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Abstract

Cone-beam CT (CBCT) has become the standard image guidance tool for patient setup in image-

guided radiation therapy. However, due to its large illumination field, scattered photons severely 

degrade its image quality. While kernel-based scatter correction methods have been used routinely 

in the clinic, it is still desirable to develop Monte Carlo (MC) simulation-based methods due to 

their accuracy. However, the high computational burden of the MC method has prevented routine 

clinical application. This paper reports our recent development of a practical method of MC-based 

scatter estimation and removal for CBCT. In contrast with conventional MC approaches that 

estimate scatter signals using a scatter-contaminated CBCT image, our method used a planning 

CT image for MC simulation, which has the advantages of accurate image intensity and absence 

of image truncation. In our method, the planning CT was first rigidly registered with the CBCT. 

Scatter signals were then estimated via MC simulation. After scatter signals were removed from 

the raw CBCT projections, a corrected CBCT image was reconstructed. The entire workflow was 

implemented on a GPU platform for high computational efficiency. Strategies such as projection 

denoising, CT image downsampling, and interpolation along the angular direction were employed 

to further enhance the calculation speed. We studied the impact of key parameters in the workflow 

on the resulting accuracy and efficiency, based on which the optimal parameter values were 

determined. Our method was evaluated in numerical simulation, phantom, and real patient cases. 

In the simulation cases, our method reduced mean HU errors from 44 HU to 3 HU and from 78 

HU to 9 HU in the full-fan and the half-fan cases, respectively. In both the phantom and the 

patient cases, image artifacts caused by scatter, such as ring artifacts around the bowtie area, were 

reduced. With all the techniques employed, we achieved computation time of less than 30 sec 

including the time for both the scatter estimation and CBCT reconstruction steps. The efficacy of 

our method and its high computational efficiency make our method attractive for clinical use.
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1. Introduction

Cone-beam computed tomography (CBCT) (Jaffray et al., 1999; Jaffray et al., 2002) is one 

of the most widely used image guidance tools in image-guided radiation therapy (IGRT). By 

providing a volumetric image of a patient in the treatment position, CBCT plays a vital role 

in the patient setup process. Nonetheless, due to its large illumination field, a large amount 

of scatter signal is detected at the imager. The large scatter-to-primary ratio (SPR) 

substantially degrades reconstructed CBCT image quality (Siewerdsen and Jaffray, 2001; 

Endo et al., 2001; Zhu et al., 2009c; Zhu et al., 2009b). The resulting image artifacts such as 

cupping artifacts, as well as reduced image contrast, have severely impeded its use in IGRT, 

especially in soft tissue-based patient setup. In addition, the recent growth of adaptive 

radiotherapy (ART) (Yan et al., 1997) calls for quantitative CBCT imaging, based on which 

deformable image registration and dose calculations can be performed for treatment 

replanning. Yet the current CBCT image quality is not sufficient to support those 

applications.

Over the years, a lot of effort has been devoted to estimating the scatter signal, either by 

measurement or by calculation, in order to remove them from the measured raw projections. 

In measurement-based methods, a beam-stop array has been used (Ning et al., 2002; Ning et 

al., 2004; Cai et al., 2008; Yan et al., 2009; Yan et al., 2010; Wang et al., 2010; Niu and 

Zhu, 2011; Ouyang et al., 2013) to enable direct acquisition of scatter signals in purposely 

created shadow areas. The measured signal was then extended to the entire projection plane 

via interpolation (Yan et al., 2010). A primary modulation method (Bani-Hashemi et al., 

2005; Maltz et al., 2006; Zhu et al., 2006; Gao et al., 2010) was developed to extract the 

low-frequency scatter signal from the Fourier domain. However, these methods generally 

require extra hardware, which hinders their practicality. Partially lost primary signal in the 

beam-stop array methods also impairs image quality. Calculation-based methods have also 

been employed to compute scatter signals. Kernel methods are particularly popular in this 

category (Shaw et al., 1982; Hangartner, 1987; Seibert and Boone, 1988; Kruger et al., 

1994; Ohnesorge et al., 1999; Star-Lack et al., 2009; Sun and Star-Lack, 2010; Sun et al., 

2011). They decompose a measured projection into the scatter and primary components 

subject to an experiment-calibrated empirical relationship between them. Although they 

have been utilized in clinical practice, yielding improved image quality, the scatter 

estimation accuracy is still not satisfactory under certain circumstances, such as when a high 

level of heterogeneity exists. Recently, it has also been proposed to incorporate patient 

planning CT as prior information for scatter estimation (Niu et al., 2010; Niu et al., 2012).

Another group of calculation-based methods are based on Monte Carlo (MC) simulation. 

