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ABSTRACT

Excessive exposure to polycyclic aromatic hydrocarbons (PAHs) often results in lung cancer, a disease with the highest
cancer mortality in the United States. After entry into the lung, PAHs induce phase I metabolic enzymes such as
cytochrome P450 (CYP) monooxygenases, i.e. CYP1A1/2 and 1B1, and phase II enzymes such as glutathione S-transferases,
UDP glucuronyl transferases, NADPH quinone oxidoreductases (NQOs), aldo-keto reductases (AKRs), and epoxide
hydrolases (EHs), via the aryl hydrocarbon receptor (AhR)-dependent and independent pathways. Humans can also be
exposed to PAHs through diet, via consumption of charcoal broiled foods. Metabolism of PAHs through the CYP1A1/1B1/EH
pathway, CYP peroxidase pathway, and AKR pathway leads to the formation of the active carcinogens diol-epoxides, radical
cations, and o-quinones. These reactive metabolites produce DNA adducts, resulting in DNA mutations, alteration of gene
expression profiles, and tumorigenesis. Mutations in xenobiotic metabolic enzymes, as well as polymorphisms of tumor
suppressor genes (e.g. p53) and/or genes involved in gene expression (e.g. X-ray repair cross-complementing proteins), are
associated with lung cancer susceptibility in human populations from different ethnicities, gender, and age groups.
Although various metabolic activation/inactivation pathways, AhR signaling, and genetic susceptibilities contribute to lung
cancer, the precise points at which PAHs induce tumor initiation remain unknown. The goal of this review is to provide a
current state-of-the-science of the mechanisms of human lung carcinogenesis mediated by PAHs, the experimental
approaches used to study this complex class of compounds, and future directions for research of these compounds.
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Lung cancer is the leading cause of cancer-related death in both
men and women (Horn et al., 2012), responsible for 1.59 million
deaths around the world in 2012 (IARC, 2012). Approximately
90% of lung cancer cases are related to tobacco smoking and
1–2% are accounted for by outdoor air pollution and secondhand
smoke. Inhalation of incomplete indoor/outdoor combustion of
coal and wood may induce lung cancer as well (Reid et al., 2012).
Among the many components in tobacco smoke and outdoor
and indoor air pollution are polycyclic aromatic hydrocarbons
(PAHs), which are defined as a group of chemicals containing 2
or more fused benzene rings but no heteroatoms (Agency for
Toxic Substances and Disease Registry (ATSDR) December,
1990). The PAHs are considered to be the most important

carcinogens in these complex mixtures (Hecht, 2002, 2011;
Rubin, 2001). Although PAHs can exist in hundreds of different
combinations, the National Waste Minimization Program
defines this group using the Toxic Release Inventory reporting
category for PAHs, which include 20 compounds, such as
benzo[a]pyrene (BaP), dibenzo[a,h]anthracene, 3-methylcholan-
threne, 5-methylchrysene, and 7,12-dimethylbenz[a]anthracene
(Agency for Toxic Substances and Disease Registry (ATSDR)
December, 1990).

Inhalation exposure to PAH-containing substances increases
the risk of lung cancer in humans (DeMarini, 2004; Eom et al.,
2013; Osgood et al., 2013; Tsay et al., 2013). It is estimated that
there is 100 ng or more of total PAHs per gram of tobacco,
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regardless of the manufacturers and brands (Grimmer et al.,
1988), and smokers inhale �0.26 lg of BaP per pack of 20 ciga-
rettes (Piccardo et al., 2010). Domestic wood burning and road
traffic are also major sources of PAHs (Bostrom et al., 2002). For
example, in Stockholm, Sweden, the sum of 14 different PAHs
was 100–200 ng/m3 (taken from road samples), with the most
abundant being phenanthrene and BaP, both of which varied
between 1 and 2 ng/m3.

