) evaluating metabolites associated with a single genotype to generate 

hypotheses for mechanisms underlying a specific SNP/gene; (3) using metabolites as 

phenotypes for genetic studies (i.e. GWAS); and (4) more unbiased, hypothesis-generating 

studies integrating metabolomics with genetics, transcriptomics, proteomics and other 

‘omics to identify pathways of disease. While this latter systems biology approach with 

large orthogonal datasets may prove to be the most powerful for identification of novel 

mechanisms of cardiometabolic disease, integration of metabolomics with genomics at a 

simpler level has already led to useful advances as now reviewed.

One powerful feature of a multi-omics approach is that each molecular platform provides 

measures of different biological inputs to disease, meaning that their contribution to disease 

models can be orthogonal, thereby providing incremental discriminative/predictive 

capability. An early example of this approach demonstrated that inclusion of several protein-

based biomarkers incrementally improved risk prediction for acute coronary syndrome.26 

Another study showed the potential power of an integrated genetic risk score inclusive of 

SNPs for predicting CVD events, with the genotype score modestly improving risk 

reclassification incrementally to a clinical prediction model.27 In the newer metabolomics 

arena, investigators have sought to establish independent association (i.e. adjusting 

statistically for potential confounders) but not always incremental association (i.e. of 

metabolites with disease in models that account first for clinical factors). In the hopes of 

translating biomarkers into clinical practice, it is important to assess not just independent but 

also incremental association. For example, SCDA metabolites have been shown to add 

incremental predictive capability on top of a robust clinical model inclusive of 23 clinical 

variables with a net classification index (NRI) of 8.8%.15

Integration of genetics and metabolomics can also be useful in the context of a focused 

pathway of interest. The initial studies identifying TMAO linked host metabolism with 

microbiome metabolism. The same group has now demonstrated that two flavin 

monoxygenase family members oxidize trimethylamine (TMA) to TMAO. They further 

show that the FMO3 gene contributes to variations in TMAO levels in mice, that there is a 

relationship between variation in FMO3 expression and plasma TMAO levels, and that mice 

that express variants in this gene have increased susceptibility to atherosclerosis.28 

Metabolomics can also help inform functional annotation for single candidate SNPs/genes. 

TCF7L2 SNPs have been shown to be associated with type 2 diabetes, apparently due to 

deficiencies in insulin secretion, although the molecular mechanism of β-cell dysfunction 

remains unknown.29 Metabolomic profiling has revealed alterations in phospholipid 

metabolism in response to glucose tolerance testing in individuals with the risk TCF7L2 

genotype. The authors conclude that these results may reflect a genotype-mediated link to 

early metabolic abnormalities that occur before the development of impaired glucose 

tolerance.29

A similar approach can be employed in model organisms. Metabolomic profiling in mice 

with gene deletions resulting in inactivation of xanthine oxidoreductase identified, in 
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addition to the expected derangements in purine metabolism, dysregulation of several other 

pathways including pyrimidine, nicotinamide, tryptophan, and phospholipid metabolism30, 

demonstrating the power of metabolomics for systematic assessment of direct and indirect 

consequences of gene mutations. Proteomics and metabolomics were combined in mice with 

transgenic manipulation of protein kinase C epsilon (PKCε), providing evidence for a role of 

PKCε in modulating cardiac glucose metabolism.31 In another study, metabolomic profiling 

of hearts from VEGF-B transgenic mice (which exhibit cardiac hypertrophy without 

cardiomyopathy) revealed apparent mitochondrial lipotoxicity, suggesting that VEGF-B 

regulates lipid metabolism, a heretofore unrecognized function for this angiogenic growth 

factor.32

Metabolites can also be used as phenotypes (“mQTLs”) for genetic evaluations by serving as 

intermediate early reporters on the temporal continuum of CVD development. Further, 

metabolites are more closely related to genes of interest, serving as intermediates between 

genes and clinical endpoints, and thus mapping metabolites has potential for identification of 

genetic variants with stronger effect sizes than seen with mapping of CVD per se.33 

Moreover, the pathway in which the metabolite plays a role may provide insight into the 

underlying biological mechanism responsible for the development of the associated disease. 

