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SPECIAL ISSUE: The Role of Below-Ground Processes
in Mediating Plant Invasions
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time: a role for plant–soil feedback?
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Abstract. Recent studies have shown that introduced exotic plant species may be released from their native soil-
borne pathogens, but that they become exposed to increased soil pathogen activity in the new range when time since
introduction increases. Other studies have shown that introduced exotic plant species become less dominant when
time since introduction increases, and that plant abundance may be controlled by soil-borne pathogens; however, no
study yet has tested whether these soil effects might explain the decline in dominance of exotic plant species follow-
ing their initial invasiveness. Here we determine plant–soil feedback of 20 plant species that have been introduced into
The Netherlands. We tested the hypotheses that (i) exotic plant species with a longer residence time have a more
negative soil feedback and (ii) greater local dominance of the introduced exotic plant species correlates with less nega-
tive, or more positive, plant–soil feedback. Although the local dominance of exotic plant species decreased with time
since introduction, there was no relationship of local dominance with plant–soil feedback. Plant–soil feedback also did
not become more negative with increasing time since introduction. We discuss why our results may deviate from some
earlier published studies and why plant–soil feedback may not in all cases, or not in all comparisons, explain patterns
of local dominance of introduced exotic plant species.
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Introduction
An important challenge for invasion ecologists is to predict
the course of invasions of introduced exotic species. This
requires insight in the factors that may control the abun-
dance and dominance of species in both their native and
new ranges. It has been well established that regional dis-
tribution of exotic plant species increases with residence
time (Pyšek et al. 2004; Hamilton et al. 2005; Wilson
et al. 2007; Milbau and Stout 2008; Bucharova and van
Kleunen 2009; Gassó et al. 2009). It has also been argued
that increased residence time may result in lower local
dominance and invasiveness (Carpenter and Cappuccino
2005; Hawkes 2007; Speek et al. 2011). Local dominance
of introduced exotic plant species may be, at least in
part, driven by interactions with soil biota, including effects
of soil-borne enemies and symbionts (Inderjit and van der
Putten 2010). The question that we address in the present
study is how residence time and local dominance of exotic
plant species may relate to enemy impact of the soil biota.
Ultimately, this information may be used to enhance pre-
dictions on the course of invasiveness of introduced exotic
plant species.

A possible explanation for lower local dominance of
introduced exotic plant species with a long residence time
is that enemy species may increasingly adapt and accu-
mulate when time of exposure to the new hosts increases
(Hawkes 2007; Diez et al. 2010; Dostál et al. 2013). Both
aboveground (Bentley and Whittaker 1979; Gange and
Brown 1989) and belowground (van der Putten et al.
1993; Klironomos 2002; Mangan et al. 2010; Johnson
et al. 2012) enemies may control local plant dominance.
Release from natural enemies by introduction to a new
range has been proposed to enhance the performance
of species and, therefore, their invasiveness (Elton 1958;
Keane and Crawley 2002). This ‘enemy release hypoth-
esis’ (Keane and Crawley 2002) has been supported by
surveys showing that introduced plant species have
fewer enemies in their novel than native range (e.g.
Mitchell and Power 2003).

Thus far, the majority of research on enemy release of
exotic plant species has been dedicated to aboveground
enemies. However, an increasing amount of studies is
showing that introduced exotic plant species can be
released from native soil-borne enemies as well (Reinhart
et al. 2003, 2010; Callaway et al. 2004; Gundale et al.
2014). Introduced exotic plant species suffer less from
soil-enemies of the invaded range than congeners that
are native in that range (Maron and Vilà 2001; Agrawal
et al. 2005; Engelkes et al. 2008).

