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Chronic viral infection, such as occurs with HIV and hepatitis 
C virus, has been associated with an increased risk for athero-
sclerosis,2,19,46,48 although the mechanisms by which this occurs 
are not clearly defined. Our laboratory has been studying the 
effects of murine norovirus (MNV), which chronically infects 
immunocompetent mice, on murine models of inflammatory dis-
eases, including atherosclerosis. MNV is a single-stranded RNA 
intestinal virus that belongs to the family Caliciviridae and has 
shown tropism toward antigen-presenting cells such as dendritic 
cells and macrophages.54 Whereas human norovirus is a major 
cause of nonbacterial acute gastroenteritis,52 MNV does not cause 
clinical disease in immunocompetent mice.55 However, the high 
prevalence of MNV in biomedical research facilities throughout 
the world,42,55 combined with its tropism for antigen-presenting 
cells, has prompted concern regarding potential effects on dis-
ease phenotypes in murine models of human diseases. Therefore, 
we previously examined 2 diseases, obesity and atherosclerosis, 
where macrophages have critical roles.41,42 We found that MNV 
infection did not influence glucose metabolism and weight gain,41 
but it significantly increased the size and macrophage content of 
aortic sinus lesions in Ldlr−/− mice fed an atherogenic diet.42 These 

findings suggest that MNV might be a potential tool to determine 
how viral infection alters the risk of atherosclerosis.

Many factors influence the progression of atherosclerosis. Ac-
cordingly, we examined whether the timing of MNV infection 
relative to the stage of atherosclerosis progression influenced dis-
ease phenotype and evaluated potential mechanisms by which 
MNV could affect the disease process. To this end, we modeled 
the infection of macrophages by using in vitro cultures of bone-
marrow–derived macrophages (BMDM).

Materials and Methods
Animals and diet. Male B6.129S7-Ldlrtm1Her/J (Ldlr−/−; age, 4 wk) 

mice were purchased from the Jackson Laboratory (Bar Harbor, 
ME) and acclimated for 1 wk in an SPF facility42 with a 12:12-h 
light:dark cycle in a temperature-controlled room (20 to 23 °C). 
This mouse strain lacks the LDL receptor and thus is susceptible 
to developing atherosclerosis secondary to an elevated serum 
cholesterol level induced by the consumption of a high-fat diet. 
Mice were housed in groups of 5 in autoclaved ventilated mi-
croisolator cages, provided autoclaved and acidified water, and 
given an irradiated regular rodent chow (catalog no. 5053, Pico-
Lab Rodent Diet 20, LabDiet, St Louis, MO) ad libitum during 
the 1-wk acclimation period. Mice were tested and determined 
to be free of MNV by the supplier. Our group has established 
standard operating protocols for our mouse housing facility to 
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Western blot analysis. Protein concentrations were determined 
by using BCA protein assay reagent (Thermo Scientific). Samples 
(15 to 20 µg total protein) were separated by denaturing gel elec-
trophoresis (4% to 15% gradient gel; BioRad, Hercules, CA) and 
transferred onto polyvinylidene difluoride membranes (BioRad) 
with 1× CAPS buffer (10 mM CAPS in 10% methanol, pH 11). The 
membrane was incubated with ABCA1 antibody (polyclonal; No-
vus Biologic, Littleton, CO) in 5% bovine serum albumin in TBST 
(1× Tris-buffered saline containing 0.1% Tween 20) overnight, 
washed with TBST, and incubated with antirabbit–horseradish 
peroxidase secondary antibody (Thermo Scientific). Signal was 
detected by using SuperSignal West Femto chemiluminescent 
substrate (Thermo Scientific). For a loading control, the house-
keeping protein GAPDH was detected (antiGAPDH, catalog no. 
G9545, Sigma, St Louis, MO) on the same blot.

Flow cytometric analysis. The expression of CD36 in BMDM 
was detected by using flow cytometry. Cells were stained with 
antiCD36 (dilution, 1:50; clone number 72-1, allophycocyanin 
conjugate, eBiosciences, San Diego, CA) and analyzed by using 
flow cytometry (FACSCanto II, BD Biosciences) and FlowJo soft-
ware (version 10). Specificity of the antiCD36 antibody was con-
firmed by using an isotype-matched control antibody (rat IgG2a 
K isotype, eBiosciences).