In addition to inhalation, it is well established that, in ciga-
rette and cigar smokers, considerably greater amounts of PAHs
are swallowed and enter the gastrointestinal tract than those
that enter through the lung (Jarup, 2003; Nebert et al., 2013;
Rozman and Klaassen, 2007). Significant amounts (0.1–20 mg/kg;
up to 100 mg/kg) of PAHs are also detected in grilled, barbecued,
or smoked meat products (Hansen et al., 1992; Larsson et al.,
1983; Masuda et al., 1966; Mottier et al., 2000; Simko, 2002; Sinha
et al., 1994) (Fig. 1). Consumption of fried chicken and smoked
dried beef translates to BaP concentrations of 5.4–5.5 lg/kg, and
charcoal-broiled steak contains BaP level of �9.0 lg/kg. This
amounts to an extrapolated environmental dose of �40–50 ng/
kg/day. However, BaP concentrations have been reported to be
as high as 19 lg/kg in smoked meat in Austria (Tiefenbacher
et al., 1982) and 69 lg/kg in rape seed oil (Pupin and Toledo,
1996). Ingestion of these foods would increase BaP amounts to
80–380 ng/kg/day (Pupin and Toledo, 1996). Researchers have
not found a direct link between dietary PAH exposure and lung
cancer incidence, except for one recent study from China (Cai
et al., 2012).

Although much research has been conducted on PAHs and
the various components that occur within environmental PAH-
containing mixtures, a comprehensive review of the mecha-
nisms by which PAHs contribute to lung cancer has not been
written. This review will provide an overview of the current
state-of-the-science of the metabolism of PAHs and how these
processes contribute to lung cancer, information on mode of ac-
tion to inform current health assessments, and knowledge gaps
to determine the next steps for research on these compounds.
Specifically, this review will evaluate the most commonly stud-
ied PAHs including BaP and the novel approaches used to study
the mechanisms by which these compounds may cause lung
cancer. Moreover, a thorough understanding of these mecha-
nisms by which PAHs induce cancer may lead to more targeted
treatments for lung cancer, which often has a poor prognosis
and results in billions of dollars expended on health care costs
associated with this disease.

THE PAHs—A COMPLEX GROUP OF
COMPOUNDS

The carcinogenicity of PAHs is associated with the complexity
of the molecule (i.e. increasing number of benzenoid rings).
According to the United States Environmental Protection

Agency, there are at least 11 carcinogenic or mutagenic PAHs.
The International Agency for Research on Cancer (IARC) lists
the following PAHs as human carcinogens or potential carcino-
gens: benz[a]anthracene, benzo[b]fluoranthene, benzo[j]fluor-
anthene, BaP,dibenz[a,h]anthracene, 7H-dibenzo[c,g]carbazole,
dibenzo[a,h]pyrene, dibenzo[a,i]pyrene, indeno[1,2,3-cd]pyrene,
benzo[k]fluoranthene, dibenzo[a,e]pyrene, dibenzo[a,l]pyrene,
and 5-methylchrysene (Fig. 2) (IARC, 2010). The PAHs have been
classified as belonging to different groups (IARC, 2010), based on
their carcinogenicities. BaP is carcinogenic to humans (Group 1).
Cyclopenta[cd]pyrene (Fig. 2), dibenz[a,h]anthracene, and diben-
zo[a,l]pyrene are probably carcinogenic to humans (Group 2A).
Benz[j]aceanthrylene, benz[a]anthracene, benzo[b]fluoranthene,
benzo[j]fluoranthene, benzo[k]fluoranthene, benzo[c]phenan-
threne, chrysene, dibenzo[a,h]pyrene, dibenzo[a,i]-pyrene,
indeno[1,2,3-cd]pyrene, and 5-methylchrysene are possibly car-
cinogenic to humans (Group 2B) (Fig. 2).

BaP has often served as a reference for the carcinogenicity of
other PAHs (Bostrom et al., 2002) and most studies have been
conducted using BaP because of its known carcinogenic effects.
It is important to note, however, that other PAHs need to be
studied as well, in addition to BaP.