While these methods are believed to have sufficient accuracy, the low computational 

efficiency associated with the MC approach prevents routine application. Hence, efforts 

have been primarily focused on speeding up the calculation process. Variance reduction 

techniques (VRT), e.g. photon splitting, Russian Roulette, and forced detection, have been 

utilized. The speed was improved by several orders of magnitude compared to a brute-force 

utilization of MC (Poludniowski et al., 2009; Mainegra-Hing and Kawrakow, 2010; 

Sisniega et al., 2013). Denoising methods were introduced to this problem to estimate a 

smooth signal from a MC-calculated noisy one. This method effectively reduced the 
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required number of photons in simulation and hence reduced the computation time (Colijn 

and Beekman, 2004; Zbijewski and Beekman, 2006; Jarry et al., 2006). Kyriakou et al. 

(2006) proposed a hybrid method combining a fast and exact analytical calculation of a 

single scattered signal and a coarse MC estimation of multiple scattered signals. Recently, 

MC simulation has also been ported to a graphics processing unit (GPU) platform to take 

advantage of its rapid processing power (Badal and Badano, 2009; Jia et al., 2012). Sisniega 

et al. (2015) presented a comprehensive framework for CBCT artifact correction, in which a 

GPU-accelerated MC scatter correction step included several techniques to speed up the 

computations such as VRT, reductions of number of photons and projection angles, and 

projection denoising. Despite all of these efforts, the overall speed achieved so far is still 

much inferior to that of the kernel-based methods, making them clinically impractical. 

Meanwhile, there are other issues that impede the efficacy of MC-based scatter estimations. 

For example, MC calculations are often conducted using a scatter-contaminated CBCT 

image. Because of the incorrect HU values, accuracy of the calculated scatter signal is 

limited. Although an iterative process has been proposed to gradually improve calculation 

accuracy (Zbijewski and Beekman, 2006; Poludniowski et al., 2009), this further prolongs 

the computation time. Moreover, there is no theoretical ground to ensure the convergence of 

this iterative process. Another issue hindering efficacy is the limited field of view in CBCT 

scans. Lateral truncation in CBCT frequently occurs, especially when a large patient is 

scanned or when the isocenter is purposely placed on one side of a patient. This leads to 

incomplete anatomy information in the reconstructed CBCT image, which inevitably causes 

calculation error in MC simulation.

To solve these problems and develop a clinically practical MC-based CBCT scatter 

correction method, we propose in this paper to perform MC simulations using a planning CT 

image that is typically available for the treatment planning purpose. We also propose to 

utilize a combination of several techniques to substantially accelerate the scatter calculation 

and CBCT reconstruction process. It is our purpose that the entire scatter estimation and 

CBCT reconstruction process is accomplished within 30 sec. According to our experience, 

this is approximately the time it takes in current clinical practice to get a reconstructed 

CBCT image after a scan is completed.

2. Methods and Materials

Figure 1 shows the workflow of our method, which consists of six steps. The first step uses 

an FDK algorithm (Feldkamp et al., 1984) to reconstruct a scatter-contaminated CBCT 

image directly using raw projections. After that, the second step rigidly registers the 

planning CT to match the CBCT, which is then used in the MC simulation step to generate 

noisy scatter signals at a few sparsely placed projection angles. Scatter denoising and 

interpolation are performed in the next step to yield calculated scatter data at all projection 

angles. Finally, the calculated scatter data is subtracted from the measured projections. The 

FDK reconstruction is performed again using the corrected projections to obtain the CBCT 

image with reduced scatter artifacts.
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In the rest of this section, we will first discuss the rationale of using the planning CT data for 

MC scatter estimations, as opposed to using a scatter-contaminated CBCT. We will then 

present our techniques to achieve the fast scatter estimations.

2.1 MC-based scatter calculations using a planning CT

In IGRT, a planning CT is always available for treatment planning purposes. Using the 

planning CT to help scatter estimation has several advantages compared with the method 

using a scatter-contaminated CBCT image. First, the planning CT image has superior image 

quality to the CBCT, ensuring more accurate MC modeling and therefore improved 

calculation accuracy. It has been demonstrated that calculated scatter is inaccurate when 

using a scatter-contaminated CBCT due to the incorrect HU values (Poludniowski et al., 

2009). We also computed scatter signal via MC simulation using a scatter-contaminated 

CBCT and using a planning CT. The planning CT was deformed to the CBCT to ensure they 

have the same geometry. It was found that the average differences of the scatter signal 

magnitude were 18.2% and 29.6% for a full-fan headneck case and a half-fan prostate case, 

respectively. The average differences of SPR were 2.8% and 13.5% for these two cases. The 

difference was calculated as |ACT − ACBCT|/ACT pixelwise and then averaged over the entire 

projection plane, where ACT and ACBCT were scatter signal or SPR calculated using the CT 

and the CBCT, respectively. Hence, additional strategies have to be employed to handle this 

issue. For instance, it has been proposed to segment the CBCT image and reassign the HU 

values before MC simulation (Sisniega et al., 2011). However, the resulting scatter 

estimation accuracy may still be limited by the uncertainty in those steps. Iterative 

approaches have also been utilized where several rounds of scatter estimations and 

correction are performed, aiming at gradually improving the estimation accuracy. There is, 

nonetheless, no theoretical justification for the convergence of this procedure. The 

computational cost is also increased accordingly.