Statistics. All data was analyzed by using Prism statistical soft-
ware (GraphPad, La Jolla, CA). A 2-tailed t test was performed 
for comparison between the 2 treatment groups, and statistical 
significance was defined as a P value of less than 0.05.

Results
Effects of MNV4 infection during early-stage atherosclerosis on 

Ly6Chi monocytes and lesion size in Ldlr−/− mice. We previously 
determined that hyperlipidemic Ldlr−/− mice infected with MNV4 
during lesion development (8 wk after initiation of an atherogenic 
diet) had significantly larger lesions in the aortic sinus than did 
uninfected controls.42 To determine whether MNV4 infection al-
ters atherosclerosis development and progression when mice are 
infected before they develop lesions due to sustained hypercho-
lesterolemia, we infected Ldlr−/− mice with MNV4 3 d after the 
atherogenic diet was initiated.

Development of atherosclerotic lesions is associated with in-
creased numbers of circulating Ly6Chi monocytes,50 therefore, we 
characterized splenic monocytes and other cell populations and 
analyzed aortic sinus lesions at the end of the study period. The 
splenic cellularity (Figure 1 A) and absolute cell numbers of Ly-
6Chi monocytes (Figure 1 B), MHC class II-positive macrophages 
(Figure 1 C), dendritic cells (Figure 1 D), and neutrophils (Figure 
1 E) were significantly (P < 0.05) increased at the study endpoint. 
However, the cell percentages of these populations (Figure 1 F 
through I) did not differ between treatment groups, indicating 
that MNV infection was associated with a general increase in cell 
numbers and not with a specific increase in any particular cell 
type in the context of atherosclerosis development. In agreement 
with the lack of specific difference in monocyte populations in re-
sponse to MNV4 infection, the size of atherosclerotic lesions in the 
aortic sinus at the end of the study did not differ between MNV4-
infected mice compared with uninfected controls (Figure 2 A); 
the percentage of the lesion area showing macrophage infiltration 
was also similar between the 2 groups (Figure 2 B). This result is 
in contrast to our previous report,42 where MNV4 infection sig-
nificantly increased lesion size. However, in the previous study, 

restrict MNV infection to intended groups only.41 All experimen-
tal protocols were reviewed and approved by the IACUC at the 
University of Washington.

After the acclimation period, all mice were fed an atherogen-
ic (high fat, high cholesterol) diet (catalog no. TD88137, Har-
lan Laboratories, Dublin, VA) ad libitum for 16 wk to induce 
atherosclerosis. At 3 d after diet initiation, mice were infected 
with MNV4 (1 × 106 pfu, unknown passage) or vehicle (clarified 
RAW264.7 cell lysate) by oral gavage, as previously reported.42 
Infection status was determined by fecal RT-PCR analysis 2 wk 
after MNV4 infection and at the end of the study.24 All MNV4-
infected mice shed virus in the feces 2 wk after infection and 
remained positive for virus at the end of the study period (16 
wk), whereas all mice treated with vehicle remained MNV-free 
throughout the study.

Atherosclerotic lesion analyses. At the termination of the study, 
mice were euthanized by CO2 asphyxiation, followed by cardio-
centesis to obtain blood. After perfusion with PBS, hearts and 
aortas were dissected and fixed in formalin for morphologic anal-
yses. Aortic sinus sections were stained with Movat pentachrome 
stain, and lesion area was determined as previously described.42 
The extent of macrophage infiltration in the lesion area was deter-
mined after Mac2 staining.42

Analysis of the Ly6Chi monocyte population in spleen. Single-cell 
suspensions were generated from the spleen at necropsy,8 and cel-
lularity was determined by using a hemocytometer. Cell subsets 
were analyzed as previously described.50 Cells were blocked with 
antiCD16/CD32 (BD Biosciences, San Jose, CA) and then stained 
with antigen-specific antibodies for linage markers (Lin: NK1.1, 
CD90, CD45R, Ly6G), CD11b, CD11c, F4/80, MHC class II, and 
Ly6C (all obtained from BD Biosciences). Data were collected by 
flow cytometry (model LSRII, BD Biosciences) and analyzed by 
using FlowJo software (Tree Star, Ashland, OR). Single cells were 
gated by using forward-scatter parameters A and W, and leuko-
cytes were gated for size via forward-scatter A and side-scatter A 
parameters. Cells were identified on the basis of surface staining 
as neutrophils (Lin+CD11b+F480–class II–), dendritic cells (CD-
11chi), macrophages (Lin–CD11c–class II+ and CD11b+ or F4/80+ or 
both), or monocytes (Lin–CD11b+class II–F4/80–). Monocytes were 
further characterized according to Ly6C staining.

