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Purpose: To develop a positron emission tomography (PET) atten-
uation correction method for brain PET/magnetic reso-
nance (MR) imaging by estimating pseudo computed to-
mographic (CT) images from T1-weighted MR and atlas 
CT images.

Materials and 
Methods:

In this institutional review board–approved and HIPAA-
compliant study, PET/MR/CT images were acquired in 20 
subjects after obtaining written consent. A probabilistic 
air segmentation and sparse regression (PASSR) method 
was developed for pseudo CT estimation. Air segmenta-
tion was performed with assistance from a probabilistic 
air map. For nonair regions, the pseudo CT numbers were 
estimated via sparse regression by using atlas MR patch-
es. The mean absolute percentage error (MAPE) on PET 
images was computed as the normalized mean absolute 
difference in PET signal intensity between a method and 
the reference standard continuous CT attenuation correc-
tion method. Friedman analysis of variance and Wilcoxon 
matched-pairs tests were performed for statistical com-
parison of MAPE between the PASSR method and Dixon 
segmentation, CT segmentation, and population averaged 
CT atlas (mean atlas) methods.

Results: The PASSR method yielded a mean MAPE 6 standard de-
viation of 2.42% 6 1.0, 3.28% 6 0.93, and 2.16% 6 1.75, 
respectively, in the whole brain, gray matter, and white 
matter, which were significantly lower than the Dixon, CT 
segmentation, and mean atlas values (P , .01). More-
over, 68.0% 6 16.5, 85.8% 6 12.9, and 96.0% 6 2.5 of 
whole-brain volume had within 62%, 65%, and 610% 
percentage error by using PASSR, respectively, which was 
significantly higher than other methods (P , .01).

Conclusion: PASSR outperformed the Dixon, CT segmentation, and 
mean atlas methods by reducing PET error owing to at-
tenuation correction.
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An integrated positron emission 
tomography (PET)/magnetic 
resonance (MR) system that al-

lows simultaneous acquisition of both 
MR and PET images offers a unique 
opportunity to study various diseases 
by taking advantage of the functional 
capabilities of PET and the anatomic 
imaging capabilities of MR imaging. 
MR imaging does not involve ionizing 
radiation and can be used safely in pe-
diatric studies or for repeated longi-
tudinal follow-up, while computed to-
mography (CT) increases the radiation 
dose delivered to patients. In addition, 
a simultaneous acquisition allows bet-
ter spatial and temporal correlations 
of MR/PET measurements, which is 
invaluable for dynamic studies (1).

By using PET/CT systems, a piece-
wise bilinear rescaling of CT numbers 
(in Hounsfield units) of low-dose CT to 
PET of 511 keV yields an accurate at-
tenuation map for PET imaging (2,3). 
This method, referred to as scaled CT, 
is considered the current standard of 
reference for PET attenuation correc-
tion (4,5). Unlike PET/CT, attenuation 
correction is challenging for PET/MR. 
A particular problem is differentiat-
ing bone from air; both have similar 
MR signal intensity but very different 
attenuation effects. Substituting the 
bone attenuation coefficient with that 
of air or soft tissue results in up to 
20% underestimation of PET activity 
in the head (5–7).

Implications for Patient Care

 n The proposed PASSR method 
provides PET attenuation correc-
tion without the need to acquire 
CT images, which simplifies im-
aging and reduces radiation 
exposure.

 n The PET accuracy achieved with 
this method allows for quantita-
tive brain PET imaging by using 
PET/MR.

Advance in Knowledge

 n A probabilistic air segmentation 
and sparse regression (PASSR) 
method was developed for PET 
attenuation correction; by using 
the PASSR method, the mean 6 
standard deviation absolute per-
centage error on PET images for 
the whole brain, gray matter, 
and white matter were 2.42% 6 
1.0, 3.28% 6 0.93, and 2.16% 6 
1.75, respectively, which were 
significantly lower (P , .01) than 
their counterparts by using 
Dixon, CT segmentation, and 
mean atlas methods.
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Abbreviations:
MAPE = mean absolute percentage error
PASSR = probabilistic air segmentation and sparse 

regression
SUV = standardized uptake value
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A variety of MR-based attenuation 
correction approaches have been pro-
posed by using either segmentation-
based (5,7–12) or continuous CT pre-
diction methods (13–15). Thus far, 
direct quantitative validations against 
the reference standard scaled CT at-
tenuation correction have not yet been 
performed in a large number of sub-
jects. In this study, we sought to de-
velop a probabilistic air segmentation 
and sparse regression (PASSR) method 
for continuous pseudo CT estimation 
from T1-weighted MR images to im-
prove air and bone separation and 
representation of local structure. The 
purpose of our study was to develop a 
PET attenuation correction method for 
brain PET/MR imaging by estimating 
pseudo CT images from T1-weighted 
MR and atlas CT images.

