Skip to main content
. Author manuscript; available in PMC: 2015 Sep 3.
Published in final edited form as: Psychometrika. 2014 Sep 17;80(3):811–833. doi: 10.1007/s11336-014-9413-1

Table 1.

Comparison of Cox regression, survival tree, bagging, and random survival forests in analyzing the recidivism data.

Cox regression
Survival tree (conditional inference)
Baggin OOB Brier’s score Random survival forests Variable importance
Parameter estimate (SE) Hazard ratio (SE) Split Groups
PERSONAL   .5691 (.2052) 1.7659(3642) No (1) AGE≤31.5; .2142 .0222

PROPERTY

  .9358 (.3509)

2.5482 (.8941)

Yes
(2) AGE>31 and PROPERTY =1; .2142
.2178
.0222
.0117
  .9358 (.3509) 2.5482 (.8941) Yes (3) AGE>31 and PROPERTY = 0; .2178 .0117
AGE −.0667 (.0168)   .9355 (.0157) Yes .1991 .0341

OOB Brier’s scores shown in the table are prediction errors of the bagging procedure without the covariate. The OOB Brier’s score with all covariates is .2123.