The second advantage of using a planning CT is to avoid calculation error caused by the 

problem of image truncation. CBCT has a relatively small field of view. Laterally truncated 

CBCT images are frequently seen in IGRT, for instance when a large patient is scanned or 

when the isocenter is purposely placed very laterally in a patient. While this is typically not 

a problem for patient setup in IGRT, it significantly impairs MC simulation accuracy due to 

the missing anatomy in the truncated region. We have actually performed an MC simulation 

to study this effect. In a relatively large lung cancer patient, the isocenter was placed at the 

tumor center in the right lung. As a consequence, tissue of about ~3cm thickness on the left 

side of the patient was outside the field of view. Calculated scatter signals using the full 

body and the truncated body differed on average by 28% along the lateral projection 

direction. Another problem associated with the truncation issue is image artifacts within the 

field of view, which further deteriorate simulation accuracy. Furthermore, CBCT also has a 

short longitudinal coverage compared to CT (Yan et al., 2014), and this similarly introduces 

calculation error.

The proposed use of CT for scatter calculations also has its limitations. Rigid registration 

has been employed to place the planning CT to a correct spatial location for MC 

simulations. Theoretically speaking, deformable image registration is needed as the patient 

Xu et al. Page 4

Phys Med Biol. Author manuscript; available in PMC 2016 May 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



anatomy deforms from day to day in a non-rigid fashion. However, CT-to-CBCT 

deformable image registration is a challenging problem by itself. We simply used rigid 

registration in the proposed method for the considerations of computational efficiency and 

algorithm robustness. It is hoped that small deformable anatomy variations do not greatly 

impact the scatter estimation accuracy and hence rigid registration can still provide 

sufficient accuracy in scatter estimations. This issue will be further discussed in Section 4.

2.2 Techniques for fast scatter estimation

The proposed method involves two FDK reconstruction steps, one MC simulation step, and 

several other steps. Computations for all of these steps must be substantially accelerated to 

control the total time into an acceptable level. As such, all of the steps were implemented on 

one GPU card, which has been demonstrated to be effective for improving computational 

efficiency (Pratx and Xing, 2011; Jia et al., 2014). In addition, we also employed a few other 

techniques to speed up the whole process to meet our goal of ~30 sec total computation 

time. This ensures the practicality of our method, as it currently takes approximately 30 sec 

in the clinic to reconstruct a CBCT after a scan is completed.

2.2.1 GPU-based computation—In our computations, there were three main 

components implemented on GPU. The first one was FDK-based CBCT reconstruction 

(Feldkamp et al., 1984). There have been a number of publications reporting GPU 

implementations of this algorithm (Li et al., 2007; Sharp et al., 2007; Yan et al., 2008; Noel 

et al., 2010; Okitsu et al., 2010). Here, we used our in-house developed one. There were 

three main steps in this algorithm. 1) Reweighting projection data. This step processed each 

projection with a geometry filter in the FDK algorithm: Parker’s filter for full-fan scan cases 

(Naparstek, 1980; Parker, 1982; Wesarg et al., 2002), a filter to compensate redundant data 

in half-fan scan cases (Cho et al., 1995; Cho et al., 1996; Wang, 2002), and a low-pass filter 

to suppress noise. The computations were performed using one GPU thread for each pixel. 

2) Applying a ramp filter. We achieved this step using image space convolution with one 

GPU thread for the convolution at each pixel. 3) Back-projecting the filtered projections to 

the image volume. This was computed by letting each GPU thread compute a voxel value. 

Note that 2D interpolation was necessary in this step, due to the need of fetching pixel 

values at the projection points of each voxel. GPU texture memory was used here to take 

advantages of hardware-enabled interpolations.

The second component was rigid registration. We rigidly registered a moving image I1(x), 

i.e. the planning CT, with a static image I2(x), i.e. the CBCT, by finding a vector y that 

maximized an energy function E(y) = ∫ dx I1(x + y)I2(x). This is the convolution of the two 

images, which can be efficiently computed in the Fourier domain. Specifically, we 

computed E(y) = ℱ−1[ℱ[I1]ℱ[I2]], where ℱ denotes a Fourier transform operation. In our 

implementation, a GPU-based fast Fourier transform package CUFFT was used 

(Podlozhnyuk, 2007). After the convolution operation, we found the location for the 

maximum value of the resulting data, which specified the shift vector y.