Materials and Methods

Avid Radiopharmaceuticals (a wholly 
owned subsidiary of Eli Lilly) provided 
the Florbetapir (Amyvid; Avid Ra-
diopharmaceuticals, Philadelphia, Pa)  
tracers, and Siemens Medical Solu-
tions provided financial support for this 
study. The authors had full control of 
the data and the information submitted 
for publication.

Image Acquisition
In this institutional review board–ap-
proved and Health Insurance Portabil-
ity and Accountability Act–compliant 
study, PET/MR/CT images were ac-
quired in 20 normal subjects (median 
age, 67.5 years; interquartile range, 
63–70 years; 14 women) after ob-
taining written consent. This study 

started in May 2012 and ended in Oc-
tober 2013. The enrollment inclusion 
criteria included healthy adults (18 
years and older) with no other injec-
tions of PET radiotracers within 24 
hours. The exclusion criteria included 
contraindications to PET/MR or PET/
CT (eg, electronic medical devices), 
known claustrophobia, pregnancy, or 
breastfeeding. Twenty subjects who 
underwent imaging by using both MR/
PET and PET/CT were selected from 
a total of 115 enrolled subjects in this 
proof-of-concept study. This selection 
did not depend on the characteris-
tics of the subject and was performed 
prior to any image analyses. None of 
the 20 subjects was excluded from 
analysis. Fluorine 18 (18F) florbetapir 
PET images and three-dimensional 
magnetization-prepared rapid gra-
dient-echo T1-weighted MR images 
were acquired by using a hybrid MR/
PET system (Biograph mMR; Sie-
mens, Erlangen, Germany). Subjects 
were injected with 370 MBq of 18F flo-
rbetapir. The acquisition was started 
either 50 minutes after or immedi-
ately after tracer injection.



564 radiology.rsna.org n Radiology: Volume 275: Number 2—May 2015

TECHNICAL DEVELOPMENTS: Probabilistic Air Segmentation and Sparse Regression Estimated Pseudo CT Chen et al

Structural T1-weighted images were 
acquired by using a magnetization-pre-
pared rapid gradient-echo sequence (16) 
with the following imaging parameters: 
repetition time (msec)/echo time (msec)/
inversion time (msec), 2300/2.95/900; 
flip angle, 9°; number of partitions, 176; 
field of view, 256 mm2; and voxel size of 
1 3 1 3 1.2 mm3.

CT images were acquired by using a 
PET/CT system (Biograph 40 PET/CT; 
Siemens). CT images of the head were 
acquired by using 120 keV, 25 effective 
mAs with a voxel size of 0.59 3 0.59 
3 3.0 mm3, and a matrix size of 512 3 
512 3 74.

Head CT and MR/PET images were 
acquired within a mean 6 standard de-
viation of 10.5 days 6 4 of each other, 
with no surgical procedures in between. 

All images were deidentified before im-
age analysis.

Pseudo CT Derivation and Linear 
Attenuation Coefficient Maps
The major processing steps to derive 
pseudo CT by using the PASSR method 
include image registration, probabi-
listic air map–assisted air segmenta-
tion, and sparse regression (by Y.C., 
with 17 years of experience in image 
processing; a subject is outlined in 
Fig 1). We refer to the subject whose 
pseudo CT is to be estimated as the 
“template” and the remaining subjects 
as “atlases.” Twenty subjects were ran-
domly divided into 10 pairs for tenfold 
cross-validation.

CT images from each subject were 
classified (by Y.C.) into air, tissue, 

and bone with a k-means clustering 
algorithm. CT and air maps were 
rigidly aligned to the same subject’s 
T1-weighted MR images by using the 
linear registration toolkit in FSL (the 
FMRIB [Functional Magnetic Reso-
nance Imaging of the Brain] Software 
Library of the University of Oxford; 
www.fmrib.ox.ac.uk/) (17). A non-
linear symmetric diffeomorphic regis-
tration algorithm was used (by Y.C.) 
for aligning atlas T1-weighted MR, 
CT, and air images to the template 
(18,19).

