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Abstract

Classification and Regression Trees (CART), and their successors—bagging and random forests, 

are statistical learning tools that are receiving increasing attention. However, due to characteristics 

of censored data collection, standard CART algorithms are not immediately transferable to the 

context of survival analysis. Questions about the occurrence and timing of events arise throughout 

psychological and behavioral sciences, especially in longitudinal studies. The prediction power 

and other key features of tree-based methods are promising in studies where an event occurrence 

is the outcome of interest. This article reviews existing tree algorithms designed specifically for 

censored responses as well as recently developed survival ensemble methods, and introduces 

available computer software. Through simulations and a practical example, merits and limitations 

of these methods are discussed. Suggestions are provided for practical use.
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1. Introduction

Survival analysis is a branch of statistical methods for investigating event occurrence— 

whether events occur and when events occur. Survival tree and survival ensemble methods 

are statistical learning techniques adapted to right-censored survival data. The counterparts 

of these techniques for more general categorical and continuous outcomes—Classification 

and Regression Trees (CART; Breiman, Friedman, Olshen, & Stone, 1984), bagging 

(Breiman, 1996) and random forests (Breiman, 2001), are better known and have promising 

merits (Strobl, Malley, & Tutz, 2009). There is a strong motivation for the adaptation of 

these methods to the survival contexts, because questions about the occurrence and timing of 

events arise throughout psychological and behavioral sciences (see Singer & Willett, 1991, 

2003), especially in longitudinal studies. For example, researchers investigating the course 
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of alcohol abuse are interested in the onset of the disorder (DeWit, Adlaf, Offord, & 

Ogborne, 2000) as well as post-treatment relapse (Mertens, Kline-Simon, Delucchi, Moore, 

& Weisner, 2012). Industrial and organizational psychologists study the rate and timing of 

employee turnover (e.g., Morita, Lee, & Mowday, 1993). Developmental psychologists ask 

the attainment of developmental milestones, for instance, the age of the acquisition of 

gender labeling (Zosuls et al., 2009).

The basis of tree methods lies in the recursive binary partitioning of a predefined covariate 

space into smaller and smaller regions, containing observations of homogeneous response 

(i.e., dependent variable) values. The resulting regions are called “nodes,” and each set in 

the final partition is called a “terminal node” or a “leaf.” The basic idea of recursive 

partitioning was first introduced by Morgan and Sonquist (1963) in their seminal work on 

Automatic Interaction Detection (AID), as reported by McArdle (2011). As a methodology 

it was formalized and generalized in CART by Breiman et al. (1984).

Any tree algorithm must include two key technical features: (a) the node splitting rule for 

generating the partition of the covariate space; and (b) the stopping rule, or the tree 

“pruning” criterion for deciding a tree’s optimal size. The unique problem with survival 

data, with necessarily censored responses, is that they typically do not have any natural 

measure of within node homogeneity or “impurity,” and this causes difficulty in inheriting 

the “impurity reduction” splitting rule directly from CART. For the same reason, a uniform 

“loss function” which assesses the cost brought about by the predicted value’s deviation 

from the true value, cannot be easily defined. So the cost-complexity of a tree, the key 

element in tree pruning (Breiman et al., 1984), cannot be evaluated. Although there has been 

discussion on the evaluation of the fit quality of a survival model in terms of prediction 

accuracy or explained variance (see a review by Schemper & Stare, 1996), which provide 

possible loss functions for censored outcomes, no measure has been widely accepted.

In this paper we introduce available survival tree algorithms and some recently developed 

survival ensemble methods which aggregate a large number of survival trees. We first 

explain the rationale of these methods via a practical example. Second, we review existing 

survival tree algorithms and compare their performance via simulations. Third, we introduce 

several recent adaptations of bagging and random forests to the survivor data, and evaluate 

the performance of these methods via simulations. Finally, we offer a general discussion of 

these methods and provide suggestions for their practice use.

2. A Practical Example

We explain the rationale of survival tree and survival ensemble methods through a simple 

example. The data are illustrated in Singer and Willett’s book (2003), and are shared on the 

website of the book (http://www.ats.ucla.edu/stat/examples/alda/). These data were 

originally collected by Henning and Frueh (1996) who tracked the criminal history of 194 

inmates released from a medium security prison. The event of interest is whether the former 

inmates were re-arrested, and if so, how soon since their release (in months). During the 

period of data collection ranging between 1 day and 3 years, 106 (54.6 %) former inmates 

experienced the event. Three potential predictors are examined: (a) PERSONAL, a 
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dichotomous variable indicating whether the former inmate had a history of person-related 

crimes (such as assault or kidnapping); (b) PROPERTY, a dichotomous variable indicating 

whether the former inmate was previously convicted for a property-related offense; and (c) 

AGE, the former inmate’s age at the time of release.

