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Abstract The intestine must challenge the profuse daily
flux of dietary fat that serves as a vital source of energy and
as an essential component of cell membranes. The fat ab-
sorption process takes place in a series of orderly and inter-
related steps, including the uptake and translocation of
lipolytic products from the brush border membrane to the
endoplasmic reticulum, lipid esterification, Apo synthesis,
and ultimately the packaging of lipid and Apo components
into chylomicrons (CMs). Deciphering inherited disorders
of intracellular CM elaboration afforded new insight into
the key functions of crucial intracellular proteins, such as
Apo B, microsomal TG transfer protein, and Sarlb GTPase,
the defects of which lead to hypobetalipoproteinemia, abet-
alipoproteinemia, and CM retention disease, respectively.
These “experiments of nature” are characterized by fat mal-
absorption, steatorrhea, failure to thrive, low plasma levels
of TGs and cholesterol, and deficiency of liposoluble vita-
mins and essential FAs. After summarizing and discussing
the functions and regulation of these proteins for reader’s
comprehension, the current review focuses on their specific
roles in malabsorptions and dyslipidemia-related intestinal
fat hyperabsorption while dissecting the spectrum of clini-
cal manifestations and managements. The influence of
newly discovered proteins (proprotein convertase subtilisin/
kexin type 9 and angiopoietin-like 3 protein) on fat absorp-
tion has also been provided.Bll Finally, it is stressed how the
overexpression or polymorphism status of the critical intra-
cellular proteins promotes dyslipidemia and cardiometa-
bolic disorders.—Levy, E. Insights from human congenital
disorders of intestinal lipid metabolism. J. Lipid Res. 2015.
56: 945-962.
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BRIEF OVERVIEW OF INTESTINAL FAT
ABSORPTION

The small intestine is the major site for the transport of
alimentary fat, the most calorically dense nutrient, in the
form of lipoproteins. The process of lipid absorption may
schematically be divided in three sequential phases: intra-
luminal, intestinal, and secretory events (Fig. 1). The in-
traluminal phase includes chemical hydrolysis of lipids
[mainly TGs, glycerophospholipids (GPs), and cholesteryl
esters (CEs) | by lipolytic enzymes (pancreatic lipase, phos-
pholipase A2, and cholesterol esterase, respectively), the
micellar solubilization of lipolytic products by bile acids
(1-13), and the shuttle of micelles through the unstirred
water layer to the surface of the microvillus membrane
(14-19). The resistance of the unstirred water layer is in-
fluenced by the chain length and saturation of FAs, as well
as lipid species (14, 16, 20). The intestinal phase comprises
passive diffusion and protein-mediated facilitated trans-
port of hydrolyzed products (FAs, monoacylglycerols, free
cholesterol, and lyso-GPs) across the microvillous mem-
brane of the enterocyte involving several transporters
[e.g., cluster of differentiation 36, FA binding protein
(FABP)4, and plasma membrane FABP] (21-27). How-
ever, it is important to specify that the transfer of long-
chain FAs, in particular, is a highly controversial question
that has attracted the interest of several reviews (28-34).
Once in the cytoplasm, the lipolytic products are bound
by cytosolic FABPs (intestinal- and liver-FABP) (35-43) be-
fore being targeted to the endoplasmic reticulum (ER) for
the reesterification of TG (essentially by monoacylglycerol
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Fig. 1. Schematic intracellular network required for lipid metabolism, Apo B biogenesis, and CM assembly in the enterocyte. Digestion

takes place in the intestinal lumen where TGs, CEs, and GPs are hydrolyzed by pancreatic lipase, cholesterol esterase, and phospolipase A2,
respectively. The lipolytic products (FA, 2-MG, FC, lyso-GP) are emulsified into mixed micelles by bile salts before their diffusion through
the unstirred water layer. At the apical surface, they enter the enterocyte via passive diffusion when they are in high concentrations. How-
ever, protein transporters (e.g., FABPm) are required at weaker concentrations. Once inside the enterocyte, the lipolytic products are
bound to cytoplasmic FABPs (I- and L-FABP) in order to migrate to the ER where they are reesterified by various enzymes: monoacylglyc-
erol acyltransferase (MGAT) and diacylglycerol acyltransferase (DGAT) for the conversion of 2-MG to TG, ACAT-2 for the esterification of
FCinto CE, and an enzymatic system (glycerophosphate acyltransferase, phosphatidate phosphodiesterase, lyso-PC acyltransferase) for the
production of GP. The synthesis of Apo B-48 and its interaction with MTP, a heterodimeric complex with the chaperone protein, protein
disulfide isomerase (PDI), through the NHy-terminal domain, is essential for preCM assembly. This packaging process starts when the grow-
ing Apo B-48 polypeptide is cotranslationally lipidated by MTP in the lumen of the ER: the association of Apo B-48 with lipids is required
not only to ensure proper initiation of folding, but also to prevent its destruction by the proteosomal degradation pathway. The formation
of preCM transport vesicles is critical for the transport of the nascent lipoproteins to the Golgi, a process mediated by Sarlb GTPase. The
maturation of preCMs is completed in the Golgi by addition of lipids and glycosylation of Apos, yielding a mature CM particle characterized
by TG and CE in its core and FC, GP, and Apo B on its surface. Finally, CMs are released by the enterocyte into the intestinal lymph through
exocytosis. MG, monoacylglycerol; FC, free cholesterol; I-lFABP, intestinal-FABP; L-FABP, liver-FABP; PC, phosphatidylcholine.

