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Abstract

Psychosocial stress, specifically social isolation, is an important risk factor for the development of 

a variety of psychological and physiological disorders. Changes in immune function have been 

hypothesized to mediate this relationship. The current study used the prairie vole (Microtus 

ochrogaster) model of isolation-induced depressive-like behavior to test whether social isolation 

led to changes in innate immune function. Specifically, we used hemolytic complement (CH50) 

and bacteria killing assays to assess complement activity, in paired or singly housed male and 

female prairie voles. Further, in a second experiment we tested whether females exposed to an 

additional short-term social stressor, a resident intruder trial, would show changes in immune 

function as well as enhanced HPA activity as indicated by elevated plasma corticosterone levels. 

Socially isolated animals, regardless of sex, had significantly reduced CH50s and bacteria killing 

ability. Socially isolated females exposed to a resident intruder stressor also showed reduced 

CH50s and bacteria killing ability as well as significant increases in aggressive behavior, however, 

they did not show elevated circulating corticosterone levels. Collectively, these data will help 

inform our understanding of the relationship between social isolation and physiological and 

psychological health.
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Introduction

The negative effect of psychosocial stress on health outcomes has been well documented 

(Kendler et al., 1999; Marmot et al., 1991; Uchino et al., 1996). Social isolation, in 

particular, is a powerful risk factor for the development of variety of physiological and 

psychological disorders (Cacioppo et al., 2002; Cacioppo et al., 2006; Uchino et al., 1996). 

The health risks associated with social isolation have been suggested to be similar in 

magnitude to those incurred by smoking, obesity, and other major biomedical and 

psychosocial risk factors (House, 2001; House et al., 1988). As such, social isolation is not 

linked to a single disease pathway, but is an independent risk factor for a wide range of 

disease states including cancers, cardiovascular diseases, diabetes, mood disorders, and 

infectious diseases (Cacioppo et al., 2002; Hawkley et al., 2006; Uchino et al., 1996).

In the last several decades it has become clear that alterations in the immune system may be 

an epidemiological link between psychosocial stress and the development of a variety of 

disease states (Kiecolt-Glaser et al., 2002; Uchino, 2006; Uchino et al., 1996), and the innate 

branch of the immune system is of particular importance in this relationship. For instance, 

psychological stress elevates inflammatory markers in humans (Steptoe et al., 2007). 

Individuals that have been diagnosed with depression, which is often triggered by social 

stress, have shown elevated levels of pro-inflammatory cytokines (IL-6, IL-1β, TNF-α) in 

their plasma and cerebral spinal fluid (Raison et al., 2006). These and other data focused on 

immunity and mental health have led to the hypothesis that inflammatory processes may link 

psychosocial stress with the development of depressive disorders (Dantzer, 2006; Dantzer et 

al., 2008; Raison et al., 2006).

Lack of social support may also affect the pathogenesis of specific physiological conditions, 

such as cancer (Lutgendorf et al., 2005). Social isolation is also associated with increased 

susceptibility to respiratory viruses and other infections, as well an increases in the duration 

of illness and wound healing in both humans and rodents (Clausing et al., 1994; Cohen et 

al., 1997; Cohen et al., 1991; Glasper and DeVries, 2005; Hawkley and Cacioppo, 2003).

The prairie vole (Microtus ochrogaster) has been suggested as a potential model for 

studying the role of social stress, and social isolation in particular, in the development of 

psychological and physiological disorders (Bosch et al., 2009; Grippo, 2011; McNeal et al., 

2014; Peuler et al., 2012). Prairie voles are ideal for this research because, unlike traditional 

rodent models, their social behavior is similar to that of humans and non-human primates, 

including: social monogamy, bi-parental and allo-parental care of offspring, and the 

formation of strong social bonds (Carter and Getz, 1993). In this system, social stressors, 

including social isolation from family members or a pair bonded mate, are sufficient to 

produce changes in behavior and physiology similar to those observed in humans with 

depression and cardiovascular conditions (e.g., learned helplessness, anhedonia, 

dysregulation of the HPA axis, cardiac and autonomic dysfunction) (Bosch et al., 2009; 