Separating air and bone on MR 
images is challenging because of the 
low MR signal intensity on T1-weight-
ed images (Fig 2a). The air space in 
the frontal bone, sinuses, and petrous 
bone and part of the occipital bone all 

Figure 1

Figure 1: Flowchart shows the PASSR pseudo CT estimation method. During image alignment, the atlas MR, CT, and air maps 
were all registered to target T1-weighted images. Candidate air space maps were then generated from the air probabilistic map. Air 
segmentation was performed by using target T1-weighted MR imaging within the candidate air space. For an air voxel, its pseudo CT 
number was the mean of the CT number (in Hounsfield units) of the selected atlas CT images in which this voxel was also labeled as air. 
For a nonair voxel, if the standard deviation of all atlas CT numbers was less than 30 HU, the mean of all atlas CT numbers was used 
as the estimated pseudo CT. Otherwise, a sparse regression for atlas MR was derived to represent the target MR images. For sparse 
regression, there were 7 3 7 3 7 3 18 = 6174 candidate patches included with a search window of 7 voxels in each dimension. A 
”target” refers to a subject whose pseudo CT is to be estimated; “atlas” refers to other subjects.
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Figure 2

Figure 2: Representative images obtained in a 71-year-old man at two axial section locations (separated into upper and lower rows): A, T1-weighted anatomic MR 
image, B, rescaled T1-weighted MR image, C, aligned CT image, D, probabilistic air map, E, candidate air space, and, F, CT standard deviation maps. The color bar 
represents an air probability range of 20%–100% for D and a CT number standard deviation range of 30–300 HU for F.

appeared dark (Fig 2b). Since air is 
only located within specific anatomic 
locations (marked air regions on Fig 
2c), the probabilistic air maps were 
computed as the percentage of aligned 
CT atlases that labeled a voxel as air 
(Fig 2d). Regions with an air probabil-
ity higher than 20% were considered 
the candidate air space, within which 
an air/tissue two-class segmentation 
was performed to identify the final air 
space by using a hidden Markov ran-
dom field segmentation on T1-weight-
ed MR images (20). For an air voxel, 
its pseudo CT number was the mean of 
the CT number (in Hounsfield units) of 
the selected atlas CT images on which 
this voxel was labeled as air.

For a voxel on the template MR 
images, a small neighborhood (eg, 5 
3 5 3 5) centered around this voxel 
was referred to as the template patch 
(Pt in the following equation). In an 
aligned MR atlas, a same size neigh-
borhood was referred to as an atlas 
MR patch (PMR). PMR values were se-
lected from a vicinity (eg, 7 3 7 3 
7) centered at the anatomically cor-
responding voxel in an atlas referred 
to as the “search window.” Sparse 

regression can be used to select the 
most relevant PMR value among all 
the atlas patches within the search 
window. We adopted an elastic net 
method to obtain a representation of 
local patch through the following min-
imizing equation (21,22):

α λ α λ α
α≥

− + +

  2 2

MR 1 20

1
min ,

2
tP P

where α


 is the vector representing the 
weighting coefficients used to combine 
all the atlas PMR values to approximate 
the template Pt, and l1 and l2 are the 
weights for sparse and ridge regres-
sion terms, respectively. In this study, 
the patch size, search window, and 
l2 and l1 were empirically chosen as  
5 3 5 3 5, 7 3 73 7, 0.01, and 0.0001, 
respectively. The obtained sparse coef-
ficients were then applied for CT esti-
mation via the following equation:

α
CT

,
c

P P=


where Pc is the estimated pseudo CT 
patch at the template location, while 

PCT represents all the CT patches from 
the atlas with the same size and loca-
tion as the PMR patch. More details can 
be found in Figure 1.

Pseudo CT images were converted 
(by M.J., with 2 years of experience 
with MR and PET) into linear attenu-
ation coefficient m-maps by using the 
well-established bilinear model in the 
study of Bai et al (2) on a continuous 
scale. We compared the attenuation 
correction performance of PASSR 
with the Dixon method (vendor pro-
vided), CT segmentation, and a mean 
atlas method by using scaled CT as the 
standard of reference. With the Dixon 
method, three classes (air, fat, and soft 
tissue) were segmented, and linear at-
tenuation coefficient values of 0, 0.085 
cm21, and 0.100 cm21 were assigned, 
respectively. In the CT segmentation, a 
linear attenuation coefficient value of 0, 
0.096 cm21, and 0.151 cm21 was given 
to air (CT number  2200 HU), soft 
tissue (2200 HU  CT number , 300 
HU), and bone (300 HU  CT number 
, 2000 HU), respectively (2,3,5). In 
the mean atlas, the mean of all the 
aligned atlas CT images were used as 
the pseudo CT template.
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After uniformly dividing the whole 
computational domain into 16 regions, 
sparse regression was solved in parallel 
(by Y.C.) by using 16 2.8-GHz central 
processing units and 128-GB random 
access memory with one central pro-
cessing unit for each domain. The total 
computational times for the mean at-
las and PASSR methods were 2.5 hours 
and 10.5 hours, respectively.