Concordantly, metabolite levels have been shown to be heritable.34,35

An early study integrated metabolomics with GWAS in a small cohort of 284 participants 

from the KORA study.36 Using individual metabolites and ratios of metabolite 

concentrations (as proxies for enzymatic activity), they found that SNPs explained up to 

28% of the observed variance in metabolite levels. Four of the most significant SNPs were 

within genes encoding enzymes in the pathway of the corresponding metabolite.36 In a 

GWAS of six plasma polyunsaturated fatty acids (PUFAs) in 1075 participants in the 

InCHIANTI study of aging, genomewide associations were found in a region of 

chromosome 11 encoding three fatty acid desaturases (FADS1, FADS2, and FADS3), 

providing further evidence that genetic variation contributes to variation in plasma fatty acid 

levels.37 Another study integrating GWAS with 163 metabolites in a larger sample of 1809 

KORA subjects found eight genetic loci meeting genomewide significance, with most of the 

loci again located in or near enzyme or solute carrier coding genes involved in processing of 

the associated metabolite (Figure 3).38 For example, SNPs in ACADM were associated with 

C12/C10 acylcarnitine ratio; the enzyme encoded by this gene catalyzes the initial reaction 

in the beta oxidation of C4 to C12 straight-chain acyl coAs, and rare functional coding 

mutations in ACADM cause an inborn error of metabolism (MCAD deficiency). This 

suggests that common SNPs in genes that cause rare Mendelian diseases may lead to a less 

severe and potentially subclinical phenotype that could only be discovered by mapping the 

metabolite itself. Several subsequent studies combining GWAS with metabolomics have 

been published (Table 1). It is important to note that although some of the identified SNPs 

have been associated with disease phenotypes in different cohorts, these studies have not 

shown that metabolite-associated SNPs also associate with disease in the same cohort. In 

fact, many of the aforementioned studies were not performed in disease-bearing cohorts, 

reducing the power for “triangulating” metabolic, genetic and disease associations.
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Integrated Metabolomics-Genetics: Systems Biology Examples

Integrated approaches have been applied in model organism studies, both for focused 

hypothesis testing and for hypothesis generation. As an example of the latter, a study 

integrating metabolomics, transcriptomics and genetics in liver samples from an F2 

intercross between a diabetes-resistant and diabetes-susceptible mouse strain connected 

variations in metabolites and transcripts to regions of the genome and constructed 

associative networks controlling liver metabolic processes (Figure 4a).34 Based on advanced 

computational analysis of this multi-omic data set, a causal network linking variations in 

glutamate to regulation of the key gluconeogenic enzyme PEPCK was identified, and 

importantly, experimentally validated by showing that glutamate induced expression of 

PEPCK and other genes in the network (Figure 4b).34 Studies of this nature serve as proof-

of-principle for use of systems biology in identification of plausible and testable metabolic 

control networks.

In humans, using network analysis from multiple ‘omics platforms in a large population-

based cohort from Finland, the authors elucidated functional effects of a lipid signaling 

module composed of a set of highly correlated genes with a prominent role in regulating the 

levels of 80 metabolites, and providing new links between inflammation, metabolism and 

adiposity.49 Such systems biology approaches may be useful even in small sample sizes. As 

an extreme example, an “integrative Personal Omics Profile [iPOP]” was performed on a 

single individual that integrated ‘omics over multiple time points over a 14 month period.50 

Whole genome sequencing identified a genetic variant predisposing the individual to 

increased risk of type 2 diabetes and monitoring of glucose and HbA1c levels subsequently 

revealed the onset of the disease despite a normal body mass index. Integrated molecular 

profiles changed concordant with respiratory infections, showing dynamic molecular 

changes in response to disease. Such studies not only aid in identification of novel 

mechanisms of disease pathogenesis, but perhaps project future approaches to personalized 

medicine.

Analytic and Bioinformatic Considerations

Analysis of millions of data points per single study subject poses unique challenges in ‘omic 

sciences. In some instances, traditional techniques can be employed. For example, analysis 

of individual analytes in GWAS or metabolomic studies is facilitated by adjustment for 

multiple comparisons. However, approaches that explicitly incorporate the collinearity and 

multidimensionality of the complex data structure, take biological pathway information into 

account, and analyze patterns or networks within the data, may have greater statistical power 

and enable better mechanistic hypothesis generation. Such approaches can be unsupervised 

(i.e. variation within the molecular data only) or supervised (i.e. variations in the molecular 

data and the disease state). Analytic approaches employed include factor analysis, 

hierarchical clustering algorithms, Gaussian graphical modeling, and pathway- and network-

based analyses that can integrate data from disparate ‘omic platforms and identify molecular 

interactions and pathways. Programs have been developed to aid in data visualization, 

statistical analysis and bioinformatic annotation and interpretation. These programs often 
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incorporate information from publically available databases and utilize pathway and 

network statistical analysis techniques.