acyltransferase and diacylglycerol acyltransferase), CE (with
the involvement of ACAT-2), and GP (via combination
of diacylglycerol with choline and ethanolamine), and fi-
nally the formation of lipid-carrying lipoproteins in the
secretory pathway (44—46). The delivery phase involves the
exocytosis of chylomicrons (CMs) from the absorptive
cells and their subsequent delivery into the systemic circu-
lation via the intestinal lymph. Experimental and clinical
approaches have significantly advanced our understand-
ing of the intra-enterocyte step that brings together the
large amphipathic apolipoprotein (Apo) B-48 polypeptide
and newly esterified lipids in a fixed temporal sequence
(47). Once the translation and translocation of Apo B-48
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into the lumen of the ER are initiated, microsomal TG
transfer protein (MTP) shuttles lipids from the ER mem-
brane to the growing Apo B-48 chain in the ER, allowing
the protein to translocate completely into the lumen (47,
48). However, deprivation of lipid substrate causes degra-
dation of Apo B-48 and inhibition of nascent CM assembly
(47, 49). The preCM is transported via a preCM transport
vesicle to the Golgi apparatus (50), where the coat is re-
moved and a mature CM is formed through acquisition of
more neutral lipids (51). More specifically, the maturation
of CMs in the Golgi apparatus is accompanied by further
alterations in Apo B-48 glycosylation (52, 53), Apo A-I ac-
cretion (54), lipid composition (53), and size (54). The



transfer process is highly dependent on the small Sarlb
GTPase that initiates the vesicular coat protein complex II
(COPII)-dependent transport of cargo from the ER to the
Golgi apparatus (55) (Fig. 1).

This article is aimed at summarizing insights gained in
the last two decades on the important pathways modulat-
ing key intracellular proteins in CM formation and intesti-
nal fat absorption. One of the major goals for this article is
to familiarize readers with this expanding and evolving
understanding related to the regulation, ontogeny, and
functions of the crucial proteins: Apo B-48, MTP, and
Sarlb GTPase. The impact of their genetic defects on en-
terocyte lipid transport will also be summarized, while
pointing out clinical disorders and management.

ABETALIPOPROTEINEMIA

Introduction

Abetalipoproteinemia (ABL; OMIM#200100) is an au-
tosomal recessive disorder that is usually detected during
infancy due to failure to thrive, severe diarrhea, and fat
malabsorption. The defective gene was discovered 40 years
after the first description of the disease (56). The primary
cause is due to the defects in MTP (48) (Fig. 2), leading to
abnormal assembly of intestinal and hepatic Apo B-con-
taining lipoproteins (57-61), thereby explaining the vir-
tual absence of plasma Apo B-100 and Apo B-48, as well as
the low plasma concentrations of TG and cholesterol (62).

MTP properties

MTP is located within the lumen of microsomes of the
liver and intestine (63, 64). It appears as a heterodimer
with two subunits of apparent molecular mass 58,000 and
88,000 kDa (65). The small subunit has been identified
as the multifunctional protein disulfide isomerase (63),
while the unique large subunit confers the catalytic prop-
erty to the protein complex (65). It catalyzes the transfer
of TG, CE, and phosphatidylcholine between GP surfaces.
In fact, by transporting lipids by a shuttle mechanism

APO B defectsd __ iz[=1H
-

Fig. 2. Congenital disorders of intestinal lipid absorption. De-
fects in the key proteins, Apo B-48, MTP, and Sarlb GTPase, result
in the genetic disorders characterized by FHBL, ABL, and CRD,
respectively.

(Ping Pong Bi Bi kinetics), MTP acts as a carrier of lipids
from their site of synthesis to nascent lipoproteins within
the ER (66). Additional evidence for the critical role of
MTP in CM and VLDL production in the enterocyte and
hepatocyte, respectively, has been provided with pharma-
cological approaches utilizing specific MTP inhibitors that
simultaneously inhibit lipid transfer activity in situ while
blocking Apo B secretion (67-70). Treatment with MTP
inhibitors results in a dose-dependent decrease in Apo B
secretion, suggesting that MTP is rate-limiting for TG-rich
lipoprotein secretion (67). Investigators have rapidly ex-
ploited the discovery of ABL molecular basis to elaborate
on the concept that pharmacologic MTP inhibition may
constitute a powerful strategy to reduce Apo B-containing
lipoproteins (CMs, VLDLs, and LDLs) in dyslipidemia,
with a considerable impact on the prevention of cardiovas-
cular diseases. Given gastrointestinal and hepatic adverse
effects, the development of most of MTP inhibitors was
halted except lomitapide that has succeeded to cross
phase 2 clinical trial (71, 72) and exhibited efficacy and
safety in a recent phase 3 trial focusing on homozygous
familial hypercholesterolemia (73). Importantly, MTP in-
teracts with Apo B through its N-terminal B-barrel domain
(residues 22-297), while the middle a-helical domain (res-
idues 298-603) mediates the interaction with protein
disulfide isomerase, and the C terminal mediates the lipid-
binding and transfer catalytic activity of MTP (74-76).
It is now well-established that MTP elicits lipidation of
the growing Apo B polypeptide chain, thus favoring the
assembly and secretion of lipoproteins (77, 78). In addi-
tion to achieving net transfer of lipid to Apo B during its
translation, MTP can also activate the trafficking of TG
droplets from the cytosol to the ER lumen and catalyze the
fusion of nascent Apo B-containing particles with TG
droplets, thereby contributing to CM expansion (79, 80).
If MTP is absent, as seen in the condition of ABL, Apo B
does not fold properly because of the defect of adequate
lipidation in the ER, which irremediably leads to its pro-
teosomal degradation (81). Therefore, the transient physi-
cal interaction of MTP with Apo B is crucial at early stages
of lipoprotein synthesis (78, 82-84) (Fig. 1). The absence
of MTPis triggered by mutations in the gene for the large
MTP subunit, which contains 18 exons and spans approxi-
mately 55-60 kb in chromosome 4 (4q22-q24) (85). Inter-
estingly, one of the quantitative trait loci for LDL is located
in a region of chromosome 4 that contains M7TP that con-
stitutes a clearly strong positional candidate gene for as-
sociation for the variation effects on LDL size fractions
(86, 87). Furthermore, a systemic exploration of the chro-
mosome 4 linkage has identified the MTP gene as a modi-
fier of lifespan in a cohort of long-lived individuals (88).
Because the description of MTP as the cause of the rare
inherited ABL disease (86, 89), over 30 mutations in MTP
have been identified in more than 50 ABL patients de-
scribed so far: 21.83% missense, 7% nonsense, 12% small
indel, 3% gross indel, and 27.7% splicing variants (90-93).
The functional characterization of various mutations
found in ABL has not only disclosed their effects on the
expression, subcellular location, and interaction of MTP
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with protein disulfide isomerase, but has also emphasized
requirements for the transfer of both TGs and GPs to sup-
port Apo B secretion (94).