MECHANISMS OF ACTIVATION OF
CARCINOGENIC PAHs

In general, PAHs are lipophilic compounds that can easily cross
cell membranes through passive diffusion after inhalation. The
parental PAH molecules that enter pulmonary cells are consid-
ered procarcinogens because they do not directly induce DNA
damage (Alexandrov et al., 2010; Miller and Ramos, 2001; Ramos
and Moorthy, 2005; Rybicki et al., 2006). Rather, it is the transfor-
mation of a single PAH into its carcinogenic metabolites that
contribute to cancer etiology. Transformation of these com-
pounds involves multiple metabolic enzymes and 3 known ma-
jor pathways: the CYP1A1/1B1 and epoxide hydrolase pathway
(CYP/EH pathway), CYP peroxidase pathway, and aldo-keto re-
ductases pathway (AKR pathway). In general, PAHs are metabo-
lized by CYPs and other metabolic enzymes into phenols,
catechols, and quinones, resulting in the formation of diol-
epoxides, radical cations, or reactive and redox-active o-
quinones, which may all react with DNA to produce DNA
adducts. For example, quinones react with the N-7 of guanine
and N-3 of adenine in DNA (Liu et al., 2002). This formation of
DNA adducts can cause mismatch in DNA replication, as well
as altered promoter methylation and/or promoter binding
(Yang et al., 2012), leading to an inheritable DNA mutation or ab-
normal gene expression, and ultimately tumorigenesis.
Although PAHs are not considered liver carcinogens, they do
become metabolized to DNA-reactive metabolites in liver fol-
lowing oral exposure (Kondraganti et al., 2003).

The reactive metabolites of PAHs may also induce the for-
mation of protein adducts in cells (Berge et al., 2004; Kafferlein
et al., 2010), which may affect the normal activities of these pro-
teins. PAH metabolites may also trigger an elevation in reactive
oxygen species (ROS), which can directly affect DNA, lipids
(Kwack and Lee, 2000), or proteins and initiate carcinogenesis.

The most commonly studied PAH, BaP, is transformed
in vivo into BP-7,8-epoxide by CYP1A1 via the CYP/EH pathway.
BP-7,8-epoxide is further oxidized by EH to form BP-7,8-dihydro-
diol, followed by the final step of CYP1A1-catalyzed hydroxyl-
ation to form BP-7,8-dihydrodiol-9,10-epoxide (BPDE), the
ultimate carcinogen (Beresford, 1993) (Fig. 3). BPDE reacts with

FIG. 1. Major sources through which PAH exposure occurs in humans.
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DNA to produce adducts that have been identified in lung tis-
sues of smokers, and may cause mutations that are observed in
p53 tumor suppressor gene and KRAS oncogene (Conney, 1982;
Denissenko et al., 1996; Geacintov et al., 1997; Pfeifer and
Besaratinia, 2009; Rojas et al., 1998). Denissenko et al. (1996) re-
ported that adduct formation was gene sequence-specific, with
adducts being formed at codons 157, 248, and 273. Mutations of
these sequences on the p53 gene lead to carcinogenesis and
have been linked to human lung cancers (Denissenko et al.,
1996). Thus, targeted adduct formation rather than phenotypic
selection appears to shape the p53 mutational spectrum in

lung cancer. These results provide a direct etiological link
between a defined chemical carcinogen and human cancer.

CYPs also contain a ‘peroxidase-like’ activity (Hrycay and
Bandiera, 2012), which catalyze one-electron oxidation of BaP at
the C6 position to produce radical cations (Cavalieri and Rogan,
1985). These PAH-derived radical cations, though short-lived,
can react with DNA and cause mutations (Devanesan et al.,
1992).

In the AKR pathway, dihydrodiol dehydrogenase, a member
of the aldo-keto reductase superfamily, catalyzes dehydrogena-
tion of BP-7,8-diol, a BaP metabolite, to form a BP catechol

FIG. 2. Chemical structure of PAHs.