The third component was a GPU-based MC photon transport simulation for scatter 

calculations. We utilized a previously developed package, gDRR (Jia et al., 2012), in this 
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step. The base materials for MC simulation were bone, tissue, and air. Once a CT image was 

ready for scatter calculations, each voxel was assigned to a material type by thresholding its 

CT number. Voxels of the same material can have different densities, which were 

determined from the CT numbers via a mapping that was calibrated to our CT scanner 

(Schneider et al., 2000). After that, a number of GPU threads were launched to 

simultaneously transport a group of photons. Each photon was transported from the x-ray 

source till it exited the phantom or was absorbed in the phantom. If a scattered photon hit the 

detector, it was tallied in the corresponding pixel location. gDRR considered physics relative 

to the kV CBCT energy range, namely Rayleigh scatter, Compton scatter, and photoelectric 

effect. An effective source model was utilized to generate source photons, which represents 

the beam by a poly-energetic spectrum and a spatially inhomogeneous particle fluence after 

the bowtie-filter. Parameters in this model were tuned through a calibration process to yield 

a good representation of our CBCT source. Detector responses were considered by an 

energy response curve. The accuracy of photon transport in this package has been previously 

demonstrated by comparing simulation results with those from EGSnrc, as well as indirectly 

by comparing computed radiation dose with measurements (Montanari et al., 2014).

2.2.2 Other acceleration strategies—In addition to employing GPU-based 

acceleration, we have used three techniques to further speed up the computations from the 

algorithmic side.

Due to the randomness inherent to the MC method, noise exists in the calculated scatter 

signal. As the signal is expected to be smooth along the spatial dimension, a scatter 

denoising technique can be utilized. The method we used is an optimization-based approach, 

which has been proposed in Jia et al. (2012). It solves an optimization problem

(1)

where S is the smoothed scatter signal to be estimated and Ŝ is the signal computed by MC 

simulation. β is a constant that controls the relative weight between the data fidelity term 

(first term in the objective function) designed for Poisson statistics and the smoothing term 

(second term) that penalizes the image gradient. A successive over-relaxation algorithm was 

employed to solve this problem (Golub and van Loan, 1996). The resulting accuracy of the 

signal S obviously depends on the noise level Ŝ, which is governed by the number of 

photons used in MC simulations. In practice, it is preferred to use fewer photons for 

efficiency considerations. In Section 3.1.1, we will study the trade-off between the 

simulation accuracy and the time cost in detail.

Another technique was to downsample the CT volume data for MC simulation. The 

rationale behind this technique is that the scatter data is typically a low frequency signal in 

the spatial dimension, and hence it is expected to be insensitive to the details of anatomical 

structures in the CT image. As such, we reduced the CT resolution and increased voxel size 

accordingly to speed up the photon transport simulations. Since the CT voxel size along the 

superior-inferior direction was already large compared to that in the transverse plane, we 

only downsampled the transverse plane. In Section 3.1.2, the relationship between accuracy 

and computation time will be analyzed.
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The third technique was to simulate scatter at sparse projection angles, and then interpolate 

the results to other projection angles. This is motivated by the fact that the scatter signal also 

varies smoothly along the angular direction. However, it is important to study the variation 

of the signal along this direction to determine the minimal number of projections needed to 

maintain the accuracy of the interpolated results. As such, we first accurately computed 

scatter images for a test pelvis phantom at all projection angles and stacked them to form a 

3D volume as shown in Figure 2. We then extracted the pixel intensities for each pixel i at 

all projection angles θ to form a function fi(θ). Nyquist–Shannon sampling theorem (Jerri, 

1977) was utilized on fi(θ) to determine a minimum sampling number Np,i for this pixel, 

such that a linearly interpolated signal can preserve over 99.9% of the energy. Finally, we 

took the maximum value of Np,i among all the pixels to determine the number of projections 

needed Np = maxiNp,i. Again, in Section 3.1.3 we will investigate the trade-off between 

accuracy and efficiency when the number of projections used in the MC simulation is 

varied.

2.3 Postprocessing

Pixel values from our calculations fcal are in the unit of energy deposited to that pixel per 

simulated particle, whereas pixel values recorded in a projection file acquired 

experimentally fmea are in a different unit. It is expected that there exists a calibration factor 

α, fmea(x, y) = αfcal(x, y). It is important to obtain this factor to convert a calculated scatter 

image to a scale matching the measurements, so that it can be subtracted from a measured 

raw projection. For this purpose, we performed the following calibration study. We selected 

a pelvis phantom and measured its CBCT projections fmea at all projection angles. We also 

performed MC simulations to get the calculated projections fcal at the same projection angles 

with 109 photons per projection. Note that in this calibration study, fcal contained both 

primary and scatter signals. Each projection was downsampled by averaging pixel values in 

square areas of 4 × 4 pixels, yielding fmea(i, j) and fcal (i, j), where (i, j) are pixel location 

indices. After that, fmea(i, j) was plotted versus fcal (i, j) and a linear fitting was performed to 

determine the slope α.

We remark that the downsampling step is actually important. This is because there may be a 

spatial misalignment between the measured and the calculated projections. Hence linear 

fitting using the original images would cause error. Figure 3a)–c) plot fmea vs fcal for cases 

with different sizes of the downsampling area. For cases without downsampling in a), the 

spatial misalignment leads to a poor linear relationship between fmea and fcal. The linearity is 

improved with increased downsampling area size. However, at cases with a too large size, 

averaging over many pixels also compromises the fitting. To demonstrate this effect, we plot 

R value of the linear fitting in Figure 3d), which peaks at 4. Hence we pick the size of 4 × 4 

pixels in our study.