We begin this analysis by plotting Kaplan–Meier (KM) survival curves stratified by each of 

the three covariates in Figure 1. The age groups are formed by evenly splitting the age-

sorted sample into four groups. This survival dataset has been studied deliberately by Singer 

and Willett (2003, see Chapter 14) using the Cox proportional hazards model (Cox, 1972; 

Cox & Oakes, 1984), and the results showed that all the three covariates are significant 

predictors of recidivism (see Table 1). Those inmates with a previous person-related crime 

were at a greater risk of re-incarceration. Similarly, the inmates with a previous property-

related crime were also at a higher risk of re-incarceration. Also, as seen here, younger 

inmates at the time of last release seemed to be more likely to be re-arrested. More complex 

interactions were not examined.

2.1. Survival Tree Analysis of the Recidivism Data

Next we use a survival tree method to analyze the same data. Here we use the algorithm 

developed by Hothorn, Hornik, and Zeileis (2006b) within a conditional inference 

framework. As the tree plot in Figure 2a shows, from the entire sample of 194 former 

inmates, the first split is on AGE at 31.5 years, separating a group of 123 inmates (denoted 

by Node 2) who were younger than 31.5 years at the time of release from the rest who were 

older than this age at the time of release (Node 3). A second split is made for Node 3 based 

on the value of PROPERTY, which means for those older than 31.5 years at the time of 

release, 51 of them with a previous property-related crime (Node 5) are separated from the 

remaining 20 inmates without (Node 4). So the final partition of the original sample results 

in three groups (see Table 1), each indicated by a Kaplan–Meier estimate in their respective 

terminal node.

There are many common features that survival trees share with the general CART, as 

described in Berk (2008) and Strobl et al. (2009). First, at each step of the tree-growing 

procedure, the task is to find the single best split—the best predictor to split on and the best 

cut point of this predictor value—which increases the homogeneity of the observations (with 

regard to the response variable) within the resultant nodes. This can be observed from the 

shape of the Kaplan–Meier curves. The group in Node 2 who were younger at the time of 

last release, had a higher risk of recidivism, or, were likely to be re-incarcerated sooner. 

Most of them (approximately 80 %) did not survive the observation period of the study. 

Those persons who ended up in Node 4 were found to be at a lower risk, and most of them 

survived the observation period (approximately only 20 % rearrested). In this respect trees 

have a similar goal to that of discriminant analysis or latent class analysis—to identify 

homogenous subgroups of the original sample.

Secondly, trees are different from other methods in the way they carry out the sub-grouping. 

In most cases, the algorithms are used to divide the covariate space in the form of a 

“rectangular partition” (Strobl et al., 2009). As seen in Figure2b, in the condition of two 

predictors. In the example the inmates are grouped based on the value of AGE and the 
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category in PROPERTY. In this approach, a split based on a linear combination of the 

predictors is not allowed.

Thirdly, the structure of the tree can imply interactions among the predictors. After the first 

split on AGE, the left Node 2 is not split further, while the right Node 3 is split again on 

PROPERTY. This indicates an interaction between AGE and PROPERTY—the effect of 

PROPERTY depends on the former inmate’s age at last release. For these below 31.5 years, 

their risk was high no matter they had a history of property-related crime or not, but for 

those older than 31.5 years, the absence of a previous property-related crime predicted a 

lower risk.

Lastly, the covariate PERSONAL does not show up in the tree, meaning that it is not 

selected to be a predictor. In tree methods, not all the covariates entering the program will be 

in the final model. Only the covariates that are the best split at one of the steps in 

computation, and at the same time, meet particular criteria to improve the overall 

performance of the tree (for the conditional inference trees, it is the p value), are selected. 

Note that in the Cox regression, the effect of PERSONAL, although weaker than that of 

PROPERTY, is also statistically significant.

2.2. Bagging Applied to the Recidivism Data

Next we apply a “bagging” procedure to the recidivism data. The term “Bagging” was used 

by Breiman (1996) as a shorter term for “bootstrap aggregation”—a procedure that 

aggregates over a number of (unpruned) single trees, each from a bootstrap sample of the 

data. The algorithm was originally invented by Breiman (1996) to overcome the instability 

and overfitting problems of single trees. In the procedure, observations that are not included 

in the bootstrap sample (called “out-of-bag” observations, OOB) can be used to calculate a 

more honest measure of prediction error.

The bagging algorithm used here was designed for survival outcomes by Hothorn, Lausen, 

Benner, and Radespiel-Tröger (2004). Prediction error is indexed by the integrated Brier 

score (Graf, Schmoor, Sauerbrei, & Schumacher, 1999), which measures the average 

discrepancy between the observed outcome and the estimated survival probability. We 

began by using all three covariates in the bagging procedure, and then excluded one of the 

covariates each time. One hundred bootstrap samples were drawn. The OOB Brier score 

was .2123 with all three covariates, .2142 when the covariate PERSONAL was excluded, .

2178 when the covariate PROPERTY was excluded, and .1991 when the covariate AGE was 

excluded (see Table 1). There was slight increase in prediction error when PERSONAL or 

PROPERTY was removed. Surprisingly, removing the predictor AGE decreased the 

predictor error.

2.3. Random Survival Forests Applied to the Recidivism Data

Now we apply random survival forests to the recidivism data. We use the procedure 

developed by Ishwaran, Kogalur, Blackstone, and Lauer (2008), which was directly adapted 

from the original prescription laid out for random forests by Breiman (2003a, 2003b). 