FIG. 3. Major pathways of metabolic activation of the PAH BaP to DNA-binding metabolites.
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(Burczynski et al., 1999). Further oxidations of catechols
generate o-quinones. Redox cycling of quinones could lead to
formation of ROS, which could also lead to carcinogenesis via
oxidative DNA damage (Moorthy et al., 2002). In 2004, Lan et al.
(2004) reported that AKR1C3-Gln/Gln genotype was associated
with a 1.84-fold increased risk of lung cancer in a Chinese
population with high coal smoke exposure, indicating a signifi-
cant role of the AKR pathway in PAH activation in lung
carcinogenesis.

Thus, the following pathways operate in the metabolic acti-
vation of PAHs (Borza et al., 2008): (i) formation of dihydrodiol
epoxides requiring 2 CYP-catalyzed oxidations and epoxide
hydrolase; (ii) formation of phenols via radical cations by 1-
electron oxidation (Cavalieri and Rogan, 1985); and (iii) forma-
tion of o-quinones via catechols by involvement of aldo-keto
reductases with formation of ROS (Fig. 4).

CURRENT RESEARCH ON PAH-INDUCED AHR
ACTIVATION

The mechanism by which PAHs contribute to AhR-dependent
induction is well understood (Marlowe and Puga, 2005; Nebert
et al., 2004; Ramadoss et al., 2005) (Fig. 4). AhR is expressed in al-
most all tissues and is highly expressed in liver, adipose tissue,
and bronchial epithelial cells (Tsay et al., 2013). AhR is a tran-
scription factor normally wrapped within an inactive protein
complex in the cytosol. PAH binding to the receptor releases a
key component, hepatitis B virus X-associated protein 2, from
the AhR complex, resulting in the translocation of the AhR com-
plex into the nucleus. Once in the nucleus, a dimer of heat

shock protein 90 (Hsp90) is released from the complex, allowing
dimerization of AhR with the AhR nuclear translocator (ARNT).
This AhR/ARNT heterodimer is the active form of the AhR tran-
scription factor. This transcription factor is then able to recog-
nize AhR-responsive elements (AHREs) in promoter regions of
AhR responsive genes and regulate their transcription to alter
expression levels of a battery of AhR-regulated genes, including
CYP1 isoforms.

Carcinogenic PAHs such as BaP or 3-methylcholanthrene are
ligands of AhR (Nebert et al., 2004). Activation of the AhR has a
variety of other downstream effects that include formation of
DNA adducts (via CYP1A/1B1-dependent metabolic activation),
tumorigenesis, inflammation, cell proliferation, and loss of cell-
cell adhesion (Tsay et al., 2013). Because of its high level of ex-
pression in human bronchial epithelial cells, AhR has many
physiological consequences in the lung such as its effects on
cell proliferation and differentiation, cell-cell adhesion interac-
tion, cytokine expression, mucin production, and xenobiotic
metabolism (Chiba et al., 2011). Numerous studies have shown
that the AhR also plays an important role in the development of
lung cancer. Matsumoto et al. (2007) have shown that urban par-
ticulate matter induced lung cancer in wild type (AhRþ/þ), but
not in AhR-null mice, suggesting that AhR plays a mechanistic
role in the development of lung tumorigenesis by urban particu-
late matter, and this occurred through CYP1A1 induction
(Matsumoto et al., 2007). Therefore, the AhR plays an important
role in lung tumorigenesis mediated by PAHs, and understand-
ing the role of the AhR in lung tumorigenesis may lead to the
identification of novel biomarkers for early diagnosis/prognosis
and new targets for therapy. For example, tanespimycin
(17-Allylamino-17-demethoxygeldanamycin), an Hsp90

FIG. 4. Multiple mechanisms by which PAHs cause lung cancer.
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inhibitor, is a drug candidate to treat lung cancer. Although
tanespimycin decreases AhR levels and AhR-regulated gene ex-
pression in multiple lung adenocarcinoma cells, AhR expression
is associated with increased anticancer activity of tanespimycin
(Chen et al., 2013), thereby suggesting both the significance and
complexity of the AhR in regard to PAH activation, metabolism,
and lung cancer therapy.