Grippo et al., 2010; Grippo et al., 2007b; Grippo et al., 2007c; Grippo et al., 2008; McNeal 

et al., 2014; Peuler et al., 2012).
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Much less in known about the effects of social isolation on immune function in prairie voles, 

and comparatively less progress has been made toward the investigation of the potential role 

of immune system dysregulation in the development of isolation-induced behavioral and 

physiological dysfunction in this model. However, previous studies have reported that 

individually-housed prairie voles that are housed at high-density (10.96 animals/m3) have 

greater serum levels of immunoglobulin (IgG) and greater splenic masses than individually-

housed animals held in low-density rooms (0.18 animals/m3) (Nelson et al., 1996). These 

results are not surprising considering prairie voles are highly social, often living in extended 

family groups, and can be found at high density in their natural habitat (Getz and Carter, 

1996; Getz et al., 1993). Social isolation is stressful for prairie voles, and living at low 

density may be additionally so, such that immune function is affected. An additional study 

found that when housed singly, monogamous prairie voles and polygynous meadow and 

montane voles do not differ in splenocyte proliferation in response to a T cell mitogen 

(Concanavalin A) (Klein et al., 1997). When housed with conspecifics of either sex, 

however, prairie voles consistently had a greater proliferative response than did meadow 

voles, suggesting that perhaps isolation is immunosuppressive in prairie voles, but not in 

meadow voles, a far less social species (Klein et al., 1997).

Given the previous findings from behavioral and physiological research using the prairie 

vole, the aim of the current study was to test the hypothesis that social isolation negatively 

affects immune function in the monogamous prairie vole, and that additional short-term 

social stress would exacerbate immune dysfunction. Specifically, in two experiments we 

compared innate immune function in socially isolated versus pair-housed control animals via 

two in vitro measures: hemolytic complement (CH50) and bacterial killing assays. We chose 

these measures because the complement system is a critical component of innate humoral 

immunity (Théroux and Martel, 2006; Thurman and Holers, 2006). The major functions of 

the complement system include 1) the recognition and elimination of pathogens via direct 

killing (Thurman and Holers, 2006) and 2) initiation of the inflammatory response (Frank 

and Fries, 1991; Théroux and Martel, 2006).

Specifically, we predicted that socially isolated prairie voles (versus pair-housed controls), 

regardless of sex, would exhibit reduced hemolysis and reduced bacterial killing ability. We 

also predicted that isolated prairie voles would show elevated basal and stressor-induced 

corticosterone levels, as well as increased agonistic behaviors during a short-term social 

stressor. This work was undertaken as a first step to determine the association between 

social stressors and immune dysfunction.

Materials and Methods

Animals and Housing Conditions

Fifty-seven adult (60−90 days of age, 35−45 g body mass) male and female prairie voles, 

descendants of a wild stock caught near Champaign, Illinois, were used for the present 

experiments. All prairie voles were maintained on a 14/10 h light/dark cycle (lights on at 

0630h), with a mean ± standard error (SEM) ambient temperature of 25±2°C and relative 

humidity of 40±5%. Animals were allowed food (Purina rabbit chow) and tap water ad 
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libitum. Handling, cage changing, and measuring of body weight (weekly) were matched 

among all groups during the experimental protocols.

Prairie vole offspring were removed from breeding pairs at 21 days of age and housed in 

same-sex sibling pairs until the commencement of the experimental protocol when animals 

were between 60 and 90 days of age. For all procedures described here, only one animal 

from each sibling pair was studied to avoid the possibility of the dependent measures being 

influenced by shared genetic factors. All procedures were conducted in accordance with the 

current National Institutes of Health Guide for the Care and Use of Laboratory Animals, and 

approved by the local university Institutional Animal Care and Use Committees.

Experimental Design

Experiment 1—Male and female prairie voles were randomly assigned to two independent 

groups: social isolation (n=13 males and n=9 females) or paired control conditions (n=9 

males and n=10 females). Socially isolated animals were separated from their respective 

siblings and housed individually for 4 weeks. The socially isolated animal did not receive 

auditory, visual or olfactory cues from the sibling from which it was separated. Paired 

control animals were continually housed with their respective siblings of the same sex 

during this period. Following the 4-week period of social isolation or continued pairing, 

plasma was collected from each animal for the analysis of circulating basal corticosterone 

levels and innate immune function (detailed methods described in the following sections).