It is expected that such a calibration factor α depends on specific parameters in each CBCT 

scan protocol, e.g. mAs. We therefore performed the calibration for each scan protocol. 

Once this factor was determined through this calibration step, in the scatter calculation and 

removal experiments, we used them to scale the calculated scatter signals to the proper 

physical scale.
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Another postprocessing step is to adjust the calculated scatter signal intensity based on 

scatter-to-total ratio (STR). At some pixels, the calculated scatter signal may be even larger 

than the value acquired by the image detector due to calculation errors. Simply subtracting 

the calculated signal would lead to negative, hence unphysical results. In order to avoid this 

issue, we employed a method to clip the maximum level of STR (Zhu et al., 2006; Sun and 

Star-Lack, 2010). Specifically, the STR γ at each pixel was first calculated by taking the 

quotient of the MC-calculated scatter signal and the measured total signal p0. A new STR 

level γ′(γ) was calculated based on this γ value via a function proposed by Zhu et al. (2006) 

to avoid unphysical results of γ > 1. Finally, the primary signal was estimated as p = p0(1 − γ

′(γ)). The function form γ′(γ) is

(2)

where the parameter β = 0.8 was chosen empirically for all our tested cases. The function 

form γ′(γ) is shown in Figure 4. As γ → ∞, γ′ approaches unity.

2.4 Evaluation

To evaluate our method, we performed the following studies. First, simulation studies in 

both full-fan and half-fan cases were conducted. As ground truth images were known in 

these simulation cases, we were able to study the impact of different parameters in our 

method, i.e. downsampling factor, photon history number, and number of projections, on the 

resulting scatter estimation accuracy and computational efficiency. This established the 

appropriate parameter values. For each of the simulation cases, two CT images for a patient 

were used, which were acquired at two different fractions during a treatment course. The 

resolution of each CT image dataset was 512 × 512 × 100 with a voxel size of 0.98 × 0.98 × 

2.5 mm. To generate scatter-contaminated CBCT projections, we conducted MC simulations 

using gDRR (Jia et al., 2012) on the first CT image. The second CT image was utilized as 

the planning CT needed for our scatter estimation method. In those simulation cases, the 

relative scatter estimation error, E, was calculated as E = |Se − Sr|/|Sr|, where Se and Sr are 

vectors for the estimated scatter and the ground truth, respectively. |·| denotes standard L2 

norm of a vector.

We then evaluated the performance of our method using an anthropomorphic male pelvic 

phantom (CIRS Inc., Norfolk, VA, USA). The phantom was first scanned in a Philips 16-

slice Brilliance large-bore simulator (Philips Healthcare Inc, Cleveland OH). A CBCT scan 

was then performed with a Varian TrueBeam On-Board Imaging (OBI) system (Varian 

Medical System Inc. Palo Alto, CA). Six hundred and fifty nine projections were acquired 

under a pelvis scan protocol of 125 kVp and 1.6 mAs/projection in the half-fan mode. In 

addition to visually comparing CBCTs with and without scatter removal, we also utilized 

spatial nonuniformity (SNU) to characterize the improvement of image quality (Mail et al., 

2009; Niu et al., 2012). Specifically, six ROIs that should have the same image intensity 

were selected and  was calculated, where  and 
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 were the maximum and the minimum of the mean CT numbers among these ROIs, 

respectively.

Finally, we validated our method in a head and neck (HN) cancer patient case and a prostate 

cancer patient case. For the HN case, 364 projections were acquired in the TrueBeam OBI 

system under a full-fan scan protocol with 100kVp and 0.4 mAS. For the prostate case, 656 

projections were acquired with 120kVp and 1.6mAs under a half-fan protocol. Planning CT 

images for both cases were taken from a Philips 16-slice Brilliance large-bore 4-D CT 

simulator. The image resolutions were 512 × 512 × 100 with a voxel size of 0.98 × 0.98 × 

2.5 mm.

3. RESULTS

3.1 Impact of parameters

We first investigated the impact of three parameters in our method on the resulting accuracy 

and computational efficiency. Studies were conducted in simulation cases where ground 

truth was known. The purpose of this step was to establish a practical set of parameters 

under which we could accomplish the whole scatter estimation and CBCT reconstruction 

process in ~30 sec while not compromising accuracy.