PAH ACTIVATION BY CYTOCHROME P450s

CYPs account for �75% of the total metabolic enzymes for the
various xenobiotics humans are exposed to everyday
(Guengerich, 2008), and they are the major metabolic enzymes
that catalyze the oxidation of organic substances such as PAHs.
The CYP1 family, including CYP1A1, CYP1A2, and CYP1B1, plays
a pivotal role in PAH activation (Bowes et al., 1996; Moorthy,
2008; Shimada et al., 1996, 2001; Walsh et al., 2013). This has
been demonstrated by studies from Shimada et al. (2010), in
which CYP1A1 catalyzed PAHs faster than other isoforms like
CYP1A2, 2C9, 3A4, and 2C19. Other isoforms such as CYP2A6,
2B6, 2C8, 2D6, 2E1, 3A5, 3A7, and 4A11 may not play a significant
role in PAH metabolism (Shimada et al., 2001).

CYP1 isoforms are all monooxygenases, which incorporate 1
oxygen atom into a substrate, often generating oxidative epox-
ides (Nebert et al., 2004). Endogenous CYP1A1, but not CYP1A2,
is expressed in lung, and pulmonary CYP1A1 is highly inducible
by PAHs (Choudhary et al., 2003; Jiang et al., 2004) (Fig. 4). Such
induction may last weeks and months after exposure to PAHs is
discontinued (Fazili et al., 2010; Jiang et al., 2009; Moorthy, 2000;
Moorthy et al., 1993), a phenomenon that may have important
implications for carcinogenesis (Moorthy, 2008).

CYP1B1, which is expressed in lung and other extra-hepatic
tissues (Dey et al., 1999), is also known to play an important role
in PAH metabolism in relation to carcinogenesis. Human
CYP1B1 plays an important role in the activation of diverse
pro-carcinogens such as BaP, BaP-7-8-diol, dibenzo[a]pyrene,
benz[a]anthracene, 7,12-dimethylbenz[a]anthracene, 7,12-
dimethylbenz[a]anthracene-3,4-diol, 5-methylchrysene, 2-nitro-
pyrene, 3-methoxy-4-aminoazobenzene, etc.

CYP1B1 is also over-expressed in various tumor tissues, and
therefore could be considered a histopathological tumor marker
(Liehr et al., 1995; Murray et al., 1997; Spencer et al., 1999; Spink
et al., 1997). Uppstad et al. (2010), using RNA interference studies,
compared the individual role(s) of CYP1A1 and CYP1B1 in the
metabolic activation of BaP to its carcinogenic metabolites in
human lung cells, and showed a major role for CYP1A1 in the
formation of carcinogenic BaP diol-epoxides, whereas both
CYP1A1 and 1B1 contribute significantly to the formation of
BaP-cis and trans-7,8-dihydrodiol isomers. On the other hand,
Shimada et al. (1999) showed that CYP1B1, together with epox-
ide hydrolase, catalyzes the conversion of BaP to BaP-7.8-diol at
much higher (�10-fold) higher than CYP1A1.

DETOXIFICATION OF PAHs

Recent studies also suggest an important role for CYPs in the
detoxification of PAHs (Arlt et al., 2012; Joubert et al., 2012).
Nebert et al. (2013) showed that CYP1A1 is an absolute require-
ment for detoxification of oral BaP (Uno et al., 2006). Preliminary
studies from one of our laboratories have suggested that
CYP1A1 and 1A2 have reciprocal roles in lung cancer, with
CYP1A1 playing a role in PAH activation, and 1A2 in their detox-
ification (Jiang, Zhou, Maturu, Wang, and Moorthy, unpublished
data). Phase II enzymes in the liver are also responsible for the

clearance of PAHs. Beside UDP glucuronyl transferases
(Saengtienchai et al., 2014), glutathione S-transferase Mu 1
(GSTM1) detoxifies PAHs (Fig. 4). Furthermore, the importance
of this enzyme for detoxification has been indicated in GSTM
null women, who exhibit a higher risk of lung cancer (Bennett
et al., 1999).