Random forests add one additional step to the bagging procedure—in the construction of 
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each tree, a pre-specified smaller number of predictors are randomly selected before each 

node is split, and the splitting variable is searched within the reduced set of predictors. The 

algorithm by Ishwaran et al. (2008) uses Harrell’s concordance index (C-index; Harrell, 

Califf, Pryor, Lee, & Rosati, 1982) as a measure of prediction error for survival data. This 

statistic is an estimate of the probability that, in a randomly selected pair of cases, the 

sequence of events that occur is successfully predicted (so prediction error is 1-C).

In the application, one thousand bootstrap samples were generated. The splitting rule used in 

calculating (or “growing”) survival trees was based on the log-rank statistic (Mantel, 1966; 

Peto & Peto, 1972), a test statistic for comparing the survival curves of two samples. The 

number of predictors randomly selected for each split was set to be two. The procedure 

obtained an OOB error rate of 37.48 %, better than a random guess of 50 %, suggesting that 

the three covariates are predictive of recidivism. In Figure 3, the left plot shows that the 

error rate was stabilized at around 400 trees. The right plot ranks the variable importance 

measure of the three covariates from high to low (their values are shown in Table 1). It 

shows that AGE is the strongest predictor, and PERSONAL seems to be more important 

than PROPERTY.

2.4. Comparison of the Results

The focus taken to approach the problem is quite different among the four illustrated 

methods. Cox regression examines each covariate’s effect based on hypothesis testing, 

survival tree focuses on classification, and bagging and random survival forests focus on 

prediction. The results from survival tree and survival ensemble methods seem to 

complement the results from traditional survival analysis (i.e., the Cox regression). 

However, at some point they disagree with each other; bagging suggests that AGE is not 

predictive of recidivism, and survival tree shows that there seems to be an interaction 

between AGE and PROPERTY. So the question arises—how trustworthy are survival tree 

and survival ensemble methods?

The answer to the question first depends on the performance of these algorithms. Take 

survival trees for example, Figure 4 is the tree result from a different survival tree algorithm 

with the splitting rule developed by LeBlanc and Crowley (1992). The stopping rule is that 

at least 60 observations must exist in a node in order for a split to be attempted, and at least 

20 observations must exist in any terminal node. The first split is still on AGE at 31.5, but 

further splits are different from the previous tree in Figure 2, and this results in a different 

classification of the sample. In the next section we have a review of existing survival tree 

algorithms. We will revisit the recidivism example in later sections.

3. A Brief Review of Survival Tree Algorithms

The first attempt to adapt the CART algorithm in the context of censored data seems to have 

been reported by Gordon and Olshen (1985). Since then, more than ten survival tree 

algorithms have been proposed, although only a few have been implemented in publicly 

available software. We summarize the main characteristics of these algorithms in Table 2.
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Molinaro et al. (2004) pointed out that survival tree algorithms can be placed into two 

categories based on their use of within-node homogeneity or between-node heterogeneity 

measures. The algorithms in the first category have inherited the fundamental basis of 

CART, in the sense that they rely on splitting rules which optimize a loss-based within-node 

homogeneity criterion, and use cost-complexity pruning and cross-validation to select an 

optimal-sized tree among a sequence of candidate trees. They differ in their definitions of 

the loss function. Gordon and Olshen (1985) created a measure of node impurity in the 

context of censored data by defining three possible shapes of survival curves (based on 

Kaplan–Meier calculations) which were regarded as “pure,” and the node impurity was then 

the deviation of the within-node survival curve from any of the three pure curves. Davis and 

Anderson (1989) based their split function on the negative log-likelihood, while assuming an 

exponential model for the baseline hazard function. Therneau et al. (1990) suggested using 

martingale residuals and this allows direct application of CART to survival outcomes. 

LeBlanc and Crowley (1992) used the first step of a full likelihood estimation procedure, 

assuming a proportional hazards model. Zhang (described in Zhang and Singer 1999) 

proposed a more straightforward approach by defining node impurity as a weighted 

combination of impurity of the binary death indicator (i.e., a dummy variable for whether or 

not a death has occurred) and the impurity of the time duration. Molinaro et al. (2004) 

argued that existing survival tree methods all chose the splitting and pruning criteria based 

on convenience of handling censored data, and did not reduce to the preferred choice for 

uncensored data. To address this problem, they proposed a unified methodology by defining 

an inverse probability of censoring weighted (IPCW) loss function.

In the second category of survival tree algorithms, the two sample log-rank test statistic is 

dominantly employed as the between-node heterogeneity measure. This approach, based on 

an alternative idea for splitting and pruning, is considered to deviate markedly from standard 

tree methodology (Molinaro et al., 2004). Ciampi et al. (1986) and Segal (1988) were the 

earliest to take this approach. However, Segal’s algorithm did not provide a solution for 

choosing the size of a tree. Intrator and Kooperberg (1995) modified Segal’s (1988) 

algorithm by adding a cost-complexity pruning. The algorithm by Ciampi et al. (1986) used 

the Akaike Information Criterion (AIC) for selecting the tree size, which is strongly related 

to the log-likelihood by adding a penalty based on the number of parameters. This method 

assumes asymptotic equivalence of AIC and cross-validation according to Stone (1974). 