The three parameters we tuned were the number of photon histories per projection in MC 

simulation Ns, the factor to downsample the CT volume Nd, and the number of projections 

for which scatter is simulated Np. As stated in Sec 2.2.2, we downsample each transverse CT 

slice to improve photon transport efficiency. The downsampling factor Nd is defined to be 

the ratio of the new voxel size in the transverse slice to the original voxel size. Theoretically 

speaking, studies extending the entire domain of (Ns, Nd, Np) could be performed to explore 

all possible combinations of these parameters in order to select the optimal one 

. Yet this would be a tedious process, and presenting the variations of accuracy 

and efficiency in this three dimensional space would probably add little value to the 

demonstration of the validity of our method. In addition, it is expected that, strictly 

speaking, the exact number  is case dependent. Hence, performing detailed 

investigations for a particular case is probably not important. Due to these considerations, 

our purpose was rather to establish a parameter set  that could serve as a 

guideline for practical utilization of our method. As such, we first found an acceptable 

parameter set  through a trial and error process in the entire three-

dimensional parameter space. In each of the following three subsections, we will fix two of 

them to the acceptable parameter values and demonstrate the trade-off between accuracy and 

efficiency, while the third one is tuned. When evaluating the accuracy, we considered the 

ground truth as simulation results with 109 photons per projection with the denoising 

algorithm applied. Relative error E = |Se − Sr|/|Sr| was used to quantify the accuracy with Se 

and Sr denoting the estimated scatter and the ground truth, respectively. As for the efficiency 

evaluation, total computation time was used.

3.1.1 Photon history number—The number of photon histories per projection used in 

an MC simulation Ns can obviously impact both accuracy and efficiency. While it is 
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possible to reduce computation time by using fewer photons, the resulting scatter signal 

becomes noisier, causing increased error. Figure 5 demonstrates this trade-off. Here we fix 

 and vary Ns. The error is calculated on the denoised scatter signal, which 

is simulated at  projection angles and then interpolated to all the angular directions. 

The computation time reported here is for the MC simulation step only. From this figure, it 

is clear that beyond 107 photons per projection, further increasing the number of photons 

does not significantly improve accuracy anymore. With this photon number, the 

computation time is within 15 sec. Since we would like to keep the total computation time 

within ~30 sec, and we found that the total time for FDK reconstructions and other steps is 

~15 sec, MC simulation time is restricted to ~15 sec. Therefore,  was selected.

3.1.2 Downsampling factor—By downsampling the phantom volume, the photon 

transport can be sped up. Figure 6 depicts the computation time and accuracy of the 

resulting scatter signal as functions of the factor Nd used when downsampling the CT 

volume with fixed . As Nd increases, the computation error initially 

increases slowly. It then increases sharply when Nd becomes relatively large. In order to 

maintain simulation accuracy and keep the computation time to within the goal of ~15 sec, 

we chose  in our method.

3.1.3 Number of views—As mentioned in Section 2.2, in order to figure out the 

minimum number of projections needed to restore the completed scatter signal via 

interpolation, we performed Fourier analysis on each fi(θ), the variation of the scatter signal 

at a pixel i along the angular direction. Then the minimal number of views Np,i for this pixel 

was derived by Nyquist–Shannon sampling theorem, such that a linearly interpolated signal 

can preserve over 99.9% of the energy. Figure 7 shows the histogram of Np,i. It indicates 

that 10 views for the full-fan case and 20 views for the half-fan case are sufficient. We have 

also analyzed the trade-off between the accuracy and simulation time with 

, as shown in Figure 8. When the simulated projection number becomes 

larger than 15, further increasing this parameter value does not help reduce the error 

significantly anymore. Meanwhile, the MC simulation time is under 15 sec, as long as the 

view number is less than 20. Hence, we chose .

3.2 Image quality

3.2.1 Simulation studies—With the parameter settings determined, we move on to 

demonstrate the efficacy of our method in terms of image quality. Figure 9(a)–(d) are the 

ground truth image, the rigidly registered planning CT image, and the images before and 

after scatter correction in the full-fan simulation study, respectively. Compared with the 

uncorrected image, the one after scatter correction has much reduced scatter artifacts as 

indicated by the arrows. The overall HU accuracy is also improved. We have also plotted 

line profiles along a horizontal cut in Figure 9(e). It is clear that after scatter correction, the 

image intensity agrees with the ground truth much better than the uncorrected one.

Figure 10 shows the results of the half-fan simulation study. Again, much improved image 

quality is observed after the scatter correction step. In particular, the bowtie filter artifacts 
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are removed well, as indicated by the arrows. This bowtie filter artifact is due to the 

coupling between x-ray projection error and the air norm intensity after the bowtie filter. 

Suppose the x-ray air norm after the bowtie filter is Io. After the x-ray travels through an 

object, its intensity becomes Ioe−l, where l is the path integral of x-ray attenuation 

coefficient, which is needed in reconstruction. However, the detector receives a signal Ioe−l 

+ s. Here s denotes a general error term with scatter being its main component. In the log 

transform prior to reconstruction, the transformed data becomes 

to the leading order of s. This implies that the error term after this log transformation has a 

leading component of sel/Io which is modulated by the air norm Io. Due to the bowtie filter 

design, Io is large in the center of the detector and small on the sides. This leads to spatially 

varying error in the transformed data, relatively small in the center and large on the 

peripheral region. After reconstruction, it will cause different amount of image error 

between the image center and its periphery. The transition between them appears as the 

bowtie artifact.