The change in performance of exotic species with pro-
gressing residence time has been described for several
invaders (Simberloff and Gibbons 2004). Loss of exotic

dominance might be caused by evolutionary adaptation
of enemies in the new range to the introduced plant
species (Müller-Schärer et al. 2004). Such adaptive
potential may be deduced from reported higher frequen-
cies of specialist compared with generalist herbivores
(Andow and Imura 1994), higher exposure (Mitchell
et al. 2010) and higher impact (Hawkes 2007) of enemies
on crop and exotic plant species in relation to increasing
residence time. Similarly, in New Zealand plant–soil feed-
back of 12 exotic plant species related negatively to their
residence time (Diez et al. 2010) and in the Czech Republic
giant hogweed (Heracleum mantegazzianum) developed
negative feedback effects from the soil biota in fields that
had been colonized for some decades (Dostál et al. 2013).
However, in these latter studies, increased enemy expos-
ure has not yet been related to local dominance of the
exotic plant species, which is the key aim of the present
study.

A recent analysis established that exotic plant species
with a long residence time in The Netherlands have lower
local dominance than recently introduced species (Speek
et al. 2011). Until now, no study has related such patterns
in local dominance to plant–soil feedback effects. There-
fore, in the present study, we determine how residence
time, local dominance and soil pathogen effects to exotic
species may relate to each other. We tested soil pathogen
effects by plant–soil feedback approach (Bever et al.
1997), which is a way to experimentally integrate all posi-
tive and negative interactions between plants and the soil
biota. We first tested the hypothesis that species with a
longer residence time have a more negative plant–soil
feedback (Diez et al. 2010). Then, we tested the hypoth-
esis that species with a more positive plant–soil feedback
have a higher local dominance (Klironomos 2002).

Methods

Data on plants, their residence time and local
dominance

Data on residence time were derived from information on
the period of naturalization according to the standard list
of the Dutch flora (Tamis et al. 2004). Data on local domin-
ance were derived from the Dutch Vegetation Database
(Schaminée et al. 2007), containing over 500 000 vegeta-
tion records including data on local species cover in plots
varying from 1 by 1 m2 to 10 by 10 m2. Plot sizes used for
recording depended on the characteristics of vegetation,
for example largest plot sizes were used for forests. Data
on plant species cover were used to calculate local domin-
ance as [the number of vegetation records with that
species having .10 per cent ground cover/the total num-
ber of vegetation records with that plant species] × 100 %
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(Speek et al. 2011). Therefore, local dominance expresses
the frequency of how often a plant species has a minimum
cover of 10 %, when present in the vegetation record. In
order to exclude recorder bias, for example due to avoiding
taking records of vegetation heavily invaded by exotic plant
species, we used expert judgment to check and where
necessary adjust the cover data (Speek et al. 2011).

Soil feedback experiment

We used a selection of 20 introduced exotic plant species
in The Netherlands for a plant–soil feedback experiment
(Supplements). The selection of 20 plant species was
based on a number of criteria. First, we excluded woody
species, because the length of the plant–soil feedback
is too limited for capturing a substantial part of the life
cycle of trees. We then selected as many as possible
plant species from riverine areas in order to be able to
use the same soil origin for all plant species. Finally, the
selection was limited as the seeds of some plant species
did not germinate. Seeds had been collected by specia-
lized seed companies that collect seeds locally, or by our-
selves or colleagues.

Of the 20 plant species, 14 occur in the Millingerwaard
(Dirkse et al. 2007), a riverine floodplain area of 700 hec-
tares. Millingerwaard is a nature reserve in the riverine
floodplain of the river Waal, which is in the southern
branch of the Rhine river in The Netherlands (51887′N,
6801′E). Three other species occur near or in other riverine
areas in The Netherlands and the remaining three occur
outside riverine areas. We collected soil from the Millinger-
waard area, instead of from a larger variety of sites, as soil
from a variety of sites would have introduced additional
variation due to soil type, fertility, pH etc. All plant species
were forbs that varied in local dominance from 5 to 38 %
and in residence time from 75 to 400 years.