MODELS AND APPROACHES TO STUDY PAH
METABOLISM

Due to the complexity of PAH metabolic pathways and meta-
bolic enzymes (Fig. 4), in vitro cell culture may not seem suitable
to simulate the PAH metabolism in human body, nor to study
PAH carcinogenesis in the lung. However, the benefit of utilizing
cell culture models cannot be ignored. Cell cultures continue to
be applied in investigations of single metabolic pathway, cross-
talking of signaling pathways, gene regulation such as promoter
methylation, and cell biology in PAH carcinogenesis. We have
recently identified the significant role of the AHRE974 of CYP1A1
5-flanking sequence in PAH induction of CYP1A1 promoter in
pulmonary cell culture systems (Chu, Wang, Basu, Maturu,
Couroucli, Jiang, and Moorthy, unpublished data). In fact, be-
cause more than 1 cell type is involved in the development of
pulmonary carcinogenesis, new 3-dimensional models using
multiple cell types would be desirable.

Knock-out mice have emerged as important tools to investi-
gate the role of a particular gene in PAH activation or carcino-
genesis (Chavan and Krishnamurthy, 2012; Dragin et al., 2008;
Jiang et al., 2009, 2010; Kondraganti et al., 2003; Shimada et al.,
2002). For example, studies in AhR knockout mice indicate the
existence of an AhR-independent pathway for PAH activation in
mouse liver (Kondraganti et al., 2003), and the regulation of he-
patic and pulmonary CYP1A1 by PAHs is altered in Cyp1a2-null
mice (Jiang et al., 2010). Carcinogenicities of PAHs are also lost in
AhR knockout mice (Nakatsuru et al., 2004; Shimizu et al., 2000),
thereby suggesting that AhR is involved in pulmonary carcino-
genesis. Knock-out animal models will continue to be used
to determine many of the mechanisms associated with PAH
toxicity; however, 1 potential disadvantage to the use of knock-
out animal models is that the various animal genes encoding
the metabolic enzymes may not be similar to those in the
human.

To better study the roles of CYPs in PAH toxicities to hu-
mans, humanized mice have also been developed. To produce
these animals, the endogenous rodent genes are replaced with
their human homologues or equivalents (Dragin et al., 2007;
Gonzalez, 2007; Kazuki et al., 2012; Moriguchi et al., 2003).
Corchero et al. (2001) used a BAC clone containing both CYP1A1
and 1A2 genes to generate a transgenic mouse line that was
bred into either Cyp1a1-null or Cyp1a2-null background, thereby
creating functional humanized CYP1A1 (Cheung et al., 2005) and
humanized 1A2 mice (Jiang et al., 2005), respectively. The hu-
manized CYP1A2 mice has shown preferential N2-hydroxylation
of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine, a path-
way that is predominant in human, based on in vitro studies
(Cheung et al., 2005). Dragin et al. (2007) have also developed hu-
manized mice that express both human CYP1A1 and 1A2, but
lack their mouse orthologues, making these models ideal for
studying human metabolism of PAHs in mice (Uno et al., 2009).
Recently, Li et al. (2014) reported the establishment of a human-
ized CYP1B1 mouse line. The use of humanized mouse models
will be essential in the future elucidation of the health effects of
PAHs in humans, provide a link between the in vitro and human
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studies, and assist in addressing many of the data gaps listed in
this review.

GENETIC SUSCEPTIBILITY TO
PAH-ASSOCIATED LUNG CANCERS

Less than one-fourth of tobacco smokers are diagnosed with
lung cancer (Ezzati and Lopez, 2004), and yet, �1 out of 10 of
lung cancer deaths is among non-smokers (Alberg et al., 2013),
indicating that many genes and gene families affect the activa-
tion and elimination of PAHs and genetic susceptibility plays a
role in lung cancer. Mutations, including single nucleotide poly-
morphisms (SNPs), of these genes alter their biological func-
tions such as catalytic activities, hence, affect the toxicity of
PAHs and have implications for studying the mechanisms of
PAHs by adding to their complex mechanism(s) of action. These
mutations have been demonstrated in CYPs, GSTs, and p53. For
example, polymorphisms of CYP1A1, GSTM1, and GSTT1 affect
the susceptibility of lung cancer induced by PAH exposure
(Bennett et al., 1999; Ji et al., 2012; Ketterer et al., 1992; Przygodzki
et al., 1998).