Concurrently, the metabolomics community is making advances in metabolite annotation, 

nomenclature and cataloguing including the Human Metabolome Project and the LIPID 

Metabolites and Pathways Strategy (LIPID MAPS). One issue that remains to be overcome 

involves methods of quantification of metabolites. Some laboratories, including ours, 

emphasize “targeted” approaches that make use of extensive libraries of stable isotope-

labeled standards.7,34 For example, when measuring amino acids, known quantities of 

multiple stable isotope-labeled amino acids are added to the sample, and the concentration 

of the native analyte is calculated by reference to its cognate internal standard. In contrast, 

non-targeted methods that report analytes as relative peak areas unreferenced to specific 

internal standards are often used, even in epidemiological studies. It is important to note that 

correlation or association do not define directionality of a molecular relationship. Statistical 

methods for assessing cause-and-effect such as Mendelian randomization are becoming 

increasingly utilized, but do not replace the ultimate need for testing of predictions 

emanating from statistical analyses through biological experiments.

Study Design, Challenges and Future Directions

While the studies we have detailed highlight the great promise of combining high-

throughput molecular data, many considerations need to be addressed to enable dissection of 

the signal-to-noise in such data, avoid type 1 and type 2 errors, and ensure accurate data 

interpretation. Investigators must carefully decide on a study design from among various 

options including population-based cohorts, disease case-controls studies, or evaluation of 

“extremes” of a clinical or molecular trait. Statistical power should be considered, 

particularly in the context of large numbers of molecular biomarkers measured in smaller 

sample sizes. The depth of molecular profiling needs to be weighed against the quantitative 

precision (or lack thereof) of the measurements. Analytic strategies for multidimensional 

data reduction, pathway/network analysis, and adjustment for multiple comparisons should 

be delineated early in study implementation. Built into study design should be plans for 

laboratory validation of molecular targets, replication in other cohorts, and experimental 

validation of pathways identified from statistical analysis. For example, the association 

between BCAA, short-chain dicarboxylacylcarnitines, and betaine-derived metabolites and 

cardiometabolic diseases has been validated in independent cohorts, as have several of the 

mQTL identified in metabolic GWAS, but other findings reviewed herein have not. Other 

challenges being tackled by the scientific community include a need for a common 

nomenclature for metabolomics, standardization across molecular platforms, and 

development of more robust analytic techniques for the “large p, small n” issue (i.e. 

thousands-millions of molecular data points for each sample, but a relatively small number 

of samples). Systems biology is collaborative and multi-disciplinary by nature, but fails if 

study teams are lacking in individuals with the relevant expertise and ability to converse 

across fields. Finally, the availability of relevant biological samples with well-annotated 

clinical phenotypes is vital to maximize the “signal-to-noise” ratio.
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In the future we can anticipate the need to further refine analytic and bioinformatics 

approaches to accommodate even more high-dimensional datasets. Molecular ‘omic datasets 

will be enhanced by integration with more detailed “environomes”, “exposomes”, and 

“phenomes”. Research on the role of the gut microbiome in regulation of host metabolism, 

hormonal milieu and inflammatory tone is exploding, and a complete molecular profile will 

soon come to include information about gut microbiome composition, genetics and 

metabolism. Technologies are also evolving to enable high-throughput molecular 

phenotyping on single cells, facilitating mechanistic studies in heterogeneous tissues. 

Perhaps most importantly, ‘omic analyses of the future will integrate all of these tools to 

define cause-and-effect mechanisms, and to guide experimental validation of identified 

pathways.

In conclusion, while investigators should be careful about analytic and bioinformatics 

challenges, integrated metabolomic-genetic analyses and systems biology approaches hold 

great potential for furthering our understanding of biomarkers and mechanisms of health and 

disease and moving the scientific community closer to an eventual goal of more 

personalized medicine.
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Figure 1. 
Short-chain dicarboxylacylcarnitine levels predict cardiovascular events. Unadjusted (a) and 

adjusted (b) Kaplan-Meier curves demonstrating increasing risk of death with higher 

baseline levels of SCDA metabolites; (c) risk reclassification analyses showing incremental 

risk prediction to 23 variable clinical model (net reclassification index [NRI] 8.8%). 

Reproduced with permission.15
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Figure 2. 
Visual representation of ‘omics technologies available for integrated analyses. Molecular 

changes reflected in these markers, in combination with environmental influences, result in 

the health or disease phenotype. Modified with permission.24
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Figure 3. 
Manhattan plot of GWAS of metabolites from the KORA study. Displayed is the strength of 

association with metabolite concentrations (top; p<10−7 in red) and concentration ratios 

(bottom; p<10−9 in red). Reproduced with permission.38
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Figure 4. 
Genetic networks of liver metabolism revealed by integration of metabolic and 

transcriptional profiling. Results from a study of F2 intercross between diabetes-resistant 

C57BL/6 leptinob/ob and diabetes-susceptible BTBR leptinob/ob mouse strains: (a) metabolic 

quantitative trait loci (mQTL) mapping identifying genetic hotspots for metabolite 

regulation; and (b) causal network analysis links gene expression and metabolic changes in 

the context of glutamate metabolism. Reproduced with permission.34
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