MTP expression in different tissues and
during human development

The large subunit expression of MTP, along with its
transfer activity, is predominantly present in differentiated
epithelial cells of the small intestinal regions (duodenum,
proximal jejunum), but absent in crypt and colonic cells
(95-97). Interestingly, MTP was identified in villus and
crypt epithelial cells as well in different regions of the hu-
man fetal intestine, including the colon (95). Staining was
detected as early as the 13th week of gestation in all gut
segments and was almost entirely confined to the colum-
nar epithelial cells of the jejunum and colon (95). Also, a
trend toward increasing MTP activity was noticed at 20-22
weeks of gestation (95). These observations combined
with previous reports demonstrate the small intestine’s
ability to synthesize and secrete Apo B-containing lipopro-
teins during development (95, 98-101). The liver also rep-
resents a major organ of MTP expression, but hepatocytes
constitute the unique cell population containing MTP
protein with an expression gradient: a decrease toward the
periphery of the lobule opposing the portal triad and an
increase in cells proximal to the central vein (96).

Interesting findings support the presence of MTP in the
kidney and heart, which allows the secretion of their con-
tent of Apo B-containing particles, thereby protecting
proximal tubules and myocardium, respectively, against
accumulation of toxic lipids (102-104). MTP mRNA and
protein were also detected in antigen-presenting cells, in-
cluding monocytes, splenocytes, B cells, and T cells (105),
with an involvement of CD1d-restricted lipid antigen pre-
sentation (106).

Functional consequences of MTP absence:
ABL clinical spectrum

Mice homozygous for an MTP gene disruption died at
~E10.5, thereby underscoring the essential role of MTP,
and the importance of the synthesis and secretion of Apo
B-containing lipoproteins during early stages for lipid de-
livery to embryos (107, 108). Additionally, half-normal lev-
els of the MTP mRNA, protein, and TG transfer activity in
tissues of heterozygous mice are insufficient for normal
levels of lipoprotein secretion and developmental func-
tions, emphasizing the lack of physiological compensation
for reduced levels of MTP gene expression in Mtt[f/ N

(107). In contrast, obligate human heterozygotes exhib-
ited normal plasma lipid and lipoprotein levels, and adult
human subjects survive with a near-total absence of Apo
B-containing lipoproteins (109), which clearly implies that
both alleles of the MTP 97 kDa gene need to be defective
in order to observe the major decline in plasma lipids and
intestinal absorption, and the recessive character of ABL
disease. So far, we do not know if MTP is present in excess
under normal circumstances, as losing approximately 50%
of its expression is not enough to affect lipoprotein assem-
bly. Because no one has ever measured the levels of MTP
in the intestine or liver from human heterozygotes, we also
do not know whether the explanation for the flagrant par-
adox (e.g., humans vs. mice) stems from a potential com-
pensatory upregulation of MTP expression from the
normal allele or is a result of a reduction in MTP mRNA or
protein turnover. This could also be due to different em-
bryonic growth rates or maternal-fetal transport methods.
Although a number of different in vitro model systems
have been employed to address these issues, extrapolation
to in vivo physiology might be hazardous. In this context,
it is also worth recalling that the placental circulation is
established very early during human gestation, and the
transport mechanisms for lipids in the placenta and lipid
requirements may be quite different from those in the
mouse yolk sac.

Consequent to MTP abnormalities in ABL, various
multi-system manifestations are noted in Table 1. Most of
the reported young patients have diarrhea, steatorrhea,
acanthocytosis, low serum cholesterol, and Apo B defi-
ciency, which are accompanied with failure to thrive and
essential FA (EFA) deficiency. In view of the severe fat mal-
absorption, transport of fat-soluble vitamins is flawed and
even worsened with fat consumption (57).

Elevated serum transaminases with hepatomegaly due
to hepatic steatosis have frequently been reported (110-
112). Few patients presented with cirrhosis. Apparently,
with post transplantation, the profile of the liver and lipo-
proteins was normal, but intestinal fat absorption persisted
as the mutant MTP remains expressed in the intestine
(113).

One of the most serious clinical manifestations is at the
level of both central and peripheral nervous systems. In
fact, a progressive ataxic neuropathic disease and retinop-
athy develop in later childhood and are probably due to
vitamin E deficiency (111, 114, 115). However, one can
observe absent tendon reflexes as early clinical signs,
which are followed by deep sensory loss in the lower limbs

TABLE 1. Clinical phenotypes of the main congenital malabsorption disorders

Disorder CRD ABL HBL Homozygous HBL Heterozygous
Retinopathy + +++ +++ —
Myopathy + +++ +++ iy
Neuropathy + +++ +++ +/—
Cardiomyopathy +/— T+ T+ _
Hepatic steatosis + ++ ++ ++
Steatorrhea ++ +++ +++ +/—
Acanthocytosis — + + +/—

—, none; +/—, possible; +, low intensity; ++, moderate intensity; +++, high intensity.
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and then a cerebella syndrome with an ataxic gait, dysmet-
ria, and dysarthria (109). Pes cavus, pes equinovarus, and
kyphoscoliosis are frequently encountered. Upper motor
neuron signs, including Babinski sign or weakness of legs,
can be observed in ABL patients. Nevertheless, the pri-
mary driving pathology is demyelination (111). Intrigu-
ingly, some patients escaped serious affliction until much
later in life (111).