LeBlanc and Crowley (1993) criticized that such an equivalence was not likely to hold in 

this particular setting. Instead, they used a pruning algorithm with optimal properties 

analogous to the CART pruning procedure, and used resampling and permutation techniques 

to select the tree size. Butler et al. (1989) also used the log-rank test statistic for splitting, but 

they used a within-node measure for pruning and selecting tree size.

More recently, Hothorn et al. (2006b) proposed a “conditional inference permutation test” 

for recursive partitioning. Based on a theory of permutation tests, it uses p value both as the 

splitting criterion (i.e., require a split with minimum p value) and as the stopping criterion 

(i.e., stop when no p value is below a pre-specified α-level) and therefore does not rely on a 

pruning procedure to select the tree size. They showed that this algorithm overcomes the 

selection bias towards predictors with many possible splits or missing values, a fundamental 
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problem in the CART methods. For the special case of censored responses, they suggest 

choosing log-rank or Savage scores in the calculation and then proceed as for univariate 

continuous regression.

3.1. Available Computer Software

Although a number of survival tree algorithms have been proposed, only a few have been 

implemented and made available and (most importantly) convenient for practical researchers 

to use. Two R add-on packages—“rpart” (Therneau & Atkinson, 2010) and “party” 

(Hothorn, Hornik, Strobl, & Zeileis, 2010) provide implementation for survival trees. In 

particular, “rpart” uses the splitting rule by LeBlanc and Crowley (1992), and users can 

choose values of the two parameters “minsplit” and “minbucket” for a desirable tree size. 

“minspit” indicates the minimum number of observations in a node for a split to be 

attempted, and “minbucket” indicates the minimum number of observations in any terminal 

node. “Party” implements the conditional inference procedure by Hothorn et al. (2006b). 

Users can choose a parameter value for “mincriterion” (which is 1 − α) to select tree sizes, 

but the other two parameters “minsplit” and “minbucket” are available as well. Hothorn and 

Zeileis (2012) later provided a toolkit “partykit” that can convert a tree fitted using “rpart” to 

a tree that shares the same functionality as a tree fitted using “party” so that tree structures 

can be visualized in a standardized way. In our illustrations, trees fitted in “rpart” were all 

converted and plotted as “party” trees.

In addition to these, Zhang provides a free program STREE on his website based on the 

methods discussed in Chapter 8 of Zhang and Singer (1999). It implements five optional 

splitting criteria: (a) likelihood, (b) log-rank, (c) Gordon–Olshen, (d) adaptive 

normalization, and (e) global normalization. The likelihood splitting criterion is based on 

LeBlanc and Crowley’s (1992) method with slight modifications. The log-rank splitting is 

from Ciampi et al. (1986) and Segal (1988). The Gordon–Olshen method, as it is named, is 

based on Gordon and Olshen’s 1985 article. It is not clear how the adaptive normalization 

and the global normalization methods work (these two methods do not seem to be described 

in the book). It seems that a similar pruning procedure follows all the five splitting criteria.

3.2. Evaluating Survival Tree Algorithms

Next we test and compare the three survival tree programs via simulated data—(a) Zhang’s 

STREE stand-alone program, (b) the “rpart” package (in R), and (c) the “party” package (in 

R). We use the default settings in “rpart” (minsplit = 20 and minbucket = 7) and “party” 

(mincriterion = .95, minsplit = 20, and minbucket = 7) for determining tree size.

Here it is assumed that the true model was a simple tree structure. The setup for survival 

data was similar to configurations used in LeBlanc and Crowley (1993), Keles and Segal 

(2002), and Hothorn et al. (2004). Survival times were exponentially distributed with 

conditional survival distribution S(z|x) = exp(−zΦx), with the logarithms of the hazards ϑx = 

log(Φx). Two independent predictors X1 and X2 were defined as uniformly distributed on [0, 

1]. Two tree structures were specified (Figure 5a, b), and the model can be written 

algebraically as:
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1a

1b

To start simple, we assumed zero censoring in this simulation. Sample size was set to be N = 

200, close to the sample size 194 in the recidivism example.

Model 1a was successfully identified by “party” (tree plot in Figure 6a), with the split of X1 

at .572 slightly off .6 due to random error. “rpart” returned a tree (Figure 6b) that was much 

larger than necessary, but we noted that the first split (0.617) was correct. The likelihood, 

log-rank, adaptive normalization, and global normalization methods had similar problems—

they were able to correctly find the first split but the tree size was excessively large even 

after pruning (the problem of “overfit”). The Gordon–Olshen method failed to find the 

correct first split.

For Model 1b where two splits existed in the tree, “party” split the data correctly (see Figure 

6c) though the order of the splitting variables was different from that in Figure 5b. Note that 

the hazard parameter ϑx was zero for the covariate space where X1 ≤ 0.6 and X2 ≤ 0.4, and 

one for the rest. Both trees reflected this partition. “rpart” identified the covariate space 

where ϑx was zero but the problem of overfitting remained (Figure 6d). The same problem 

occurred with the likelihood, Gordon–Olshen, adaptive normalization, global normalization, 

and the log-rank methods, with all producing extra unnecessary splits.