Experiment 2—Female prairie voles were randomly assigned to one of two independent 

groups: social isolation (n=8) or paired control conditions (n=8). Animals were either 

socially isolated or remained paired for 4 weeks, as described in Experiment 1. Following 

the 4-week period of social isolation or continued pairing, all animals were exposed to a 5-

minute resident-intruder paradigm, in which the experimental animal was the resident 

(detailed methods described below). Ten minutes following the end of the resident-intruder 

paradigm, plasma was collected from each animal for the analysis of circulating stressor-

induced corticosterone levels and innate immune function (detailed methods described in the 

following sections). Our previous work has suggested that female prairie voles may be more 

sensitive to social isolation than males (Grippo et al., 2007b). Therefore for this aspect of the 

study we chose to focus on female animals.

Resident-Intruder Paradigm

A resident-intruder test (Bosch et al., 2004; Grippo et al., 2007a) was conducted in 

Experiment 2 following 4 weeks of either social isolation or continued pairing. An 

unfamiliar animal of the same sex and approximate body weight (intruder) was placed into 

the cage of each paired or socially isolated animal (resident) for 5 minutes (for the paired 

group, the experimental animal’s sibling was first removed from the home cage). Aggressive 

behaviors (aggressive grooming or posture, lunging, swiping, sniffing, and attack behavior) 

were digitally video recorded and scored by two trained, experimentally-blind observers 

(Mitchell et al., 2003). All resident intruder trials occurred during the light period, between 

0930h and 1130h.
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Blood Sampling

All animals were anesthetized with a combination of ketamine (67 mg/kg, sc; NLS Animal 

Health, Owings Mills, MD) and xylazine (13.33 mg/kg, sc; NLS Animal Health, Owings 

Mills, MD) during the light period (between 0930h and 1130h). Blood was sampled within 2 

minutes of the anesthetic injection, from the periorbital sinus via a heparanized capillary 

tube, and was collected during a period not exceeding 1.5 minutes. The blood was placed 

immediately on ice, and subsequently centrifuged at 4° C, at 3500 rpm, for 15 minutes to 

obtain plasma. Plasma aliquots were stored at −80° C until assayed for circulating 

corticosterone and innate immune function (complement activity and bacterial killing 

ability).

Corticosterone Assay

Plasma levels of corticosterone were determined using a commercially available enzyme-

linked immunosorbent assay kit (Enzo Life Sciences, ADI-900-097, Farmingdale, NY), 

which has been validated previously by our laboratory for use in prairie voles (McNeal et 

al., 2014). Plasma was diluted in assay buffer as necessary (1:500 ratio) to produce results 

reliably within the linear portion of the standard curve. The minimum detection limit for this 

assay is 27.0 pg/ml, and inter- and intra-assay coefficients of variation are less than 5%. 

Cross-reactivity with other steroids or peptides is less than 1.7%.

Hemolytic Complement Assay

To measure hemolytic complement activity we followed previously published methods 

(Greives et al., 2006). Briefly, plasma was diluted 1:75 in dextrose-gelatin veronal buffer 

(VB) (BioWhittaker, Walkersville, MD) and added in duplicate to 96-well round-bottomed 

microplates. VB was then added to remaining empty wells, and plasma was serially diluted 

twofold to a final concentration of 1:150. The final amount of sample in each well was 40 µl, 

to which 25 µl each of a 0.6% suspension of washed sheep red blood cells (in VB) (SRBC; 

MP Biomedicals, Irvine, CA) and a 1:40 dilution of rabbit anti-SRBC antibody in VB 

(Sigma-Aldrich Inc., St. Louis, MO) were added. Lysis wells of 0% and 100% were created 

by adding 65 µl VB or water, respectively, and 25 µl of 0.6% washed SRBC. The plates 

were shaken at ~180 rpm on a plate shaker for 5 minutes, incubated for 1.5 hours at 37°C, 

and then centrifuged for 5 min at 500 rpm at room temperature. Sixty µl of the supernatant 

from each well was removed, added to a new U-shaped microplate and read at 405 nm. 

Hemolytic complement activity was expressed as CH50, where a CH50 unit is the reciprocal 

of the dilution that caused 50% of antibody sensitized SRBCs to lyse. A higher CH50 is 

correlated with greater lytic ability of an animal’s complement system.