To quantitatively evaluate the improvements in image quality, we have computed maximum 

error emax, 95th percentile error e95%, and mean error ē for the CBCT images before and 

after scatter correction. The results are summarized in Table 1. The proposed scatter 

correction method reduces the mean error from 44 HU to 3 HU and from 78 HU to 9 HU for 

the full-fan and the half-fan cases, respectively. Maximum error is reduced from 456 to 37 

HU and from 584 to 128 HU for the two cases, respectively.

3.2.2 Phantom and patient studies—In Figure 11, we present the results for the pelvis 

phantom experiment and the two patient cases. For the pelvis phantom case, one of the 

obvious improvements in image quality is the reduction of the bowtie filter artifacts, as 

indicated by the arrows in Figure 11(b). The overall image intensity has also been corrected, 

and is in better agreement with the CT image, as indicated by the comparisons in image 

profiles. We have computed the SNU index using the six selected rectangular areas drawn in 

Figure 11(a). The SNU values for the CT and CBCT images before and after scatter 

correction are 0.7%, 12.1%, and 4.5%, respectively, indicating an improved HU value 

accuracy after scatter correction.

For the patient cases we have also observed improvements in image quality. Specifically, in 

the HN case scanned in the full-fan mode, image intensity accuracy at the periphery region 

is improved, and the scatter artifacts indicated by the arrows are largely reduced. For the 

half-fan prostate cancer patient case, the scatter correction step reduces the ring artifact 

caused by the bowtie filter. The overall intensity value is also corrected.

3.3 Computational efficiency

Table 2 summarizes the computational time for each step, as well as the total computation 

time. All the computations were performed on one NVIDIA Titan black GPU card. As 

expected, the most time-consuming step is MC scatter simulation. Under the parameter 

settings determined in Section 3.1, the time in this step is below 15 sec for all the cases. The 

time for the FDK reconstruction step primarily depends on the scan mode. The half-fan 

cases are slower than the full-fan cases, which is ascribed to the larger number of 
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projections. The computational time for the registration and projection processing steps 

remains constant among all cases. With all the techniques employed, we have successfully 

reduced the computation time to within 30 sec, including two FDK reconstructions, one 

MC-based scatter estimation, and other necessary steps.

4. CONCLUSIONS AND DISCUSSION

In this paper, we have presented our recent development of a practical MC-based scatter 

estimation and removal method for CBCT. A patient planning CT image was used for MC 

simulation because of the advantages of accurate image intensity and absence of image 

truncation. A scatter calculation and removal workflow was developed, which was 

implemented on a GPU platform for high computational efficiency. The impact of three key 

parameters in the MC simulation step was studied to determine an optimal parameter set, 

under which the computation time was reduced to a clinically acceptable level without 

compromising accuracy. We studied the performance of our method in simulation, phantom, 

and patient cases. In the simulation cases our method reduced the mean HU error from 44 

HU to 3 HU and from 78 HU to 9 HU for the full-fan and the half-fan cases, respectively. In 

both the phantom and the patient cases, improved overall accuracy of image intensity was 

observed. CBCT image artifacts caused by scatter, such as ring artifacts around the bowtie 

area, were reduced. With all the computational techniques, we were able to achieve 

computation time of less than 30 sec including the time for both scatter estimation and 

CBCT reconstruction steps. This makes the developed method practical for clinical use.

There are a few issues that we would like to discuss. First, one of the contributions of this 

work is to propose the use of a planning CT for MC-based scatter estimation. Although 

deformable image registration is needed theoretically to exactly match the planning CT with 

the CBCT, rigid registration was utilized for considerations of simplicity and robustness. 

The assumption is that scatter signal is not sensitive to small anatomy variations. Here, we 

validate this assumption via a simulation study using a prostate cancer patient who has three 

CT images acquired at the planning stage, at fraction (Fx) 21, and at Fx 43 as shown in 

Figure 12(a)–(c). We first computed scatter-contaminated CBCT projections for the patient 

anatomy in the planning CT using MC simulation. If the scatter was left uncorrected, the 

reconstructed CBCT would be degraded as shown in Figure 12(d). We conducted two 

scatter removal studies with our method using the CTs at Fx 21 and Fx 43 as prior CT 

images. Figure 12(e) and (f) are images after correction using the two different CTs. The 

anatomy deformation is relatively small between the planning stage and Fx 21. The scatter 

correction yields much improved image quality with reduced artifacts. At Fx 43 the 

deformations become large, especially in the bladder area as indicated by the arrow. 

However, the efficacy on scatter correction is still satisfactory. The corrected image in 

Figure 12(f) is almost the same as in (e), except for some residual artifacts in the bladder 

area. Hence, although our assumption is only valid to a certain degree, we think the impact 

of deformation on the resulting scatter estimation is small and acceptable in practice.

Another issue that affects scatter estimation accuracy is the way of imposing STR cutoff. 