These two simple experiments show that conditional inference survival tree implemented in 

“party” outperforms the other survival tree algorithms—the major problem of which lies in 

the ineffectiveness of tree pruning, and this problem can lead to overfitting and false 

interpretation of data. However, this does not deny the value of these methods, as to be 

discussed later, in survival ensembles that aggregate over single fully-grown survival trees 

(i.e., without pruning).

4. Bagging for Survival Data

In addressing the problem of instability for single trees (Berk, 2008; Strobl et al., 2009), the 

general principle of bagging is appealing for survival contexts as well, but the procedure 

needs some technical adjustment. Hothorn et al. (2004) proposed a method of bagging 

survival trees. In contrast to averaging over point values in classification (majority voting in 

a terminal node) or regression (mean response in a terminal node) problems, they use 

conditional survival probability functions as predicted outcomes. Specifically, for a new 

observation, the estimate of its survival probability function is based on observations with 

“close” covariate values, that is, observations which are elements of the same leaf of a 

survival tree as the new observation itself. A single Kaplan–Meier curve is then computed 

based on “close” observations aggregated from all bootstrap samples, as the estimated 

outcome for the new observation. “rpart” was used for constructing survival trees, but it was 

suggested that arbitrary tree growing algorithm can be used for this bagging procedure 

(Hothorn et al. 2004).

Zhou and McArdle Page 8

Psychometrika. Author manuscript; available in PMC 2015 September 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Hothorn et al. (2004) used integrated Brier score (Graf et al., 1999) as the index of goodness 

of prediction. They showed via simulation that bagged survival trees improved upon single 

survival trees in terms of prediction accuracy, and the improvement was more substantial 

with less censoring. They also demonstrated that the prediction performance of bagging was 

hardly affected when the number of non-informative covariates increased, suggesting its 

robustness against noise in the data.

4.1. Available Computer Software

A function in the “party” package cforest() implements bagging survival trees, and one just 

needs to fix the number of variables evaluated et each node (mtry argument) to the number 

of available predictors. This bagging procedure has also been implemented in an R package 

“ipred” (Peters, Hothorn, Ripley, Therneau, & Atkinson, 2009). Users can choose the 

number of bootstrap samples to be drawn (i.e., the number of trees). Alternative sampling 

methods other than bootstrap sampling are available. Kaplan–Meier estimates can be 

obtained for new observations. In practical applications, Brier scores will vary from trial to 

trial because of the random sampling involved in the bagging procedure. By examining how 

close the results are across trials, users can get a sense of to what extent the stability has 

been reached, and decide if more trees are needed.

5. Random Forests for Survival Data

The random forests algorithm has been adapted to the survival responses by Breiman (2002, 

2003a, 2003b), Hothorn, Bühlmann, Dudoit, Molinaro, and van der Laan (2006a), and 

Ishwaran et al. (2008).

Breiman (2002, 2003a, 2003b) developed what he called “survival forests” in his last years 

of work. In constructing survival trees, unlike all the other algorithms, he partitioned the 

time-covariate space instead of just the covariate space. In particular, there is a probability 

of .75 to split to time and a probability of .25 to split on one of the covariates. In a time split 

of a node, all cases in the original node are in each child node. The splitting criterion is to 

increase the observed data log-likelihood assuming a constant hazards model within each 

node. Trees are grown until each terminal node has exactly one uncensored observation in it. 

The predicted value is the survival probability function. Breiman (2002) demonstrated that 

this procedure was superior to the Cox regression in various datasets, especially in situations 

where the Cox regression ignored the predictors which were only relevant within a limited 

time period (a violation of the proportional hazards assumption). However, he also pointed 

out that this method “is still being born and needs more testing, working with, and 

extending” (Breiman, 2002).

Hothorn et al. (2006a) proposed a random forest algorithm for survival data using a 

weighting scheme. Observations are weighted by the inverse probability of censoring (IPC) 

weights, which defines the probability for an observation to be selected in the bootstrapping 

sampling. This is a similar idea as used in Molinaro et al.’s (2004) survival tree algorithm. 

The predicted value is a weighted average of log survival time, so residual sum of squares 

can be used to measure prediction error. The performance of this method seems to depend 

on the censoring rate. The method can be problematic in cases where the censoring rate is 
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high (shown by Ishwaran et al., 2008), probably because, by definition, the weights are zero 

for censored observations, meaning censored observations are not used at all in constructing 

trees. However, it seems to work well when most of the events are observed (shown by 

Hothorn et al. 2006a).