Bacterial Killing Assay

We used an ex vivo bacterial killing assay as a functional assessment of the innate immune 

system’s ability to clear a relevant pathogen [modified from (Matson et al., 2006)]. This 

assay quantifies the relative number of Escherichia coli (E. coli) colony forming units 

(CFU) that grow after incubation with plasma. The strain of E-coli (ATCC#8739) used in 

this study was complement dependent, meaning that this test relied on complement activity 

to kill the bacteria (Demas et al., 2011). Briefly, lyophilized E. coli (Epower™, ATCC 
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#8739, Microbiologics, St. Cloud, MN; 1 pellet = 107 CFU) was added to 40 ml 1 M sterile 

PBS warmed to 37°C to create a bacterial stock solution. This solution was activated by 

incubation for 30 min at 37°C. The stock bacteria solution (500,000 CFU/ml) was diluted 

1:10 with sterile 1 M PBS to create a 50,000 CFU/ml working solution. Meanwhile, plasma 

samples were diluted 1:20 in glutamine enriched CO2-independent media (Invitrogen Corp., 

Carlsbad, CA). For each sample, the bacterial working solution was added at a 1:10 ratio to 

the diluted plasma sample. To generate a positive control (i.e., solution containing only 

media and bacteria), the bacterial working solution was diluted 1:10 with glutamine enriched 

CO2-independent media. The diluted samples and the positive control were incubated for 30 

min at 37°C to induce bacterial killing. After incubation, 50 µl of the samples and the 

positive control were added to tryptic soy agar plates in duplicate. All plates were stored 

upside down overnight at 37°C. Following incubation, colony numbers were counted on 

each plate, and duplicates were averaged. Bactericidal capacity was calculated as a percent 

of bacteria killed relative to the positive control plates in which no killing occurred.

Data Analysis

Data are presented as means ± SEM for all analyses and figures. A value of P < 0.05 was 

considered to be statistically significant. Data were analyzed using standard statistical 

computing software (SPSS version 19, IBM Corporation, Armonk, New York). Student’s t-

tests were used for all between-groups comparisons, with a Bonferroni correction for 

multiple comparisons. Cohen’s d was calculated to determine effect size for each significant 

t-test comparison (Cohen, 1988). A z-test was used to analyze behaviors during the resident-

intruder paradigm in Experiment 2. Pearson’s r correlation coefficients were used to 

compute relevant correlations between corticosterone and immune function.

Results

Hemolytic Complement Activity

Social isolation (compared to pairing) was associated with a reduction in complement 

activity in both males and females (Figure 1), as well as in females following the resident-

intruder paradigm (Figure 3A). Relative to paired control animals, CH50 levels were 

significantly reduced in socially isolated males [t(20) = 2.04, p < 0.03, Cohen’s d = 0.91], 

socially isolated females [t(17) = 1.95, p < 0.03, Cohen’s d = 0.95], and socially isolated 

females following the resident-intruder test [t(14) = 2.20, p < 0.02, Cohen’s d = 1.18].

Bacterial Killing Assay

Social isolation (compared to pairing) was associated with a reduction in bacterial killing 

ability in both males and females (Figure 2), as well as in females following the resident-

intruder paradigm (Figure 3B). Relative to paired control animals, the percentage of bacteria 

killed was reduced in socially isolated males [t(20) = 2.91, p < 0.004, Cohen’s d = 1.30]. 

Socially isolated females also showed a reduction in BKA, but it did not quite meet 

significance [t(17) = 1.48, p < 0.06, Cohen’s d = 0.72]. Socially isolated females did show a 

significant reduction in BKA when tested following the resident-intruder test [t(14) = 1.83, p 

< 0.05, Cohen’s d = 0.98].
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Agonistic Behaviors

Social isolation (compared to pairing) was associated with a significantly greater likelihood 

of attacking the intruder during the resident-intruder paradigm, however it did not affect the 

number or duration of specific aggressive behaviors. A z-test indicated a significant 

difference between the proportion of animals in the socially isolated group vs. the paired 

group that attacked the intruder [5/8 (62.5%) of socially isolated animals vs. 1/8 (12.5%) of 

paired animals, z = 2.07, p < 0.05]. Student’s t-tests indicated no significant differences 

between paired and socially isolated animals in either the number or duration of lunges, 

swipes, sniffs, or grooming episodes (p > 0.05 for all comparisons; data not shown).