Among the wide range of ophthalmic symptoms and
manifestations, the most prominent abnormality is pig-
mentary retinal degeneration (116). Early in the course of
disease, patients have loss of night vision and some of
them also exhibit loss of color vision. The retinopathy of-
ten produces slowly enlarging annular scotomas with mac-
ular sparing, such that patients are relatively unaware of
the progression of the disease. Complete loss of vision can
ultimately occur (116). Fundoscopic examination reveals
an atypical pigmentation of the retina characterized by
small irregularly distributed white spots. Electroretino-
gram and fluorescein angiography investigations have
shown the retina to be affected in asymptomatic ABL pa-
tients (116).

Profound muscle weakness has been described in ABL.
Striated and smooth muscles are affected and may repre-
sent the cause of premature death among a few ABL pa-
tients (117-119). The etiology of myopathy remains
unclear, although myositis appears to be related to ceroid
pigment deposition and muscle weakness to vitamin E de-
ficiency and neuropathy. Death related to cardiomyopathy
has been described for some patients (117, 118).

Acanthocytosis is among the characteristic hematologic
manifestations of ABL. Circulating erythrocytes present
abnormally shaped structures that inhibit rouleaux forma-
tion and culminate in extremely low erythrocyte sedimen-
tation rates. Anemia has been found in some cases of ABL,
probably as a consequence of deficiencies of iron, folate,
and other nutrients secondary to fat malabsorption (110,
117).

Treatment

As highlighted in a very recent review, early diagnoses,
combined with appropriate supplements, help prevent the
severe sequelae of ABL (120). Fat intake should be re-
duced to 5-20 g/day, which will decrease steatorrhea
while favoring marked clinical improvement and growth
acceleration. Nevertheless, the diet has to be supplemented
with EFAs (e.g., 5 g corn oil or safflower oil/day) to avoid
EFA deficiency. Medium-chain TGs are often recommended
to subjects with ABL as a caloric substitute for long-chain
FAs, but under high precautions given their secondary
effects such as hepatic fibrosis. The classical treatment
also includes supplements of fatsoluble vitamins (E, A, D,
and K). Noteworthy, oral a-tocopherol supplementation
has to be initiated as early as possible to prevent neuro-
logical and retinal disability and halt/abrogate progression
of the neuromuscular and myocardiopathy complications
associated with this disease (109, 121, 122). If short-term
efficacy of high-dose oral vitamin supplements has been
proven (123-126), longer-term management in ABL has

been little reported. Nevertheless, some studies stressed
that combined vitamin E and A therapy initiated before
age 2 leads to attenuation of retinal degeneration 10 years

later (127).

HYPOBETALIPOPROTEINEMIA

Introduction

Familial hypobetalipoproteinemia (FHBL; OMIM 107730),
an autosomal codominant disorder, is characterized by
molecular defects in the APOB gene (Fig. 2) on chromo-
some locus 2p23-24, which interfere with the translation of
the full-length of Apo B mRNA (128-130). Consequently,
the formation of truncated Apo B of various sizes prevents
the active export of TGs from the intestine by CMs and
from the liver by VLDLs, resulting in intestinal and hepatic
TG accumulation. Therefore, abnormally low TG-rich li-
poproteins and LDLs are observed in blood circulation. As
a function of the genetic status, the clinical manifestations
may vary from none to neurological, endocrine, hemato-
logical, and liver dysfunctions.

Apo B properties

The majority of bulk lipid transport is achieved by Apo
B-containing lipoproteins (Fig. 3). Apo B constitutes the
largest glycoprotein that plays a central role in human TG-
rich lipoprotein metabolism. The greatest form of Apo B
is also the dominant protein in LDL and the ligand for the
LDL receptor. Its structure is characterized by a globular
amphipathic NH, domain spanning the first 15-20% of
the polypeptide followed by an extended hydrophobic
B-sheet domain from about 20 to 48%, while the rest of the
polypeptide is comprised of an a-helical amphipathic re-
gion, another long B-sheet domain, and another a-helical
domain (131-133). Contrary to the other Apos that are
exchangeable among circulating lipoproteins, Apo B is
not transposable because it remains bound to the nascent
lipoprotein until its recognition by specific receptors and
uptake of the whole Apo B-containing particle in several
tissues. Another unique feature is that only one single Apo
B molecule is detectable in Apo B-containing lipoproteins.
However, this single Apo B molecule is fully sufficient to
provide the structural framework for the assembly of TG-
rich lipoproteins in the liver and the small intestine (134)
(Fig. 3). The synthesis of Apo B is not regulated at the
transcriptional level, but it rather requires complex post-
translational processing, including lipidation and glyco-
sylation, for proper folding and secretion (135). In fact,
degradation by the ubiquitin proteasome system repre-
sents the major mechanism for regulation of Apo B secre-
tion, whereas the availability of newly synthesized lipids
protects Apo B from destruction and serves as the critical
factor in targeting Apo B for secretion (136-139). Mecha-
nistically, the translocation arrest provokes a prolonged
association of Apo B with the Sec61f translocon and ribo-
somes, thereby resulting in impairment in the elongation
stage of Apo B (140-143). In contrast, efficient ongoing
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Fig. 3. Schematic structure of plasmatic CM and VLDL. CMs, secreted by the intestine, and VLDLs, deliv-
ered by the liver, appear as spherical particles in the plasma. They are composed of a hydrophobic center
(TGs and CEs) with an external monolayer of lipids [GPs and unesterified cholesterol (FC)] along with dif-
ferent Apos. The main form of Apo Bs in CMs and VLDLs is Apo B-48 and Apo B-100, respectively.

lipid synthesis (during cotranslational translocation across
the ER) prevents Apo B membrane from slowing or im-
mobilizing, which favors its elongation. Of particular in-
terest, a high physiologic concentration of lipids, provided
over longer periods, induces ER stress that decreases the
secretion of Apo B-100 (144, 145). Itis recognized that the
assembly of TG-rich lipoprotein occurs in two steps, one
cotranslational (the first step) and another posttransla-
tional (the second step) where the larger amount of TG is
added, likely via fusion of a primordial Apo B lipoprotein
particle with an Apo B-free TG droplet in the secretory
pathway (146) (Fig. 1).