Ishwaran et al. (2008) developed a “random survival forests” method that adapts the 

standard random forests (Breiman, 2003a, 2003b) to survival responses. Four alternative 

splitting rules are available in constructing survival trees: log-rank splitting, conversation-of-

events principle, log-rank score (standardized log-rank statistic) splitting, and random log-

rank splitting (Ishwaran et al., 2008). Trees are grown to full size under the constraint that a 

terminal node should have at least one death. The predicted value is mortality, derived from 

the cumulative hazard function (CHF). Harrell’s concordance index (C-index; Harrell et al., 

1982) is used as the measure of prediction performance. Like the standard random forests, a 

variable importance measure can be calculated for each predictor, which is defined as the 

original prediction error subtracted from the prediction error obtained by randomization the 

values in that predictor, given that the forest is unchanged. In application to empirical 

datasets (Ishwaran et al., 2008), this method has been shown to be robust against censoring 

and robust against noise variables in the data.

5.1. Available Computer Software

The survival forests algorithm by Breiman (2002) is provided on his website (http://

www.stat.berkeley.edu/~breiman/sf.html), as free software written in Fortran 77. It has not 

been embedded in the more user-friendly commercial software with his other data mining 

techniques. The forest algorithm by Hothorn et al. (2006a) does not seem to have been 

implemented in publicly available programs. The random survival forests algorithm is 

implemented in the R package “randomSurvivalForest” (Ishwaran & Kogalur, 2010). Users 

can choose one of the four splitting rules in growing survival trees, and can choose the 

values for “ntree” (the number of trees) and “mtry” (the number of covariates randomly 

selected for each split). The calculation of variable importance is available, and there is also 

an imputation procedure for handling missing data as described in Ishwaran et al. (2008).

6. Evaluating Survival Tree, Bagging and Random Survival Forests

Next we compare four methods: (a) Cox regression, (b) bagging survival trees (Hothorn et 

al., 2004), (c) random survival forests (Ishwaran et al., 2008), and (d) conditional inference 

survival tree (Hothorn et al., 2006b), via simulated data where the censoring rate was 

manipulated at different levels.

Survival times were simulated in the same way as the previous setup, but here censoring 

rates were controlled to be approximately 25, 50, and 75 %. We assumed that observation 

times were distributed uniformly on [0, γ ]. For any observation, if the observation time was 

shorter than the survival time, the outcome was censored. Values of the censoring parameter 

γ used in each trial are listed in Table 3.

Similar to the previous setup, two independent predictors X1 and X2 were uniformly 

distributed on [0, 1]. The sample size was N = 200. The true models were:
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2a

2b

Model 2a is a spline regression in which X1’s effect is three times as strong when it exceeds 

the value of .7. Model 2b includes main effects for both covariates as well as interaction. In 

fitting the Cox regression, X1, X2 and their product term were examined. One hundred 

bootstrap samples were drawn in each bagging procedure. For random survival forests, we 

chose the log-rank splitting rule to grow survival trees. Five hundred trees were grown for 

each forest, and one variable was randomly selected for each split. Results are presented in 

Table 4.

For Model 2a, Cox regression identified X1 as the only significant predictor at all three 

levels of censoring. But the effect of X1 was over estimated, especially when the censoring 

rate was high (75 %). This is not hard to explain, because the censored observations were 

more of those with lower hazard—in the current setting, those with lower X1 values. In the 

absence of these observations, the estimate for X1 coefficient tended to be biased toward the 

higher side. Bagging showed that removing X1 resulted in a higher error rate at all censoring 

levels, while removing X2 slightly lowered the error rate. Thus bagging correctly reflected 

the importance of X1 and triviality of X2in predicting the survival outcome, and the 

effectiveness of the method did not seem to be affected by censoring rate. Random survival 

forests were similarly successful, and the overall prediction error of the forest was not 

affected by censoring.

For Model 2b, Cox regression did not have enough power to detect the interaction, and, as 

the censoring rate increased, the two main effects became insignificant as well. In contrast, 

bagging showed that prediction error went up by removing either predictor, suggesting that 

they were both predictive of the outcome. For the weaker predictor X2, the change in 

prediction error became very small when censoring rate reached 50 % or higher. Similarly, 

random survival forests showed that the variable importance measure was large for X1 at all 

times, but very small for X2 at the 50 and 75 % censoring level. The overall prediction error 

tended to go up as the censoring rate increased.

With regard to the tree results, survival trees seemed to be sensitive to the shift in regression 

coefficient in Model 2a—all of them found a split around .7 (see Figure 7a–c). For Model 

2b, trees detected the interaction at all three censoring levels (Figure 7d–f), though the 

number of splits decreases as the censoring rate increases.

In sum, the simulations show two situations where Cox regression can be problematic: (a) it 

can be biased when censoring is related to the explanatory variables, and (b) statistical 

power is substantially affected by high censoring rate. In contrast, bagging and random 

survival forests seem to be less affected by censoring. Survival trees can be helpful in terms 

of detecting shifts in nonlinear relations as well as detecting interactions.
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6.1. Recidivism Example Revisited

We can then return to recidivism data and reconsider the results obtained by different 

methods. The first confusion is about the effect of AGE, which was suggested to be an 

important predictor by all methods except bagging. A possible explanation is that the 

performance of bagging was affected by censoring (45 % in the recidivism data), 

considering the simulation for Model 2b that the effect of X2 could hardly be detected when 

the censoring rate was 50 or 75 %. The decrease in prediction error by removing AGE might 

be a result of random sampling embedded in the bagging procedure. For the Cox regression, 

there did not seem to be evidence for obvious violation of the model assumption (i.e., 

proportional hazards; see Figure 1), so we can believe the results from Cox regression are 

reliable. In addition, random survival forest also identified AGE as the most important 

predictor; in the survival tree, AGE was the first variable to split. So we can conclude that 

AGE did have an effect on the hazard of re-arrest, and the results produced by bagging 

seemed to be misleading in this example.