BMDM. Bone marrow cells were isolated from Ldlr−/− mice 
(age, 10 to 12 wk) and differentiated to macrophages (7 to 10 d of 
culture) by using a previously reported method.32 Differentiated 
macrophages were plated at 1 to 1.4 × 106 cells per well in 6-well 
plates and infected for 24 h with MNV4 (multiplicity of infection, 
0.2) with various amounts of oxLDL. For qRT–PCR analysis, RNA 
was extracted by using the RNeasy kit (Qiagen, Venlo, Limburg, 
The Netherlands), and for western blot analysis, protein was ex-
tracted with the MPER protein extraction kit (Thermo Scientific, 
Waltham, MA). For flow cytometric analysis, BMDM were dis-
sociated by cold shock in PBS (Ca++- and Mg++-free).

qRT-PCR. Total RNA (0.5 to 1 µg) was converted to cDNA by 
using the Superscript III first-strand synthesis system for RT-PCR 
(Invitrogen) and used for qRT-PCR with specific primers for in-
ducible nitric oxide synthase (iNOS),35 IFNβ,53 IL10,1 CD36,43 ATP-
binding cassette A1 (ABCA1),43 and IL6 (forward, 5′ AGA GTT 
GTG CAA TGG CAA TTC TGA 3′; reverse, 5′ TGG TAC TCC 
AGA AGA CCA GAG GAA 3′). The housekeeping gene HPRT14 
was used to normalize the expression levels, and data are present-
ed relative to a single replicate of the control (untreated) sample.
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Effect of MNV4 infection on cytokine expression in BMDM. 
Modified LDL, such as oxLDL, are a risk factor for atheroscle-
rosis because they are more readily taken up by macrophages 
than are native LDL.49 We therefore treated BMDM with various 
amounts of oxLDL with or without MNV4 infection and assessed 
the expression of inflammation-associated genes. MNV4 infection 
increased expression levels of the inflammatory cytokines IL6 and 
IFNβ and of a classic macrophage activation marker, iNOS, in all 
treatment groups (comparison between no infection and MNV 

MNV4 infection occurred 8 wk after initiation of the atherogenic 
diet and thus, the mice would have sustained hyperlipidemia 
and developed lesions42 by the time of infection. Another infec-
tious agent, Chlamydia pneumoniae, also alters lesion size only in 
hyperlipidemic mice and not in mice prior to the induction of hy-
perlipidemia.6 To explain potential differences between our pre-
vious study and the results we present here, we next examined 
the effect of hyperlipidemia on the responses of macrophages to 
MNV4 infection in vitro by using BMDM.

Figure 1. MNV infection does not alter the frequency of Ly6Chi monocytes. Spleens of Ldlr−/− mice were processed at the end of the study to determine 
whether MNV influences composition of immune cell subtypes by staining for antigen-specific antibodies for linage markers (Lin: NK1.1, CD90, 
CD45R, Ly6G), CD11b, CD11c, F4/80, MHC class II, and Ly6C. Total cell numbers of (A) the spleen, (B) Ly6Chi monocytes (Lin–CD11b+F4/80–class II–

CD11c–Ly6Chi), (C) macrophages (Lin–CD11c–class II+ and CD11b+ or F4/80+ or both), (D) dendritic cells (CD11chi), and (E) neutrophils (Lin+CD11b+class 
II–F4/80–) are shown. (F) The percentage of Ly6Chi monocytes (of total monocytes) as well as percentages of total splenocytes of (G) macrophages, (H) 
dendritic cells, and (I) neutrophils are shown. Bars represent means; values significantly (*, P < 0.05; †, P < 0.01) different from those of uninfected 
animals are indicated.
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tion (Figure 5 A). However, ABCA1 protein levels were increased 
with oxLDL treatment (control compared with oxLDL, P < 0.01 
for post hoc test after one-way ANOVA) and, notably, reduced 
with MNV4 infection in the presence of oxLDL (MNV4 + oxLDL 
compared with oxLDL, P < 0.01 for post hoc test after one-way 
ANOVA, Figure 5 B) indicating that MNV4 infection may de-
crease ABCA1-medated cholesterol efflux.