PET Image Reconstruction and Accuracy 
Evaluation
The acquired PET list-mode raw data 
and the linear attenuation coefficient 
m-maps generated with several differ-
ent methods were reconstructed (by 
H.A., with 17 years of experience 
with MR and PET imaging) by using 
vendor-provided software (Siemens 
Medical Solutions). The ordered-
subsets expectation maximization al-
gorithm with three iterations and 21 
subsets was used. The reconstructed 
images have a matrix size of 344 3 
344 3 127 and a voxel size of 2.09 
3 2.09 3 2.04 mm3. In addition to 
attenuation correction, random and 
scattered coincidences were also cor-
rected by using this software.

A mean absolute relative percentage 
error (MAPE) was computed (by M.J.) 
for the reconstructed PET images with 
each attenuation correction method 
(PETtested in the following equation) 
versus the reference standard (PETCTscl, 
where “CTscl” represents “scaled CT”) 
as the absolute value of (PETtested 2 
PETCTscl)/PETCTscl 3 100 within whole 
brain, gray matter, and white matter. 
In addition, the percentage of voxels 
within 2%, 5%, and 10% MAPE and 
the 99th percentile MAPE were com-
puted (by M.J.) to evaluate the error 
distribution. Friedman analysis of vari-
ance and Wilcoxon matched-pairs tests 
were performed for statistical com-
parisons (by H.A.) by using GraphPad 
Prism 5 (GraphPad Software, La Jolla, 
Calif).

Results

The segmented air space is dem-
onstrated in Figure 2e. Attenuation 
maps with two axial locations and one 

midsagittal section location are demon-
strated in Figure 3. The scaled CT (Fig 3a),  
mean atlas (Fig 3d), and PASSR (Fig 
3e) methods provided attenuation 
maps on a continuous scale. The inter-
face between air and bone appeared 
blurred with the mean atlas method, 
while PASSR provided a better delinea-
tion between air and bone even in the 
sinuses and petrous bone, as marked by 
arrows on Figure 3.

Representative percentage error 
maps within the brain are overlaid onto 
T1-weighted images in three orthogonal 
views (Fig 3). Owing to different prox-
imities to skull and air, spatially vary-
ing attenuation correction errors were 
found across the brain. In general, the 
cortex region has larger attenuation 
correction errors than the deep brain 
(P , .0001).

Friedman analysis of variance was 
used to compare these four methods. 
Significant differences in MAPE were 
identified (Friedman analysis of vari-
ance, P , .0001) with PASSR, result-
ing in a significantly lower MAPE in the 
whole brain, gray matter, and white 
matter (Table 1). The percentage of 
voxels within 62%, 65%, and 610% 
attenuation correction errors was also 
significantly different among these four 
methods (Friedman analysis of vari-
ance, P , .0001), with PASSR demon-
strating significantly more voxels within 
each error range (Table 2). Moreover, 
the 99th percentile percentage error of 
PASSR (16.8% 6 4.5) was smaller than 
that of the Dixon method (50% 6 6.3, 
P , .0001), CT segmentation method 
(18.2% 6 4.2, P = .11), and mean atlas 
method (17.9% 6 4.5, P = .022).

Discussion

A probabilistic air segmentation and 
sparse regression method was devel-
oped for PET attenuation correction, 
with a mean whole-brain PET error of 
2.42% 6 1.0 by estimating continuous 
pseudo CT images from T1-weighted 
MR and atlas CT images. The PASSR 
outperforms the Dixon, CT segmenta-
tion, and mean atlas methods by re-
ducing MAPE and the spatial extent 
of attenuation correction errors. The 

accuracy improvement is more pro-
nounced in the cortical gray matter 
regions (Fig 3, Table 1). The percent-
age error computed in this study is a 
measure of the percentage error in stan-
dardized uptake value (SUV) caused by 
attenuation correction. Of note, SUV is 
a PET semiquantitative measurement 
for normalized radioactivity in patients. 
It has been demonstrated that elevated 
carbon 11 Pittsburgh compound B and 
reduced 18F fluorodeoxyglucose SUV in 
brain cortical regions were found 15 
and 10 years, respectively, before the 
estimated onset of Alzheimer disease 
(23). An accurate PET attenuation 
correction, particularly in the cortical 
region, is essential for early detection 
of the subtle relative SUV change in 
patients with Alzheimer disease. More-
over, a threshold of fluorodeoxyglucose 
SUV has often been used to define tu-
mor on the pretreatment images, and 
15%–20% change from pretreatment 
fluorodeoxyglucose SUV may indicate 
a treatment response (24). A PET at-
tenuation correction method that pro-
vides low spatially varying errors will 
facilitate tumor staging and treatment 
response assessment.