We showed via simulation that, with similar sample size (N = 200) and similar censoring 

rate (50 %), Cox regression might not have enough power to detect an interaction. Survival 

tree suggested an interaction in the recidivism example, but given its exploratory nature, 

such a conclusion cannot be reached here. Similarly, it is possible that the effect of AGE 

was nonlinear. These clues from exploratory data mining can be examined in future 

research.

7. Discussion

7.1. Review of Existing Methods

Among the survival tree algorithms, the conditional inference survival tree developed by 

Hothorn et al. (2006b) seems to be more reliable and less likely to overfit, and this seems to 

be a major problem for the other survival tree algorithms. However, for survival ensemble 

methods whose major goal is forecasting, the overfitting problem of most survival tree 

algorithms becomes less important, because the ensemble methods used here usually 

aggregate over large trees (or unpruned trees). The choice of survival tree algorithms for 

ensemble methods does not seem to have been specifically examined, except for the random 

survival forests by Ishwaran et al. (2008), who showed four alternative tree splitting rules 

were all fairly good.

The survival ensemble methods are only recently proposed and still in the development 

stage. In addition to the methods reviewed above, Hothorn et al. (2006a) also developed a 

generic gradient boosting algorithm, inspired by another powerful statistical learning device 

boosting (Schapire, 1999). They have only been tested with a limited number of simulations 

and practical datasets, and potential flaws are possibly still uncovered. For example, in the 

recidivism example, interpretation of the covariate AGE would be misleading based on the 

bagging method (Hothorn et al., 2004). In a real substantive application (Zhou, Kadlec, & 

McArdle, 2014), the authors found a situation where the random survival forests (Ishwaran 

et al., 2008) seemed to fail—i.e., when there was only one predictor with two categories. 

There may be certain conditions under which these methods perform well, and certain 
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conditions under which these methods meet their limits. These are still unclear for now, and 

need more investigation in the future. In addition, ambiguities exist such as how big the 

variable importance value should be to be judged as a meaningful predictor. Strobl et al. 

(2009) suggested a conservative strategy to only include predictors whose importance scores 

exceed the amplitude of the largest negative scores, while Ishwaran et al. (2008) added noise 

variables to the dataset and used them as reference variables. This also needs further 

investigation.

7.2. Suggestions for Practical Use

Proper interpretation of the results is the key in using survival tree methods. Due to the 

relative immaturity of these methods, it seems important for users to have the basic 

knowledge of these procedures. Being aware of their drawbacks and limitations can avoid 

making misleading statements. This is not to discourage the use of survival trees and 

ensembles—instead we recommend their use, but in combination with other conventional 

methods. Cox regression is very popular in the analysis of survival data, but it is limited in 

various situations (Breiman, 2002), and in practice often used without rigor (i.e., the 

proportional hazard assumption not being carefully examined). On the other hand, we 

should not be too optimistic about data mining. As shown by Ishwaran et al. (2008), with 

some datasets, prediction accuracy of the exploratory methods were not better than the Cox 

regression, which suggests that the superiority of these methods is not always seen, but only 

in situations when the conventional methods meet their limits. But it never hurts to use them 

as supplemental tools, with which one may obtain extra information in the data that are not 

grasped by conventional survival analysis.

There are several conditions under which survival forests can be especially informative. 

First, the most typical case is when we have a large number of predictors and a small sample 

size, and the Cox regression is limited by low statistical power. Furthermore, if no clear 

theory or hypothesis is available for testing only a few specific covariates, it seems 

impractical to include all main effects as well as higher-order interaction terms in the model. 

In contrast, survival forests is free from the limit of statistical power and has an advantage in 

detecting interactions. Second, Ishwaran et al. (2008) showed that the prediction error of the 

Cox regression increased as the number of uncorrelated covariates became larger, whereas 

the random forests was robust against noise variables in the data. Third, in cases where the 

proportional hazard assumption is violated, for instance, when the effect of a relevant 

predictor only exists for a limited time period, this predictor is likely to be ignored 

(Breiman, 2002) by the Cox regression. Survival trees are insensitive to the proportional 

hazard assumption (unless the splitting rule is based on the assumption). Four, the 

performance of the Cox regression is dependent on the censoring rate. We found that in 

cases where the censoring rate was high, the Cox regression could yield biased results when 

the predictors were responsible for censoring. Censoring could also substantially affect the 

statistical power of the Cox regression. Random forests seems to be less affected by the 

censoring rate.