The human Apo B gene covers 43 kb of chromosome 2p
and the coding portion of the gene extends over 43 kb and
contains 29 exons and 28 introns. It produces two forms of
circulating Apo B, namely Apo B-48 (2,152 amino acids)
and Apo B-100 (4,536 amino acids), by a unique mRNA
editing process (147-149). This RNA editing mechanism
converts a codon (CAA) in the human intestine to a trans-
lation stop codon (UAA) at 48% of the full-length coding
sequence. The resulting Apo B-48 protein is identical to
the N-terminal 48% of Apo B-100 and is obligatory for
CMs produced by the small intestine, whereas full-length
Apo B-100 is structurally essential for VLDL synthesized by
the liver. The remarkable posttranscriptional modifica-
tion of Apo B mRNA is performed by a multicomponent
enzyme complex, termed the C-to-U editosome (150), that
contains APOBEC-1, a single catalytic subunit, and other
proteins known as auxiliary or complementation factors
(150, 151). The editosome has been suggested to favor
more efficient absorption (152) and, conversely, low or no
Apo B mRNA editing activity may result in relatively higher
levels of VLDL and/or LDL, as noted in the liver of ani-
mals (153). These Apo B-100-containing lipoproteins are
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more atherogenic than Apo B-48-containing CMs. It is
noteworthy that there is a small amount of Apo B mRNA
that escapes editing, resulting in a low level of Apo B-100
expression by the intestine (109).

Apo B expression in different tissues and during human
development

If previously the belief was that only the small intestine
and liver have the capability to assemble and secrete Apo
B-containing lipoproteins (Fig. 3), it now turns out that
various organs are able enough to do it. Proximal tubule
cells of mammalian kidney produce Apo B-containing li-
poproteins and, conversely, inhibition of Apo B expres-
sion increases fasting-induced lipid accumulation in the
kidney cortex (64, 102, 128). Apparently, the size and den-
sity of kidney-derived Apo B-containing lipoproteins de-
pend on lipid availability (154). The human heart also
expresses the Apo B gene in addition to the MTP gene
(103). Likely, the mandatory presence of Apo B and MTP
in cardiac myocytes allows the output of Apo B-containing
lipoproteins in order to prevent pathological TG accumu-
lation in the heart (103, 104, 155, 156). The placenta elab-
orates Apo B-100-containing particles that participate in
lipid transport between mother and fetus (157, 158). The
importance of this process is underscored by the increased
lethality following the disruption of Apo B and MTP in the
yolk sac of mice (107, 159, 160), which probably assures
the early delivery of fat-soluble nutrients from the yolk sac
to the embryo by Apo B-100-containing particles packag-
ing and discharge. Ocular Apo B synthesis was also noted
(161). Lipid overload in retinal pigmented epithelium
possibly triggers the local machinery to produce Apo-B-
containing lipoproteins to avoid apoptosis or degenera-
tion of the tissue (162).



The human fetal intestine was demonstrated to possess
an efficient lipoprotein-lipid transport system during de-
velopment (163, 164). The assembly and secretion of TG-
rich lipoproteins were active in the jejunum and colon of
the human fetus (165, 166). For this task, it produces Apo
B-100 early, but the switch in dominance from Apo B-100
to Apo B-48 mRNA takes place later during development
(99, 100, 167-170). These processes are highly regulated
by many hormones (167, 171, 172).

Taken together, there is now clear evidence that the
intracellular assembly process is driven by Apo B. Thus,
accidents of nature limiting Apo B production can have
adverse effects on the export of lipids with potentially
toxic fat accumulation in the different tissues and with
a significant impact on TG-consuming organs. As ex-
pected from the central role of the Apo B-containing li-
poproteins in delivering lipids, antioxidant vitamins, and
fuel to cells, mutations of Apo B may profoundly affect
development.

Functional consequences of Apo B absence: FHBL
clinical spectrum

To date, more than 45 truncations in the Apo B gene
have been reported and most of them are frequently
due to mutations, exon deletions, and splicing variations
(130, 173). The Apo B truncations have traditionally been
named according to a centile system, with a wide range
from Apo B-2 to Apo B-90 relative to normal Apo B-100
(174-197). The various truncations give rise to different
sizes, densities, functions, and metabolism of lipoprotein
fractions (198). In particular, they are characterized by a
lower production rate and higher clearance rate, thereby
contributing to abnormally reduced concentrations of cir-
culating Apo B (179, 199-202), while fragments of Apo B
<27.6 are undetectable (199). Even in heterozygous sub-
jects with FHBL, the concentrations of Apo B do not ex-
ceed 30% of the normal values (203, 204).

FHBL heterozygotes may be asymptomatic, whereas
homozygous FHBL patients present with steatorrhea, in-
testinal fat malabsorption, deficient absorption of EFA
and lipid-soluble vitamins (A, D, E and K), hypocholes-
terolemia, and Apo B deficiency along with neurologi-
cal, ocular, endocrine, and hematological abnormalities
(205-207) (Table 1). Affected individuals may exhibit
red cell acanthocytosis and retinitis pigmentosa. Some-
times fatty liver is accompanied by mild elevation of se-
rum liver enzymes. In fact, sophisticated techniques could
detect nonalcoholic fatty liver disease in FHBL subjects
(187, 208-213).

Treatment

Although homozygous FHBL and ABL have a different
genetic basis, they share similar signs, symptoms, and
laboratory findings. Likewise, the clinical follow-up and
management are comparable for the two disorders. As for
ABL, it is mandatory to pay special attention to growth
monitoring and prevention of complications in pediatrics
by offering specialized dietary advice and fat-soluble vita-
min treatments.

CM RETENTION DISEASE

Introduction

CM retention disease (CRD, OMIM 246700), or Ander-
son disease, is an autosomal-recessive condition caused by
mutations in the SARA2 gene encoding the Sarlb protein.
Contrary to ABL and FHBL, the synthesis of preCMs oc-
curs in the ER, but without the possibility to reach the
Golgi apparatus (Fig. 2). Lipids accumulate in the intes-
tine and liver, while there is a selective absence of post-
prandial Apo B-48 and CMs. Thus, the young patients
experience fat malabsorption, failure to thrive, and steat-
orrhea. Almost 50 cases have been reported so far in the
literature.