Discussion
Since the first report of MNV4 in a research mouse colony,28 

its high prevalence has been reported in mouse colonies in the 
United States, Canada, and Europe.21,23,29,38,44,57 In addition, many 
investigators have reported diverse strains of the virus and its 
varied influence on animal models.4,9,12,22,28,32,33,41,42 We have stud-
ied the effects of MNV4, the strain first reported by Hsu and col-
leagues,23 on various murine models of human disease.32,33,41,42 
MNV4 infection persists for an extended period of time, and in-
fected mice shed the virus in feces for as long as 16 wk after infec-
tion.41,42 However, the effects of MNV4 on disease phenotype vary 
depending on the disease and model. For example, MNV4 infec-
tion increased the size of atherosclerotic lesions but did not alter 
obesity or diabetes phenotypes in Ldlr−/− mice.41,42 MNV4 acceler-
ated the development of inflammatory bowel disease in Mdr1a−/− 
mice33 but did not alter colitis-associated cancer in Smad3−/− mice.32 
Therefore, it is difficult to predict whether MNV4 would be an 
intercurrent variable for studies using murine models.

Because of the tropism of MNV for macrophages, our labora-
tory examined the potential effects of MNV infection on athero-
sclerosis models.54 We previously reported that MNV4 infection 
during atherosclerosis development increases aortic sinus lesion 
area in Ldlr−/− mice.42 However, in research settings, MNV infec-
tion in mice can occur at different times. If breeding colonies are 
infected or newly purchased young mice are moved into a facility 
that does not exclude MNV, Ldlr−/− mice might be infected before 
significant atherosclerosis develops. Therefore, in these current 
studies, we examined whether MNV4 infection at an early stage 
of disease, that is, before hyperlipidemia is induced, alters disease 

infection at different levels of oxLDL, Figure 3). In addition, the 
expression of the antiinflammatory cytokine IL10 was increased 
with MNV4 infection except at high levels of oxLDL (25 µg/mL; 
Figure 3).

Effects of MNV4 infection on CD36 and ABCA1 expression. Cel-
lular cholesterol levels are regulated by both uptake and efflux 
mechanisms, and an increase in uptake or decrease in efflux in 
macrophages could contribute to the development of atheroscle-
rosis. We therefore determined whether MNV4 directly influences 
these processes by evaluating the expression of the scavenger 
receptor CD36 and efflux protein ABCA1. CD36 preferentially 
binds oxLDL and facilitates its uptake in macrophages,59 and its 
expression (RNA and protein) is induced as monocytes differen-
tiate into macrophages in culture.25 We first determined whether 
MNV4 infection and oxLDL influence CD36 expression in BMDM 
by using qRT–PCR analysis and flow cytometry (Figure 4). In 
agreement with previous reports,47 oxLDL treatment increased 
CD36 RNA expression; specifically, CD36 RNA expression was 
significantly different among uninfected samples with vary-
ing amounts of oxLDL (P < 0.0001, one-way ANOVA). In addi-
tion, all samples treated with oxLDL differed from the control 
sample according to post hoc testing using Bonferroni correction 
for multiple comparisons (P < 0.01 for control compared with 
5 µg/mL oxLDL; P < 0.001 for control compared with 10 or 25 
μg/mL oxLDL). However, MNV4 infection did not further influ-
ence CD36 mRNA expression levels (no infection compared with 
MNV4 infection at all levels of oxLDL treatment). In contrast, 
cell-surface CD36 levels were significantly increased in MNV4-
infected BMDM regardless of oxLDL treatment (P <0.05 for un-
treated groups ; P ≤ 0.0001 for oxLDL-treated groups, Figure 4 
B), suggesting that MNV4 infection potentially increases oxLDL 
uptake in macrophages.