These statistical learning techniques are at their best when the goal is forecasting. They can 

respond to data features which are likely to be missed by other conventional methods, but 
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these features are only reflected in the improved prediction accuracy. These methods are like 

a black box when the question is how the predictors are related to the outcome. Also note 

that the conclusions drawn from these exploratory methods are not supported on a 

probability basis, which, as the fundamental of a hypothesis testing paradigm, is still a core 

scientific element in the field. If the research question is to formally demonstrate the relation 

of a predictor to the outcome, that is, test a specific a priori theory, these methods are no 

substitute for long established, testable models.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Kaplan–Meier survival curves by each covariate in the recidivism example.
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Figure 2. 
Partition of the recidivism data by means of a conditional inference survival tree. a (top): 

tree plot; b rectangular partition of the covariate space.
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Figure 3. 
Survival forest error rate stabilization (left) and variable importance plot (right).
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Figure 4. 
Tree plot for the recidivism data with a different survival tree algorithm.
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Figure 5. 
True tree structure in the simulation. a (top): Model 1a; 5b (bottom): Model 1b.
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Figure 6. 
Survival tree results for simulated Model 1a and Model 1b. 6a (top): “party” results for 

Model 1a; 6b (bottom): “rpart” results for Model 1a; 6c (top): “party” results for Model 1b; 

6d (bottom): “rpart” results for Model 1b.
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Figure 7. 
Conditional inference survival trees for simulated Model 2a and Model 2b. 7a (top): Model 

2a, 25 % censoring; 7b (bottom left): Model 2a, 50 % censoring; 7c (bottom right): Model 

2a, 75 % censoring; 7d (top): Model 2b, 25 % censoring; 7e (bottom): Model 2b, 50 % 

censoring; 7f: Model 2b, 75 % censoring.
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Table 2

Summary of published survival tree algorithms.

Author(s) Splitting rule Pruning rule Implementation

Gordon and Olshen (1985) Impurity (specifically defined 
based on KM curves) reduction

Cost-complexity pruning and cross-
validation

STREE

Ciampi, Thiffault, 
Nakache, and Asselain 
(1986)

Log-rank test statistic Akaike information criterion (AIC) Splitting criterion implemented 
in STREE

Segal (1988) Log-rank test statistic Not available Splitting criterion implemented 
in STREE

Butler, Gilpin, Gordon, 
and Olshen (1989) Davis 
and Anderson (1989)

Log-rank test statistic Exponential 
log-likelihood

A within-node measure
Cost-complexity pruning

Therneau, Grambsch, and 
Fleming (1990)

Martingale residuals Cost-complexity pruning and cross-
validation

LeBlanc and Crowley 
(1992)

First step of full likelihood Cost-complexity pruning and cross-
validation

Splitting criterion implemented 
in R package “rpart;” STREE 
also has a slightly modified 
version.

LeBlanc and Crowley 
(1993)

Log-rank test statistic Resampling and permutation

Intrator and Kooperberg 
(1995)

Log-rank test statistic Cost-complexity pruning

Zhang and Singer (1999) A weighted combination of 
impurity of the death indicator 
and impurity of the time

Cost-complexity pruning

Breiman (2002) Probability .75 to split on time, 
and Probability .25 to split on a 
covariate

N/A (embedded within the survival 
forest algorithm)

Breiman (2003a, 2003b)

Molinaro, Dudoit, and van 
der Laan (2004)

An inverse probability of 
censoring weighted (IPCW) loss 
function

Cost-complexity pruning and cross-
validation

Use R package “rpart” by 
providing IPCW weights

Hothorn et al. (2006b) Minimum p value Stop when no p value is below a pre-
specified a-level

R package “party”
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Table 3

Values of the censoring parameter γ used in the simulation.

Set Censoring rate

25 % 50 % 75 %

2a 2.0 .65 .17

2b .55 .16 .05
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Table 4

Results from Cox regression, bagging, and random survival forests in the simulation.

Cox regression Parameter estimate 
(SE) Bagging OOB Brier’s score Random survival forests Variable importance

2a

 25 % censoring With both = .1522 Error rate = 32.31 %

  X1 3.56 (.70) .1892 .2014

  X2   .51 (.68) .147 −.0110

  X1X2 −.94 (1.14) – –

 50 % censoring With both = .1696 Error rate = 28.86 %

  X1   2.90 (.89) .2357 .2416

  X2 −1.36 (1.02) .1664 .0079

  X1X2   1.64 (1.49) – –

 75 % censoring With both = .1306 Error rate = 30.39 %

  X   5.38 (1.38) .1998 .3224

  X2   1.51 (1.64) .1236 −.0246

  X1X2 −2.28 (2.16) – –

2b

 25 % censoring With both = .1069 Error rate = 24.65 %

  X1 3.86 (.72) .1719 .1436

  X2 1.79 (.71) .1336 .0221

  X1X2   .31 (1.07) – –

 50 % censoring With both = .1533 Error rate = 26.88 %

  X1 2.81 (.90) .2127 .1849

  X2   .08 (.98) .1572 .0015

  X1X2 1.65 (1.43) – –

 75 % censoring With both = .1476 Error rate = 29.58 %

  X1 2.43 (1.43) .186 .1258

  X2   .78 (1.54) .1483 .0117

  X1X2 1.31 (2.13) – –

OOB Brier’s scores shown in the table are prediction errors of the bagging procedure without the covariate.
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