Sarlb properties

Trafficking of CM-containing vesicles through the early
secretory pathway is mediated by coat protein (COPII), a
process requiring the small Sarlb GTPase for the ex-
change of GDP for GTP (214). Activated Sarlb initiates
vesicle formation by recruiting first the inner COPII coat
components (Sec23 and Sec24) and subsequently the
components of the outer flexible coat (Secl13/Sec31) able
to accommodate various sizes of vesicles (215). The ma-
ture coated vesicles bud from the ER and reach the Golgi
apparatus where CMs transit prior to their discharge into
the intercellular space and their transfer to the lymphatics
before flowing into the blood circulation. Genetic defects
in Sarlb GTPase inhibit the step of preCM trafficking to
the Golgi (Fig. 2). The obligatory role of Sarlb GTPase is
evidenced by the presence of its paralog Sarla GTPase
(216-218) that is 90% identical, differing by only 20 amino
acid residues, but does not compensate for the lack of the
Sarlb protein in CRD (219). Of note, if Sarla could not
compensate for loss of Sarlb in the gut, only limited data
are, however, available regarding its contributions in the
liver despite the fact that VLDL secretion was not substan-
tially affected in CRD (220). Nevertheless, a recent study
has provided strong evidence that Sarlb promotes the se-
cretion of TG-rich Apo B-containing lipoproteins from the
liver, which would neatly explain the counter-intuitive ob-
servation that some CRD children develop hepatic steato-
sis, despite severe intestinal fat malabsorption (221).
Furthermore, SARIbhas been shown to be the predominantly
expressed isoform in human jejunum and liver. Although
Sarla antagonizes the lipoprotein secretion-promoting ac-
tivity of Sarlb, both isoforms were noted to modulate the
expression of genes encoding cholesterol biosynthetic en-
zymes and the synthesis of cholesterol de novo (221). It
is noteworthy that Sarlb GTPase is not only central for
the COPII responsible for the biosynthetic transport of
proteins from the ER to the Golgi apparatus, but also for
fusion of the specific CM transport vesicle, the preCM
transport vesicle, with the Golgi (50, 54, 222, 223).

The 3D structure of Sarlb protein is formed by six
o-helices and six parallel B-strands that lead to a hydropho-
bic B-sheet sandwiched between three a-helices (224-226).
The NHy-terminus segment comprises the site interacting
with Secl2 and the two GTP binding and hydrolysis sites
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(224, 226-228), while the C-terminus segment includes
the a-6 helix and the regulation loop (224, 225). Impor-
tantly, the N-terminus part allows the anchorage of Sarlb-
GTP complex on the ER membrane, GTP binding, and
hydrolysis, whereas the C terminus regulates interactions
of Sarlb with the membrane. All the mutations affecting
the C or N terminus provoke failure to secrete CMs, albeit
with diverse phenotypes among CRD patients (229). Ad-
ditional studies are necessary to examine the functionality
of the mutated proteins, thereby providing further in-
sights into this disease, as well as on the normal pathway
for the export of CM.

Sarlb expression in different tissues and
during human development

Despite growing knowledge on Sarlb GTPase, little is
known about its tissue distribution and developmental
regulation. Evaluation of Sarlb mRNA revealed skeletal
muscle as the tissue with the highest Sarlb expression, fol-
lowed by the heart and liver, the organs composing the
digestive tract, the brain, and finally the lung and the adi-
pose tissue (230). Sarlb protein expression levels follow a
similar pattern among the organs, except for its higher
expression in the heart. The abundant expression of Sarlb
in skeletal muscle and heart suggests the highly special-
ized role of Sarlb in these particular tissues, including the
regulation of calcium trafficking among multiple calcium
storage organelles, for instance, the sarcoplasmic reticu-
lum and the ER as reported previously (231-234). Accord-
ingly, it was reported that patients with CRD suffer from
myolysis, cardiac abnormalities, and elevated creatine ki-
nase levels (235).

The proteins from the Sarl family have not previously
been reported as being involved in morphogenesis and de-
velopment. Intuitively, the importance of the small GTPase
classes in this process is predicted given their crucial func-
tions in vesicular trafficking between the membranes of
the ER and the Golgi apparatus, as noted in the initial
stage of root hair (236) and axon (237) development, the
membrane recruitment of cargo-sorting coat proteins, the
modulation of membrane lipid composition, and the in-
teraction with regulators of other G proteins. Evidently,
additional efforts must be invested to support the possibility
that the modulation of COPIL-like trafficking machinery
by Sarlb is active during development.

Functional consequences of Sarlb absence:
CRD clinical spectrum

To date, about 20 gene defects have been described in
SARA2, including missense or nonsense mutations, which
affect splice acceptor and donor sites or correspond to in-
sertions, deletions, and duplications, thereby disrupting
coding sequences. Heterozygous carriers remain asymp-
tomatic, whereas homozygous carriers present within
the first few months or years of life with failure to thrive
and diarrhea (Table 1). Furthermore, the young children
exhibit white coating mucosa because of fat-laden villous
enterocytes. Epithelial cells also show marked accumula-
tion of large lipid droplets in the cytoplasm along with
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lipoprotein-sized structures in membrane bound compart-
ments. The postprandial state is characterized by absence
of TG elevation, Apo B-48, and CMs in response to a fat
meal test, confirming the typical steatorrhea in CRD pa-
tients. These abnormalities are in line with closed juxtapo-
sition of the intercellular spaces in the mucosa and are
accompanied with severe hypocholesterolemia and low
concentrations of total lipids, GPs, lipid soluble vitamins,
EFAs, LDLs and HDLs, and Apos (B and Al) in the plasma.
Clinically, electromyographic irregularities and dimin-
ished osteotendinous reflexes were common, but areflexia
was rarely observed. Ophthalmological manifestations of
vitamin A and E deficiencies were limited to electrophysi-
ological anomalies detected by electroretinograms and
evoked potentials. Hepatic steatosis was detected in only a
few patients. Common at the time of diagnosis, the afore-
mentioned anomalies proved largely reversible with treat-
ment. Although the investigation of the Canadian subjects
with the allele 409G>A reveals a more severe degree of hy-
pocholesterolemia and few clinical parameters, no geno-
type-phenotype correlation has been evidenced (238).