Increased cellular cholesterol levels trigger cholesterol efflux 
through the ABCA1 pathway.31 We therefore examined both 
the RNA and protein levels of Abca1 in response to oxLDL and 
MNV4 infection in BMDM. RNA expression levels of Abca1 did 
not change in response to either oxLDL treatment or MNV4 infec-

Figure 2. MNV infection at early stages of atherosclerosis development does not alter lesion size. (A) The size of the aortic sinus lesion was determined 
from Movat-pentachrome–stained serial sections of hearts of Ldlr−/− mice fed an atherogenic diet and treated with either MNV or vehicle only (clari-
fied RAW264.7 cell lysate). (B) Macrophage infiltration was assessed by using antiMac2 antibody and is expressed as percentage of lesion area. Bars 
represent means ± SEM.

cm14000084.indd   117 4/13/2015   11:17:33 AM



Vol 65, No 2
Comparative Medicine
April 2015

118118

Because of this characteristic of Ldlr−/− mice and because an-
other infectious agent, Chlamydia pneumoniae, was found to in-
crease lesion size only when the animals were hyperlipidemic,6 
we postulated that the differential response to infection in our 
current and previous studies might be due to the timing of MNV4 
infection in relation to disease stage or severity of hypercholester-
olemia. To address this question, we examined whether MNV4 
infection alters factors known to be associated with atheroscle-
rosis in a manner dependent on oxLDL in vitro. MNV4 infection 
was associated with increased cytokine expression (IL6, IL1β, 
IFNβ) at all levels of macrophage exposure to oxLDL. Interest-
ingly, oxLDL treatment decreased MNV4-induced cytokine ex-
pression in a dose-dependent manner, suggesting that MNV4’s 
effect on macrophages might differ depending on the severity of 
hyperlipidemia (Figure 3). In addition, MNV4 infection increased 
the expression of a marker of classically activated macrophages, 
iNOS, and oxLDL exposure suppressed iNOS expression in a 
dose-dependent manner. We also noted that expression of the 
antiinflammatory cytokine IL10 paralleled changes in proinflam-
matory cytokines, suggesting that IL10 expression likely mirrors 
proinflammatory cytokine signals in an attempt to control inflam-
mation. These data suggest that the effects of MNV4 on macro-
phages are modulated by the presence of oxLDL. Our observation 

outcome. We found that MNV infection during early atheroscle-
rosis did not significantly alter lesion size or macrophage infiltra-
tion into the lesion area (Figure 2), suggesting that the timing of 
MNV4 infection may modulate its influence on atherosclerosis 
progression in this model.

Ldlr−/− mice were developed as a model to study familial 
hypercholesterolemia in humans due to defects in the LDLR 
pathway26 and were instrumental in understanding lipid uptake 
and metabolism. However, unlike humans with LDLR defects, 
Ldlr−/− mice do not develop severe hypercholesterolemia unless 
fed an atherogenic, high-cholesterol containing diet.26 This dis-
crepancy is mainly due to the differential composition of apoli-
poprotein B associated with VLDL in humans compared with 
mice. In humans, VLDL is secreted with apoB100, a ligand for 
LDLR, whereas in mice, much VLDL is associated with apoB48, 
which is recognized by a remnant receptor10,26 rather than by 
LDLR. Therefore, LDLR defects in humans have more severe 
consequences in endogenous lipoprotein clearance and circulat-
ing cholesterol levels than do mice with LDLR defects, because 
these mice can clear LDL through remnant receptors in addition 
to LDLR. Consequently, a diet containing high cholesterol is 
needed to induce severe hypercholesterolemia and atheroscle-
rosis in Ldlr−/− mice.27 

Figure 3. MNV infection alters cytokine mRNA expression in BMDM in the presence and absence of oxLDL. (A) iNOS, (B) IFNβ, (C) IL6, and (D) IL10 
expression were determined by qRT–PCR analysis. Samples were normalized to HPRT and plotted relative to a single replicate of the control sample 
(no oxLDL and no MNV). Bars represent means ± SEM; expression levels were compared between uninfected and infected samples of the same concen-
tration of oxLDL by using the Student t test, and values that differ significantly (*, P < 0.05; †, P < 0.01; ‡, P < 0.001; §, P < 0.0001) are indicated.
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in the current study, infection occurred before significant obesity 
developed. Because obesity can influence macrophage response 
to infectious agents,3,58 obesity in the context of the atherosclero-
sis-promoting high-cholesterol diet may influence the influx of 
macrophages into lesion areas. Finally, another possible explana-
tion for the differences between our current and previous studies 
could be related to differences in the biologic potential between 
the 2 viral isolates. RNA viruses such as MNV have a high muta-
tion rate owing to the lack of a 3′-to-5′ exonuclease proofreading 
activity in their RNA-dependent RNA polymerase,13,56 allowing 
mutations to occur during viral propagation. Although the same 
viral stock was used to propagate MNV in Raw cells, viral propa-
gation occurred at different times for the previous study com-
pared with the study reported here, potentially resulting in the 
use of slightly different viral isolates between the 2 studies. Minor 
changes (even single amino-acid substitutions) in the MNV se-
quence can influence its biologic effects.5,7,39,51