The discovery of SNPs associated with PAHs and lung cancer
susceptibility has also increased due to the fast development of
highly efficient and economic gene sequencing technologies.
These genes include GSTP1, AKR, microsomal epoxide hydro-
lase (EPHX1), X-ray repair cross-complementing protein 1, and
excision repair cross-complementing protein EERC2 (Ada et al.,
2012; Lan et al., 2004; Penning and Drury, 2007; Sun et al., 2010;
Timofeeva et al., 2010; Wang et al., 2013; Zhou et al., 2011).

Moreover, a mutation that increases the susceptibility of any
human disease should be critically evaluated. Such studies
should consider sample size, gender, age, ethnicity, smoking
habit, occupational and environmental PAH exposure, and sub-
categories of lung cancers. For example, Ada et al. (2012) sur-
veyed 213 lung cancer patients and 231 controls in a Turkish
population and found that GSTP1 exon 6 variant genotypes ex-
hibited an overall increase in lung cancer risk. However,
GSTM1-null, GSTT1-null, and GSTP1 exon 5 variant genotypes
were not associated with a significant risk for developing lung
cancer. Similar observations were also reported in a study of
Caucasians (Timofeeva et al., 2010). Timofeeva et al. (2010) sur-
veyed 17 SNPs and 2 deletion polymorphisms in 638 patients
and 1300 controls under the age of 51. They found that the mu-
tations in myeloperoxidase, EPHX1, GSTT1, GSTM1, GSTP1, and
NQO1 genes showed no significant overall increase in lung can-
cer risk. Subgroup analysis revealed gender- and/or smoking-
specific effects of EPHX1, GSTT1 deletion, GSTP1, and NQO1
polymorphisms.

Current research also suggests that multiple mutation sites
in multiple genes are involved in the PAH-associated lung can-
cer susceptibilities. A genome-wide association study, which is
based on genotyping arrays (Carvalho et al., 2013; Lange et al.,
2014), has also found several SNPs that are associated with lung
cancer incidences, in different nations and ethnic groups (Dong
et al., 2012; Lee et al., 2013; Spitz et al., 2013). Cross-sectional in-
vestigation with PAH-induced genetic damage in 1557 Chinese
coke oven workers has identified that 13q12.12-rs753955C is as-
sociated with elevated urinary 8-hydroxydeoxyguanosine level
(Dai et al., 2014), a biomarker of oxidative DNA damage.
Future studies of these multiple mutation sites will require
increased sample size along with novel genetic analyses from
next-generation sequencing to determine the various genetic
susceptibilities which contribute to cancer as a result of expo-
sure to PAHs.

IMPLICATIONS FOR HUMAN HEALTH

There is great variability among different PAHs with respect to
carcinogenic potency and their dose-response relationships
(Deutsch-Wenzel et al., 1983; Grimmer et al., 1988). Moreover, in
reality, the environmental PAHs often exist as mixtures.
Tarantini et al. (2011) reported that the components in PAH mix-
tures can affect the carcinogenicity of each PAH, by exhibiting
synergistic and antagonistic effects, often simultaneously. This
finding complicates the evaluation of cancer risk for PAHs.
Recently Cioroiu et al. (2013) assessed PAHs in the lungs of 31 pa-
tients with lung cancer in Romania. Fifteen PAHs were detected,
of which benz[a]anthracene, anthracene, fluoranthene, BaP,
benzo[b]fluoranthrene, benzo[k]fluoranthrene were considered
the major components of the mixture (Fig. 2). This study is the
first to record PAH concentrations in human lung cancer tissue,
and indicates that lung cancer patients present high concentra-
tions of carcinogenic (0.33–31.94 ng/g wet tissue, mean¼ 6.12 6