Treatment

As per ABL and FHBL, CRD patients have a significant
amelioration when treated with a low fat diet and supple-
mentation with fat-soluble vitamins. To distinguish be-
tween the biochemical and clinical phenotypes, as well as
management of the three congenital malabsorptions, a
summary is presented in Table 2.

CONGENITAL HYPOCHOLESTEROLEMIA
IDENTIFIED IN PATIENTS WITH LOSS-OF-
FUNCTION MUTATIONS OR PCSK9 VARIANTS

Proprotein convertase subtilisin/kexin type 9 (PCSK9), a
serine protease expressed mainly in liver and intestine, is
strongly involved in LDL metabolism (239). Its gene is local-
ized on human chromosome 1p32 and encodes a 692-amino
acid proteinase K-like serine protease that has a central role
in regulation of cholesterol homeostasis, essentially by tar-
geting the receptor to degradation, leading to reduced
LDL-cholesterol clearance from the circulation (240). If the
dominant gain-offunction mutations in the PCSK9 gene
cause a phenotype similar to autosomal dominant familial
hypercholesterolemia (241), loss-of-function variants are as-
sociated with hypocholesterolemia and protection against
coronary artery disease (242-244). For example, R46L is a
loss-of-function PCSK9 mutation because R461.-PCSK9 un-
dergoes nearly a 16% increase in cell surface LDL receptors
and a 35% increase in internalized LDL compared with
wild-type PCSK9, suggesting that R46L. causes hypocholes-
terolemia through a decreased ability to degrade LDL re-
ceptors (245). Other loss-of-function mutations may have
drastic effects on cholesterolemia because they lower circu-
lating LDL-cholesterol levels below =0.4 mmol/1 (244, 246).
So far, humans can survive and stay healthy as also con-
firmed in Pecsk2knockout mice (247, 248). However, this
does not seem to be the case in some lower vertebrates



TABLE 2. Comparative pathophysiology, clinical manifestations, and management of the main congenital

malabsorption disorders

Disorder Gene Biochemical Phenotype Clinical Phenotype Treatment
ABL MTP @ LDL cholesterol Failure to thrive Low fat (<30% of total calories)
with reduced LCFAs
@ CMs Abdominal distension PUFAs
¢ VLDL Lipid malabsorption Vitamin E, 100-300 1U/kg/day
1 TGs Spinocerebellar degeneration Vitamin A, 100-400 IU/kg/day
4 Vitamins (A, D, E, K) Night blindness Vitamin D, 800-1,200 IU/day
@ Apo B Coagulopathy Vitamin K, 5-35 mg/week
| Other Apos
Altered lipoprotein composition
HBL APOB Heterozygous Heterozygotes Low fat (<30% of total calories)
with reduced LCFAs
1 LDL cholesterol Asymptomatic PUFAs
(less than 30% of levels
normal for age and sex
Homozygous Loose stools Vitamin E, 100-300 IU/kg/day
@ or L LDL cholesterol Mild fat malabsorption Vitamin A, 100-400 IU /kg/day
1 TGs Gallstones Vitamin D, 800-1200 IU/day
@ Apo B Homozygous Vitamin K, 5-35 mg/week
d Vitamins (A, D, E, K) Insulin sensitivity
| Other Apos Hepatic cirrhosis
Hepatocarcinoma
CRD SARA2 @ CMs Anthropometry (failure-to-thrive) Low fat diet

4 LDL cholesterol
(less than 50% of levels
normal for age and sex)
Anemia
1 Total cholesterol

J HDL

Digestive (diarrhea, vomiting,
abdominal distension)

Hepatomegaly
Neurological abnormalities
(areflexia, L deep proprioception)
Malnutrition (accumulation of
lipid droplets in enterocytes)

Enriched in EFA (vegetable oils, fish, ...

+ Enriched in medium-chain TGs
Vitamin E, 50 IU/kg/day

Vitamin A, 15,000 IU/day
(adjust according to plasma levels)

)

EFA deficiency Anemia

d Vitamins

Vitamin D, 800-1,200 U /kg/day
Vitamin K, 15 mg/week

(adjust according to INR and plasma levels)
One perfusion

FAs, intralipid 20% 2 g/kg/month

Vitamin E, 4 to 6 mg/kg/month

Vitamin A, 500 IU/kg/month

INR, international normalized ratio; LCFA, long-chain FA.

where knockdown of PCSK9 mRNA in zebrafish leads to
disorganization of the nervous system and lethality.

CONGENITAL HYPOCHOLESTEROLEMIA
IDENTIFIED IN PATIENTS WITH ANGPTL3

A form of familial combined hypolipidemia is due to
defects in the angiopoietin-like 3 protein (ANGPTL3)
gene in a family with primary hypocholesterolemia (249).
ANGPTLS3 is located on 1p31.3, exhibiting a signal pep-
tide, an N-terminal coiled-coil domain, and a C-terminal
fibrinogen-like domain. The mode of inheritance and the
clinical implications of familial combined hypolipidemia
are not well-defined. ANGPTLS3 is located primarily in the
liver and regulates lipid metabolism (250). Through its N-
terminal region, it acts as a dual inhibitor of lipoprotein
lipase and endothelial lipase and increases plasma HDL-
cholesterol (251, 252). Patients with the loss-of-function
mutation in ANGPTL3 have extremely lower plasma TG
and LDL- and HDL-cholesterol levels than individuals
with no mutation (249, 253). Accordingly, mice with the
loss of ANGPTL3 expression display lower levels of TGs
and HDL-cholesterol (250, 254, 255), whereas ANGPTL3

injection or overexpression increases circulating lipid lev-
els (250, 251). Diabetes and cardiovascular disease were
absent in homozygotes, raising the possibility that absence
of ANGPTLS3 is protective for these conditions. The preva-
lence of ANGPTL3 mutations giving rise to a combined
hypolipidemia phenotype in subjects with severe primary
hypobetalipoproteinemia (HBL) is about 10% (256). Of
subjects with a total cholesterol concentration below the
second percentile, those with HDL-cholesterol concentra-
tion below the second decile may be carrying ANGPTL3
mutations, whereas those with higher HDL-cholesterol
concentrations may be carrying APOB mutations (256).