The uptake and efflux of cholesterol regulates intracellular cho-
lesterol content, which is a key factor in macrophage foam-cell for-
mation.34 We therefore examined whether MNV4 infection alters 
one or both of these processes by analyzing the RNA and protein 
levels of CD36 (oxLDL uptake) and ABCA1 (cholesterol efflux) in 
Ldlr−/− BMDM. CD36 is a large glycoprotein that belongs to a scav-
enger receptor class B family and binds various ligands, including 
oxLDL.11 Studies to elucidate the role of CD36 in atherosclerosis in 
Apoe−/− Cd36−/− mice compared with Apoe−/− mice reported conflict-

agrees with previous reports that oxLDL inhibits inflammatory 
cytokine (IL1β, IL6, and TNFα) and iNOS expression induced 
by lipopolysaccharide or IFNγ.17,20,40 How the oxLDL-associated 
suppression of immune responses in vitro relates to an increased 
risk of developing atherosclerosis in vivo is unclear. However, 
a decrease in normal inflammatory responses may allow mac-
rophages to develop a chronic, smoldering inflammation, thus 
favoring progression to atherosclerosis.20 Therefore, increased 
oxLDL at the time of MNV4 infection may promote a chronic 
inflammatory state, resulting in the progression of lesions rather 
than in acute inflammation that can be controlled quickly.

Another potential reason for why MNV4’s influence on athero-
sclerosis differs between our current study and previous report 
is that the immune response to MNV4 infection may vary due to 
the age of the mice at the time of MNV 4 infection. In our previ-
ous experiment, we infected Ldlr−/− mice at 14 wk of age whereas 
in the current study, they were infected at approximately 6 wk of 
age. Because rodents’ immune system is considered mature by 1 
mo of age and because they can effectively establish immunologic 
memory in the first 6 mo of age,30 we believe that the quality of 
the immune response to MNV (after what is a first-time exposure 
to MNV in our colony) is unlikely to differ according to the timing 
of infection during this time frame. However, this difference in in-
fection timing introduced another variable, obesity. In our previ-
ous study, mice were fed a high-fat diet for 8 wk before the MNV4 
infection and, thus, mice were obese prior to infection; in contrast, 

Figure 4. CD36 expression is influenced by oxLDL treatment and MNV infection. (A) CD36 mRNA expression in BMDM in response to different levels 
of oxLDL and the presence or absence of MNV was determined by qRT-PCR analysis. Expression levels were normalized to HPRT and expressed rela-
tive to a single replicate of the control sample (no oxLDL, no MNV) (B) Cell-surface expression of CD36 protein was determined in response to MNV 
in the presence or absence of oxLDL from triplicate samples per treatment by using flow cytometry. The fluorescent intensity (bar, mean ± SEM) of 
triplicate samples is shown.
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to its increased degradation,37 and this accelerated degradation 
of ABCA1 is mediated by an HIV accessory protein, Nef, which 
secures sufficient cholesterol to improve the infectivity of HIV.37 
Although MNV1 infection of macrophages are dependent on cho-
lesterol,18,45 whether increased intracellular cholesterol improves 
its infectivity is unknown. Additional studies need to determine 
whether MNV alters cholesterol homeostasis to benefit its infec-
tivity or ability to replicate.

In summary, we show that MNV4 infection influences cellu-
lar cholesterol levels in macrophages by regulating both uptake 
(CD36) and efflux (ABCA1) pathways in BMDM. Whether this 
modulation translates to a detectable in vivo effect is likely de-
pendent on many factors, including the stage of atherosclerosis 
and the potency of the viral isolate. Our findings suggest that 
careful consideration should be given when performing athero-
sclerosis studies in MNV-infected mouse colonies, given that pre-
dicting the influence of MNV on the disease phenotype is difficult 
in murine models.
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