In practical MR/PET imaging, only 
MR images are available for attenua-
tion correction. CT segmentation pro-
vides the best possible outcome among 
all segmentation-based attenuation cor-
rection methods. When compared with 
scaled CT, CT segmentation has errors 
from an underrepresentation of a large 
range of CT number values (in Houn-
sfield units) by using a limited set of 
coefficients. Similar to a previous study 
(15), the performance of CT segmen-
tation was inferior to that of the mean 
atlas and PASSR methods, suggesting 
PET attenuation correction benefits 
from a continuous-valued attenuation 
map.

On the basis of T1-weighted MR im-
ages alone, the PASSR method achieves 
PET attenuation correction accuracy on 
a par with reported methods by using 
multispectral MR data (8,15). Because 
T1-weighted MR images are acquired 
routinely in clinical imaging, PASSR 
does not necessitate the lengthening 
of total acquisition time by performing 
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Figure 3

Figure 3: Representative linear attenuation coefficient m-maps obtained in the same 71-year-old man as in Figure 2 at the 
same two axial section locations (upper row and second row, respectively) and one midsagittal location (third row) by using, A, 
scaled CT, B, CT segmentation, C, Dixon method, D, mean atlas method, and, E, PASSR. Whole-brain percentage error maps 
were obtained at three orthogonal views (fourth, fifth, and sixth rows) by using m-maps from, B, CT segmentation, C, Dixon 
method, D, mean atlas method, and, E, PASSR. Absolute percentage errors below 1% are not shown in color within the brain.
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Table 1

Results of Wilcoxon Matched-Pairs Tests between PASSR and Dixon Method, CT Segmentation, or Mean Atlas Method regarding MAPE 
within the Whole Brain and Gray and White Matter

Method

Whole Brain Gray Matter White Matter

Value (%) P Value Value (%) P Value Value (%) P Value

Dixon method 12.74 6 2.16 ,.0001 15.8 6 2.42 ,.0001 10.33 6 1.22 ,.0001
CT segmentation 4.87 6 1.04 ,.0001 5.26 6 0.91 ,.0001 4.84 6 1.75 ,.0001
Mean atlas 2.67 6 1.08 .0021 3.6 6 1.02 .0021 2.37 6 1.87 .0018
PASSR 2.42 6 1.0 … 3.28 6 0.93 … 2.16 6 1.75 …

Note.—Unless indicated otherwise, data are means 6 standard deviations.

Table 2

Results of Wilcoxon Matched-Pairs Tests between PASSR and Dixon Method, CT Segmentation, or Mean Atlas Method regarding 
Percentage of Voxels within 62%, 65%, and 610% Percentage Error

Method

Within 62% Percentage Error Within 65% Percentage Error Within 610% Percentage Error

Value (%) P Value Value (%) P Value Value (%) P Value

Dixon 2.7 6 0.1 ,.0001 16.2 6 7.8 ,.0001 54.1 6 12.3 ,.0001
CT segmentation 8.2 6 2.5 ,.0001 68.3 6 20.2 ,.0001 94.6 6 3.6 .097
Mean atlas 63.9 6 17.2 .0023 84.3 6 14.6 .0006 95.2 6 2.7 .0012
PASSR 68.0 6 16.5 … 85.8 6 12.9 … 96.0 6 2.5 …

Note.—Unless indicated otherwise, data are means 6 standard deviations.

additional imaging for attenuation cor-
rection (25).

PASSR is distinctly different from 
two other pseudo CT–based methods 
published by Johansson et al (14) and 
Navalpakkam et al (15). PASSR em-
phasizes local information, while the 
two approaches are global methods 
that derive the whole-brain joint MR/
CT distribution. We have demon-
strated that sparse regression allows 
the selection of more closely corre-
lated samples (22,26).

Major limitations of PASSR include 
the lengthy computation and challenges 
with abnormal anatomy. Use of more 
central processing units or a graphics 
processing unit for parallel computation 
and the inclusion of abnormal anatomy 
in the training samples may alleviate 
these problems.

In conclusion, we have developed a 
method for continuous pseudo CT esti-
mation from probabilistic air map–as-
sisted segmentation and sparse regres-
sion, which outperforms the Dixon, CT 

segmentation, and mean atlas methods 
in PET attenuation correction.
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