Corticosterone

Social isolation did not significantly affect circulating corticosterone levels, relative to 

paired control conditions, in either Experiments 1 or 2 (p > 0.05 in all cases; Table 1). 

However, corticosterone levels were significantly higher in both paired and socially isolated 

females that were exposed to the resident-intruder test, relative to females that did not 

experience agonistic interactions [Student’s t-tests with a Bonferroni correction; paired, 

t(14) = 2.77, p < 0.007, Cohen’s d =1.48 ; socially isolated, t(14) = 1.98, p < 0.03, Cohen’s d 

= 1.06 ; Table 1].

Correlations

Although the sample sizes in this study were small, we computed correlations between 

corticosterone and each BKA and CH50 to gain an understanding of the general associations 

among these dependent measures. All Pearson’s r, R2, and probability values for 

Experiments 1 and 2 are reported in Table 2.

Discussion

Social stressors, and social isolation in particular, have been consistently shown to 

negatively influence health (Cacioppo et al., 2002; Cacioppo et al., 2006; Uchino et al., 

1996). Although it is likely that more than one system is affected, a large body of literature 

has implicated changes in immune function in particular as a link between social stressors 

and various negative health outcomes (Glaser and Kiecolt-Glaser, 2005; Uchino, 2006; 

Uchino et al., 1996). Prairie voles have been previously shown to suffer similar 

psychological and physiological effects of social isolation to humans (Bosch et al., 2009; 

Grippo et al., 2007b; Grippo et al., 2008; McNeal et al., 2014; Peuler et al., 2012). The 

purpose of the current study was to investigate the potential that, as in humans, social 

isolation impairs immune function in these rodents. Our hypothesis that social isolation 

results in deficits in innate immunity was supported. In both sexes, social isolation was 

associated with a significant decrease in complement activity (Figure 1). Our data suggest, 

therefore, that both socially isolated male and socially isolated female voles had impairment 

of the pathway required to destroy foreign cells. Further, in a more functional test of innate 

immunity, the bacterial killing assay, social isolation reduced the ability of plasma to kill E. 

coli colonies in both sexes, however the data only reached significance in males (Figure 2). 

Similarly, under stressor-induced conditions in females (resident-intruder stressor), 

Scotti et al. Page 7

Horm Behav. Author manuscript; available in PMC 2016 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



impairments in both complement activity and bacterial killing ability also were observed 

(Figure 3).

The present findings are consistent with a vast amount of evidence indicating an association 

between chronic social stressors and alterations in immune function in both humans and 

animal models (Glaser and Kiecolt-Glaser, 2005; Kim and Maes, 2003; Nguyen et al., 1998; 

Raison et al., 2006; Slavich et al., 2010). For example, chronic mild stress not only induces 

depressive-like behavior (anhedonia) in Flinders lines of rats, but also results in decreased 

CH50 responses (Ayensu et al., 1995). Similarly, guinea pigs and calves subjected to social 

stressors also show reduced complement activity (Purdy et al., 1991; Stefanski and 

Hendrichs, 1996). In humans, higher Beck Depression Inventory Scores have been 

correlated with reduced total hemolytic complement activity (CH50), as well as reduced T-

cell count and elevated IL-1 levels (Kimmel et al., 2002). Chronic social stress in humans 

has been associated with the later development of depressive disorders (Hammen, 2005; 

Kendler et al., 1999), and individuals with depression show elevated levels of inflammatory 

markers such as the cytokines IL-6 and TNF-α, as well as C-reactive protein (CRP) (Raison 

et al., 2006). IL-6 is the most important inducer of acute phase proteins, such as CRP, which 

are important for the activation of the complement system (Baumann and Gauldie, 1994; 

Maier and Watkins, 1998). However, other data from humans suggest that some individuals 

suffering from major depression show increased activation of aspects of the complement 

pathway (Song et al., 1994). This discrepancy may be the result of differential responses to 

chronic and acute stressors.