POLYMORPHISMS OF Apo B AND MTP
AND LIPID CHANGES

To date, several variants on Apo B and MTP genes have
been detected and studied due to their plausible role in
the modulation of lipid/lipoprotein profiles and post-
prandial lipemia. One must be aware about this phenom-
enon because it may explain the low and high postprandial
responses in relation with intestinally or hepatically de-
rived TG-rich lipoproteins and the risk of myocardial in-
farction/premature coronary heart diseases.
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Numerous polymorphisms of the Apo B gene have been
described with an effect of the insertion (ins)/deletion (del)
polymorphisms on lipid levels (257-259), and the kinetics
of the secretion of VLDLs has already been found (260). It
is noteworthy that the Xbal polymorphism was related to
the inter-individual variability observed during postpran-
dial lipemia, showing a significantly augmented or reduced
postprandial response (261, 262). Particularly, a variable
number of tandem repeats polymorphism, which is located
75 bp downstream of the second polyadenylation signal at
the 3’ end of the Apo B gene (2p24-p23), has been found
to be common in some ethnic groups (263-266). They
were associated with modifications of lipid concentrations
(267-271) and the risk of coronary heart diseases (270-272).
Nevertheless, not one of these associations has been con-
sistently observed in a large number of studies (273, 274).
Discrepancies may be related to differences of ethnic groups
and environmental factors.

As mentioned before, mutations in the M7P gene have
been established in cases of ABL (90-93). Several of these
genetic abnormalities (premature stop codons, mutations in
canonical splice sites, or frameshift mutations) have been in-
formative as to MTP function status. However, in many cases,
predictions were difficult to establish (275, 276) despite the
cosegregation of the genetic defects with the clinical pheno-
types. With additional determinations of MTP activity (48,
92) and by scrutinizing the repercussions of intronic muta-
tions (277) on intestinal or hepatic biopsies, as was performed
by various groups, a clear picture of the genotype-phenotype
relationship will certainly be obtained.

The most studied promoter polymorphism at the MTTP
locus (—493G/T, located 493 bp upstream from the tran-
scriptional start site) lowers the expression of MTP while
reducing the formation and secretion of CMs and VLDLs
(278-281). There is also evidence that the MTP —493G/T
polymorphism modulates postprandial Apo B-48 and Apo
B-100 of TG-rich lipoproteins (282). Various groups re-
ported an association between the MTP —493T allele and
low levels of serum TG, total cholesterol, LDL-cholesterol,
and Apo B (58, 283-286). However, other studies revealed
the opposite (287-289) or detected no relationship be-
tween this polymorphism and any lipid phenotype (290),
demonstrating a huge gap across races on MTP —493T,
which might be attributed to profoundly different evolu-
tionary pressures at this locus.

Little is known as to the role of Sarlb polymorphisms
on the inter-individual variability of the postprandial re-
sponse, although studies have shown potential genotype-
phenotype links (229) and elevated output of TG secretion
in response to Sarlb overexpression (291, 292).

INTESTINAL LIPID FLUX, LIPID HOMEOSTASIS
AND CARDIOMETABOLIC DISORDERS

It is now well-established that the small intestine is a sig-
nificant determinant of postprandial dyslipidemia, cardio-
metabolic disorders, and atherogenesis. Various groups
have pointed out the direct role of intestinally derived TG-rich
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lipoproteins in the progression of atherosclerosis, particu-
larly during insulin resistance and type 2 diabetes mellitus
(293, 294). Clearly, these disorders favor the increased
basal rate of Apo B-48-containing lipoprotein secretion in
fed and fasting states (295, 296). Demonstration has been
obtained in various animal models (297-299), as well as in
humans (300, 301). The contribution of the intestinal Apo
B 48-containing lipoproteins to the promotion of athero-
sclerosis is increasingly being recognized as: ¢) Apo B-48 is
correlated with postprandial lipemia (302), carotid intima-
media thickness (303), and arterial disease (304, 305); and
#7) CM remnants have access to and accumulate in the sub-
endothelial space, thereby triggering the formation of ath-
erosclerotic lesions (306-309). Therefore, one should be
aware of the danger of overproduction of intestinal lipo-
protein particles in cardiometabolic states such as obesity,
insulin resistance, and diabetes

CONCLUSIONS

We have emphasized that mutations in Apo B-48, MTP,
and SARAZ2 genes result in low or absent lipid, LDL-choles-
terol, and Apo B levels. They cause intestinal fat malab-
sorption along with deficiency of EFA and liposoluble
vitamins, thereby triggering various clinical disorders. Ge-
netic defects in PCSK9 and ANGPTLS3 also lead to familial
HBL with an evident impact on metabolic and biochemi-
cal disorders. An update on management strategies has
been presented. The postabsorptive concentrations of
plasma TGs in response to particularly common polymor-
phisms of Apo B and MTP have also been documented.
Definitely, the intestine exerts important influences not
only on fat malabsorptions, but also on disease-related abnor-
malities of postprandial lipoprotein metabolism, includ-
ing insulin resistance, type 2 diabetes, and atherosclerosis.
Molecular testing should be available to rapidly define
molecular aberrations and prevent complications. Hope-
fully, new nutritional and genetic developments will offer
opportunities in the near future to develop strategies to
target the intestine in order to enhance fat absorption in
congenital malabsorptions on the one hand, and reduce
postprandial lipemia and prevent atherosclerosis on the
other hand HA

The author thanks Mrs. Schohraya Spahis for her technical
assistance.
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