Seeds were germinated on glass beads placed in demi-
neralized water. Germination was carried out in transpar-
ent plastic containers of 17 × 12 × 5 cm that were placed
under conditions of 16 h 22 8C in the light (day) and 8 h
10 8C in the dark (night). Xanthium strumarium seeds
were germinated at a higher temperature: 16 h 32 8C
and 8 h 20 8C. Germinated seedlings were stored at 4 8C
and 10/14 h light/dark until transplantation in soil, to
ensure equal sizes at start of the experiment. Soil was
collected from five random locations in Millingerwaard.
Soil to be used as inoculum was collected in October
2010, prior to the first phase of the experiment. Soil
from the five sampling locations was sieved (mesh size
5 mm) to remove coarse roots, stones and other large
particles, and subsequently homogenized. The bulk soil
was collected in January 2010, sterilized by gamma
irradiation (25 kGray) and stored in sealed plastic bags
at 4 8C until use.

The sensitivity of exotic plant species to soil-borne en-
emies was determined in a so-called two-phase plant–
soil feedback experiment (Bever et al. 1997). In the first
phase, which started from one pooled sample, the seed-
lings were grown to condition the field soil. In that phase,
soil biota that can grow on resources provided by that par-
ticular plant species are enumerated (Grayston et al.
1998; Kowalchuk et al. 2002). In the second phase, we
kept all replicates of own soil separate. In order to do
so, the soil of each pot was split into two halves: one
half was used as own soil, whereas the other half was
mixed with halves of all other replications and species,
to be used as away soils. The replicates of the mixed
soil were not kept intact, because there was no relation-
ship between replicate 1 conditioned by species A or
B. Comparing plant performances in own and mixed
soils enabled us to make a home (own) versus away
(mixed) comparison, which is a less sensitive and eco-
logically more realistic method of detecting plant–soil
feedback effects than a comparison of non-sterilized ver-
sus sterilized soil (Kulmatiski et al. 2008). In the final ana-
lysis, plant species was the unit of replication.

For the first—conditioning—phase, bulk soil and inocu-
lum were mixed at a ratio of 4 : 1, with a total of 1200 g
soil per pot on a dry weight basis. Pots of 1.3 L were
used. For the second—feedback—phase, ‘own soil’ and
‘mixed soil’ were homogenized with sterilized bulk soil
at a ratio of 1 : 1 in order to keep pot volumes equal
between the two feedback phases. For each plant species,
we had five independent replicates with own and five
with mixed soil. Every pot contained three seedlings,
except Amaranthus retroflexus that was planted as two
seedlings per pot due to poor germination of the seeds.
Dead seedlings were replaced until the first week after
transplanting. Greenhouse conditions were maintained
at 60 % RH, day temperature 21 8C, night temperature
16 8C. Daylight was supplemented with lamps (SON-T
Agro, 225 mmol21 m22), to ensure a minimum of 16 h
light per day.

Before planting, the water content in each pot was set
at 20 % (w/w). Plants were supplied with water three
times a week and once a week the water content was
re-set to 20 % by weighing. Plants received 10 mL of 0.5
strength Hoagland per pot in weeks 2, 3 and 4, and
20 mL in weeks 5 and 6 after transplanting in order to
meet the increasing demand. Plants were harvested 6
weeks after planting. The length of growth was the
same for both phases, which is relatively short, but
ample for testing feedback responses (van der Putten
et al. 1988). When harvesting, shoots of the three (or
two) plants per pot were clipped at ground level, pooled,
dried in paper bags at 75 8C until constant weight and
weighed, so that biomass data per pot were obtained.
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Statistical analysis

The effect of soil feedback on shoot and root biomass was
calculated as ln[(biomass in own soil)/(biomass in mixed
soil)] (Brinkman et al. 2010). We assigned pairs of own soil
with mixed soil randomly. To analyse whether residence
time or local dominance could explain mean shoot and
root feedback responses, we used linear models. The
unit of replication was the plant species. For residence
time we used models with a normal distribution, for
local dominance we used models with a binomial distri-
bution and a logit link, with binomial totals set to 50 %
(the highest value in our dataset).