Prairie voles are characterized by significantly higher levels of circulating glucocorticoids 

than other rodents such as mice (Klein et al., 1996). As such, it has be suggested that they 

are glucocorticoid-resistant to these high circulating levels because they do not show 

reduced immune responses as a result, unlike glucocorticoid-sensitive species such as mice 

(Klein et al., 1996). It is possible, however, that long-term exposure to stressor-induced 

elevated levels of glucocorticoids may have led to the deficits in complement activity in 

socially isolated prairie voles. In fact, both in vivo and in vitro studies have found that these 

steroids inhibit both the classical and alternative pathways of the complement system 

(Atkinson and Frank, 1973). Further, glucocorticoids may inhibit the lytic action of the 

complement system (Gewurz et al., 1965; Jennings and Taylor, 1964; Packard and Weiler, 

1983). As such, a negative effect of social isolation on complement activity, including 

negative correlations between circulating glucocorticoid levels and CH50 and BKA, could be 

expected. Consistent with previous studies (Grippo et al., 2007b), we did not observe 

significant differences in corticosterone levels between housing groups. Social isolation 

produces alterations in several physiological parameters in prairie voles, but this treatment 

alone does not significantly elevate circulating levels of corticosterone in either males or 

females (Grippo et al., 2007b). Interestingly, socially isolated prairie voles previously have 

shown a heightened endocrine response (e.g., elevated corticosterone) to acute stressors 

relative to paired animals (Grippo et al., 2007b; McNeal et al., 2014). In contrast to these 

previous findings, we did not replicate this effect in the present study, as female prairie voles 

that were exposed to an intruder had significantly elevated corticosterone levels relative to 
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animals not exposed to an intruder regardless of whether they had been previously socially 

isolated or paired (Table 1).

Although we did not detect any significant main effects of chronic social isolation on 

circulating corticosterone levels, we investigated the general association between 

corticosterone and each BKA and CH50 levels in the present experiments. Interesting 

associations were observed between corticosterone and these immune measures. In 

Experiment 1, a negative association was observed between circulating corticosterone and 

BKA levels in both paired males and females, but not isolated in animals. It is unclear why 

this relationship was only observed in paired animals. Although we did not find any 

significant differences in the corticosterone levels between groups at the time point that we 

measured, it is possible that corticosterone was in fact elevated in isolated animals at other 

time points during their 4-week isolation period. Alternatively, it is possible that chronic 

sympathetic hyper-activation [as a function of increased sympathetic drive and/or down-

regulation of parasympathetic drive, which has been observed in previous studies of social 

isolation (Grippo et al., 2007c)] may have led to an overall reduction in immune activity 

such that there was no longer an effect of glucocorticoid exposure on complement activity.

In contrast to Experiment 1, a positive association between corticosterone levels and CH50 

was observed in paired (but not socially isolated) females that underwent resident-intruder 

trials (Experiment 2). The resident-intruder trial was an acute social stressor, which seems to 

have had different effects on this relationship than the chronic isolation stressor alone. It is 

possible that the positive relationship between CH50 and corticosterone levels in these 

animals could be due to the pro-inflammatory action of acute elevations in glucocorticoid 

secretion (Sapolsky et al., 2000) or the type of stressor itself, as psychosocial stress has been 

found to prevent the anti-inflammatory effects of glucocorticoids (Miller et al., 2002; 

Sheridan et al., 2000). Similar to the findings in Experiment 1, there is no effect in socially 

isolated animals. However, these data are not unprecedented as an acute stressor (forced 

swim test) in isolated prairie voles did not reduce immunoglobulin levels in these animals, 

although corticosterone levels were elevated post-test (DeVries et al., 1997). Furthermore, 

the effects of stress on immune function are not always suppressive; for example, stressor-

induced secretion of glucocortioicds can suppress acquired immunity (e.g., antibody 

responses) but can enhance specific components of the innate immune responses (Chester et 

al., 2010). In any case it is clear that the social environment to which the prairie voles were 

exposed significantly affected the functioning of their innate immunity, and these changes 

could have implications for disease susceptibility.