7.31 ng/g wet tissue) and noncarcinogenic (2.46–218.19 ng/g wet
tissue, mean¼ 45.57 6 54.83 ng/g wet tissue) PAHs in lung tissue,
thereby providing strong evidence that PAHs are etiologic fac-
tors in lung cancer in humans. Further mechanistic studies of
the relevant components of these mixtures, as well as the mix-
tures themselves, are needed to determine which component(s)
(and which when combined), play a role in the etiology of lung
cancer.

In conjunction with studying mixtures, quantitative cancer
risk estimates of PAHs are highly uncertain because of the lack
of good-quality data. According to the World Health
Organization Air Quality Guidelines for Europe, the unit risk is
9� 10�5 per ng/m3 of BaP as an indicator of the total PAH con-
tent, namely, lifetime exposure to 0.1 ng/m3 would theoretically
lead to 1 extra cancer case in 100 000 exposed individuals. This
concentration of 0.1 ng/m3 of BaP is suggested as a health-based
guideline. Because the carcinogenic potency of fluoranthene
has been estimated to be �20 times less than that of BaP, a ten-
tative guideline value of 2 ng/m3 is suggested for fluoranthene.
Guidelines still need to be determined for other significant
PAHs such as phenanthrene, methylated phenanthrenes/an-
thracenes and pyrene, and large-molecule PAHs such as
dibenz[a,h]anthracene, benzo[b]fluoranthene, benzo[k]fluoran-
thene, and indeno[1,2,3-cd]pyrene. Thus, it is only through care-
ful mechanistic studies that recommendations can be provided
in support of these guidelines.

KNOWLEDGE GAPS IN MECHANISTIC
RESEARCH OF PAHs

Although there is a great amount of literature on PAHs, there
are still several knowledge gaps that need to be fulfilled in order
to fully understand the complex nature of these compounds,
and the gaps increase exponentially when considering that
PAHs often exists in mixtures. For example, most mechanistic
studies have been conducted using BaP, suggesting there is
need for investigations with other human carcinogenic PAHs
and mixtures of these PAHs. Most work has focused on parent
PAHs, but alkylated and oxygenated PAHs are also present in
the environment. Also, more structure-activity relationship
work is needed to predict which PAHs might be lung carcino-
gens. Other areas of needed research include: AhR versus
AhR-independent pathways of PAH-induced carcinogenesis;
identification of susceptible individuals and the mechanisms
that play a role in susceptibility; immune-related mechanisms
of PAH-mediated lung cancer; and the role of epigenetics in
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PAH-induced lung cancer. For example, Pavanello et al. (2010)
recently showed that shorter telomere length in peripheral
blood lymphocytes of workers exposed to PAHs is predictive of
lung cancer risk. Finally, treatments to prevent or reverse the
mechanisms that induce carcinogenesis induced by PAHs are
necessary to reduce the incidence of lung cancer.

CONCLUSIONS

In conclusion, this review focuses on the mechanisms of toxic-
ity of PAHs, in relation to pulmonary carcinogenesis in humans.
To tease the mechanistic effects of multiple PAHs will require
an inter-disciplinary approach with systems biologists, epide-
miologists, pathologists, omics researchers, mechanistic re-
searchers, and biostatisticians who can analyze complex data
sets. PAHs are a complex mixture, often with over 100 compo-
nents, making these compounds difficult to study. The most
well-known PAH, BaP, is just the beginning of our understand-
ing of the components of these mixtures. Further research is
needed on how individual or binary and higher order mixtures
of PAHs induce genetic and molecular alterations. To add to the
complexity, these mixtures should be investigated in suscepti-
ble populations such as those with genetic polymorphisms as
well as in sensitive populations such as children. This research
will lead to novel strategies for the prevention and/or treatment
of human lung carcinogenesis mediated by environmental
PAHs.
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