We analysed which traits and other factors related best
to residence time by a model selection procedure within a
linear model with a normal distribution. Thus, we selected
the best minimal adequate model with the lowest Akaike
Information Criterion value from all possible subsets.
Although time and dominance were related, the relation
of a trait or other factor to residence time may not neces-
sarily imply that there is a relation with local dominance as
well. Therefore, the factors in the best minimal adequate

model were added to a generalized linear model with resi-
dence time explaining local dominance. By adding each
factor separately, we analysed which one significantly
changed the model. Factors that affected the model
were likely to be a better explanation for variation in
local dominance than residence time. For explaining
local dominance we used a binomial distribution with a
logit link, binomial totals set at 50 and accounting for over-
dispersion. All analyses were done in Genstat, version 14.

Results
Opposite to our hypothesis, we found neither a significant
relationship between residence time and plant–soil feed-
back of the exotic plant species, nor for shoots (F ¼ 0.10,
t18 ¼ 20.32, P ¼ 0.751, Fig. 1) and for roots (F ¼ 0.41,
t18 ¼ 20.64, P ¼ 0.529). Local plant dominance also did
not relate to the feedback effect on shoots (F ¼ 0.09,
t18 ¼ 20.31, P ¼ 0.763) or roots (F ¼ 0.73, t18 ¼ 20.85,
P¼ 0.404). Excluding species from riverine habitats, which
may not be responsive to soil biota from that habitat, or

Figure 1. Mean soil feedback effect on the biomass of shoots and roots in relation to the residence time or the local dominance of naturalized
exotic plant species in The Netherlands. Each circle represents a different plant species.
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Fabaceae species, which may have a different feedback due
to symbiosis with rhizobia did not alter the significance of
the results (data not shown). Therefore, our hypotheses
that species with a longer residence time have a more
negative plant–soil feedback, and that species with a less
negative or more positive plant–soil feedback have a higher
local dominance were not supported.

Discussion
In our study we tested the hypotheses that species with a
longer residence time have a more negative plant–soil
feedback and that species with a less negative, or more
positive plant–soil feedback have a higher local domin-
ance. We used an experimental approach to measure soil-
borne enemy impact by plant–soil feedback approach.
However, opposite to a study from New Zealand (Diez et al.
2010), and to a study on introduced H. mantegazzianum in
the Czech Republic (Dostál et al. 2013) we did not find
such a relationship between time since introduction of
20 exotic plant species in the Dutch flora and plant–soil
feedback.

There are several possible explanations for these
results. Our results could indicate that not all introduced
exotic plant species develop negative plant–soil feedback
when time since introduction increases. In the field, other
ecological processes may be influencing community
composition and aboveground interactions can either
increase or decrease with the strength of the below-
ground interactions. Another possible explanation con-
cerns the choice of soils for the plant–soil feedback
experiment. We have chosen soils from areas where
most exotic plant species may occur, but we did not use
soils from the root zone of particular populations. This
approach has led to marked differences in plant–soil
feedback between natives and exotics (van Grunsven
et al. 2007; Engelkes et al. 2008); however, it has resulted
in scattered results when testing soil responses across an
entire native range (van Grunsven et al. 2010).

The results may also depend on the relatively short
conditioning and testing phases of 6 weeks each. Test
phases of 6 weeks can detect feedback effects (van der
Putten et al. 1988). Longer test periods may even result
in pot limitations, which may obfuscate results. Condi-
tioning for 6 weeks will have been relatively short, but
to our experience this is possible when adding soil inocula
to sterilized soil, as has been done in the present study.

Our use of pooled soils as ‘away’ treatment may have
provided a conservative estimate of plant–soil feedback
effects, because of reducing variances. Nevertheless,
since we did not find significant relationships with time
since abandonment, or local dominance, our results
show that even with a highly sensitive test still no

relationship could be detected between time since intro-
duction, or local dominance and plant–soil feedback.
Mixing soils from all plant species to produce ‘away’
soils could theoretically have led to single pathogens
dominating the entire away soil community. However, a
previous addition study using a variety of amounts of
soil inocula showed that soil feedback effects increased
gradually with the amount of inoculum added (van der
Putten et al. 1988), which does not point at a dispropor-
tional role of pathogens from single plant species in the
away soil mixtures.