Socially isolated and paired female animals also differed in their behavioral response to an 

intruder; socially isolated females were significantly more likely to attack the intruder than 

paired animals. It has been long known that social isolation can induce aggressive behavior 

in many species, especially rodent systems (Valzelli, 1973). It is quite possible that the 

mechanisms that underlie this behavioral shift are similar to those that mediate other 

behavioral changes that occur after periods of protracted isolation (e.g., depressive-like 

behaviors, anxiety-like behaviors, etc.). For example, socially isolated rodents have altered 

HPA axis and sympathetic nervous system activity (Grippo et al., 2007c; Sánchez et al., 

1995). Heightened aggression has been observed in rats that exhibit elevated sympathetic 
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activity in response to stressors (Koolhaas, 2008). It has been well established that prairie 

voles that have been socially isolated show increased sympathetic tone and a reduction of 

parasympathetic activation both at baseline and when exposed to physical stressors (Grippo 

et al., 2007c; McNeal et al., 2014). Interestingly, sympathetic nervous system activation is 

known to affect immune function, and some studies suggest that chronic sympathetic 

activation may be immunosuppressive (McClelland, 1982; McClelland et al., 1980; Prass et 

al., 2003).

In conclusion, social isolation is a significant risk factor for the development of a variety of 

physiological and psychological disorders. Changes in immune function have been 

postulated to be a mechanism that may underlie the relationship between social isolation and 

some disease states. Therefore, these studies will enhance our understanding of the 

physiological changes that occur during extended periods of social stress in a rodent model 

system of isolation-induced dysfunction. Collectively, these data will help inform our 

understanding of the relationship between social isolation and physiological and 

psychological health. Future studies will benefit from investigating the role of pro-

inflammatory cytokines and other inflammatory mediators in the development of behavioral 

and physiological changes as a function of social stressors.
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Highlights

• Socially isolated prairie voles have reduced innate immune function.

• Isolated animals of both sexes have reduced hemolytic complement activity 

(CH50).

• Plasma from isolated animals has reduced bacteria killing ability (BKA) in vitro.

• Isolated animals did not display elevated circulating corticosterone levels.

• An acute social stressor enhances aggression in isolated females.
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Figure 1. 
Mean (+ SEM) CH50 values following 4 weeks of either social isolation or paired control 

conditions in males and females. *P < 0.05 vs. respective paired control value.
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Figure 2. 
Mean (+ SEM) percentage of bacteria killed following 4 weeks of either social isolation or 

paired control conditions in males and females. *P < 0.05 vs. respective paired control 

value; #P < 0.06 vs. respective paired control value.
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Figure 3. 
Mean (+ SEM) CH50 values (A), and percentage of bacteria killed (B), in females following 

4 weeks of either social isolation or paired control conditions and a 5-minute resident 

intruder test.
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Table 1

Circulating corticosterone (± SEM) levels following social isolation or pairing alone (basal levels) and 

following the resident-intruder test (RI; stressor-induced levels).

Paired Socially Isolated

Males, Isolation/Pairing Alone (Basal Levels; Experiment 1 535.6 ± 112.2 367.2 ± 55.6

Females, Isolation/Pairing Alone (Basal Levels; Experiment 1) 513.2 ± 134.9 610.2 ± 96.0

Females, Isolation/Pairing + 5-Min RI (Stressor-Induced Levels; Experiment 2) 922.3 ± 59.6* 992.75 ± 167.7*

*
P < 0.05 vs. respective females exposed to isolation/pairing alone (Experiment 1).
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Table 2

Correlations between circulating corticosterone levels and immune measures following social isolation or 

pairing alone (Experiment 1) and following the resident-intruder test (RI; Experiment 2).

Corticosterone vs. BKA Corticosterone vs. CH50

Isolated Males r = 0.13, p > 0.05, R2 = 0.02 r = −0.41, p > 0.05, R2 = 0.17

Paired Males r = −0.82, p= 0.007, R2 = 0.67* r = −0.29, p> 0.05, R2 = 0.08

Isolated Females r = −0.35, p> 0.05, R2 = 0.13 r = −0.48, p> 0.05, R2 = 0.23

Paired Females r = −.70, p= 0.025, R2 = 0.49* r = 0.26, p> 0.05, R2 = 0.07

Isolated Females + 5 min RI r = −0.08, p> 0.05, R2 = 0.01 r = −0.16 p> 0.05, R2 = 0.03

Paired Females + 5 min RI r = −0.018, p> 0.05, R2 = 3.09 E−4 r = 0.78, p=0.038, R2 = 0.61*

*
P < 0.05.
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