Plant–soil biota interactions are highly local (Levine
et al. 2006; Bezemer et al. 2010; Genung et al. 2012),
and adaptation of soil organisms to new plant species
does not take place at a national, but at a local scale
through direct interactions between plant roots and the
soil biota (Schweitzer et al. 2008; Lankau et al. 2009;
Lau and Lennon 2011, 2012). As the feedback was esti-
mated at a regional scale, also the local dominance was
measured at a regional scale (first occurrence in The
Netherlands). Using first occurrence in a larger region as
an estimate of residence time could result in an over-
estimation of the local residence time. On the other
hand, the study from New Zealand (Diez et al. 2010)
also used data on residence time for the entire country
and not specifically for the sites from which the soil has
been collected.

We expected plant–soil feedback to be negatively
related to local dominance (Klironomos 2002; Mangan
et al. 2010). However, in our study we did not observe
such an inverse relationship. A possible explanation is
that previous studies by Klironomos (2002) and Mangan
et al. (2010) on dominance-feedback relationships have
been based on native species, and that these relations
may differ when considering exotic species. Moreover,
we used dominance estimates averaged across the entire
Netherlands (Speek et al. 2011), which differs from the
local dominance estimates as used in other studies (e.g.
Klironomos 2002). National estimates (in the case of The
Netherlands concerning an area of appr. 150 × 300 km)
will not provide accurate information about the local
dominance of exotics in the riverine ecosystem where
the soil for testing plant–soil feedback originated from.
Therefore, it is possible that soil origin and plant domin-
ance data were not well linked to each other, or that a
relationship between plant–soil feedback and domin-
ance works out differently for exotic plant species than
for natives. Alternatively, our study may add to other
examples where plant dominance does not relate to
plant–soil feedback (Reinhart 2012).

An alternative explanation for the rejection of our
hypotheses could be that the evolutionary dynamics
leading to increased enemy pressure on exotic plant
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species is not strong enough to result in a change in mean
local dominance. Meta-analyses have shown that a
general pattern of decreased enemy numbers on exotic
species in the novel range was not reflected in a general
pattern of higher plant performance (Chun et al. 2010).
Adaptation can occur both at the soil species level but
also at the plant species level. This adaptation at two
fronts is likely to result in a mixed general outcome. More-
over, while local dominance has been assumed to in-
crease after introduction to a new range (Keane and
Crawley 2002), recent work has shown that most species
have the same dominance in both their introduced and
native ranges (Firn et al. 2011). Clearly, local dominance
is a complex trait, with a high variation both between
and within species that can be influenced by a large num-
ber of ecological processes.

Conclusions
We found no support for the hypothesis that the negative
relationship between residence time and local domin-
ance of exotic species in The Netherlands is caused by
an increase in negative plant–soil feedback. It may be
that data on residence time, dominance, enemy exposure
and impact need to be collected all from the same area,
or that different choices in plant–soil feedback approach
need to be made (e.g. longer conditioning and/or feed-
back phases, a more sensitive ‘away’ soil treatment).
Alternatively, it might be better to track single species
across an introduction gradient (Lankau et al. 2009;
Lankau 2011). It could also mean that not all introduced
exotic plant species develop negative plant–soil feedback
when time since introduction increases or that the
hypothesized effect of increasing enemy pressure on
dominance of introduced exotic plant species might not
be strong enough to emerge from examining a large
diversity of species across a variation of locations. There-
fore even though we are aware of weaknesses of our
paper (aspects of the experimental design that were
not ideal, for example sampling of soil from one location
that did not include all of the study species, pooling ‘away’
soils, method of pairing of home and away pots to calcu-
late response ratios), our results may add to the debate
on change in invasiveness of exotic plant species after
introduction.
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