There are two STR clamping methods reported in literature, namely a hard-cutoff method 

(Sun and Star-Lack, 2010) and a soft-cutoff method (Zhu et al., 2006). We found that the 
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soft-cutoff method yields better image quality. For instance, Figure 3(a) is a measured 

projection for the pelvis phantom case along a lateral projection direction. The pixel values 

behind the bony structures, especially the femoral heads, are substantially lower than those 

in other areas such as behind soft tissue. Hence, the STR behind the bony structures is 

relatively high. In Figure 3(b), we show a Boolean image of STR value where the value is 

unity when STR is over 0.8 and zero otherwise. Figure 3(c) plots STR profile along the 

dashed line in (b). Not only is the STR high in this area, it is even over unity at some pixels 

due to inaccurately estimated scatter signals. Hence, a threshold is needed to avoid 

unphysical results. The resulting STRs after the two cutoff methods, as well as the 

corresponding primary signals, are shown in Figure 3(c) and (d), respectively. Because of 

the absence of ground truth, it is difficult to justify which estimated primary signal is more 

accurate. However, after CBCT image reconstruction, the one with the soft cutoff method 

has much fewer streak artifacts. This can probably be ascribed to the slightly different 

transition from the bone to the tissue region in the estimated primary signal, as indicated by 

the arrows in (d). In fact, the total signal changes dramatically when crossing the boundary 

of this bony structure region. If a constant STR cutoff were used, a sharp jump would appear 

in the estimated scatter. This is probably incorrect, because the scatter signal slowly varies 

along the spatial direction.

Rigid registration with only translation was used in our study due to its high efficiency. 

However, it should include rotational degrees of freedom in general. To investigate the 

necessity of rotations, we have compared scatter calculation results under rigid registrations 

with and without rotations. The rigid registration with rotations was achieved using 3D 

Slicer (version 4.2.2-1)(Fedorov et al., 2012). Average difference for calculated scatter 

signals was quite small, ~0.2% for all our tested cases. The impacts on corrected CBCT 

images were negligible. This is because the patient CBCT was acquired after the patient was 

carefully set up prior to a radiotherapy treatment and rotation was usually quite small. 

Regarding computation time with rotation degrees of freedom, it was ~10 sec longer. This 

prolonged the whole process of our method. However, we also noticed that recent advances 

in GPU computing shorten the computation time to ~1.5 s (Ledig and Chefdhotel, 2010). In 

summary, although rigid registration with rotational degrees of freedom is probably not 

needed for radiotherapy, it may be necessary for general applications. In that case, we can 

implement the advanced rigid-registration tool to maintain both accuracy and efficiency.

We would also like to point out that, at present, standard clinical scatter estimation and 

removal methods are already capable of eliminating scatter artifacts to a satisfactory degree 

in most cases. For instance, high-quality CBCT images can be produced in the OBI system 

of the Varian TrueBeam linear accelerator. Yet, in some challenging situations, e.g. the lung 

area, the efficacy of the clinical standard method is still limited, primarily due to the highly 

heterogeneous structure, which is quite different from the setup, under which this method 

was derived (Sun and Star-Lack, 2010). We show in Figure 14 a lung patient case in our 

clinic. After scatter correction by the commercial system, the overall image intensity 

accuracy is improved. However, obvious streaks and residue artifacts still exist. With our 

method, we are able to eliminate some of the streak artifacts and obtain improved image 

quality. There are still some dark areas in the image due to the residual scatter signal. Note 
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that there are some other artifacts in the image, e.g. streaks, which are actually caused by 

respiratory motion. These artifacts cannot be addressed through a scatter correction process.

It is also noted that noise is amplified in the projection images after scatter correction, 

resulting in an increased noise level in the projection domain and in the reconstructed image 

domain (Zhu et al., 2009a). Hence, a certain type of denoising algorithm is needed. 

Projection image denoising is another important topic, and there have been a lot of 

algorithms developed in the community. In this study, we did not implement a noise 

reduction method, as it is beyond the scope of this manuscript. However, such a step is 

necessary for routine clinical application.
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Figure 1. 
Work flow of the CBCT scatter correction process with MC simulations. Shaded boxes are 

key operations, whereas dashed boxes are data sets in this process.
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Figure 2. 
Illustration of minimum projection number analysis for MC simulations.
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Figure 3. 
a)–c) Relationship between fmea and fcal for downsampling with an area of 1 × 1 (no 

downsampling), 4 × 4, and 16 × 16 pixels. c) R value for the linear fitting.
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Figure 4. 
Function form for the clipping function of STR in scatter subtraction.
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Figure 5. 
Scatter estimation error and computation time as a function of photon histories number for 

(a) full-fan and (b) half-fan cases.

Xu et al. Page 22

Phys Med Biol. Author manuscript; available in PMC 2016 May 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
Scatter estimation error and computation time as a function of downsampling times for (a) 

full-fan and (b) half-fan cases.
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Figure 7. 
Histogram of minimum number of views to yield sufficient accuracy after interpolation for 

(a) full-fan and (b) half-fan cases.
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Figure 8. 
Scatter estimation error and computation time as a function of view number for (a) full-fan 

and (b) half-fan cases.
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Figure 9. 
(a) Ground truth image. (b) Registered planning CT image. (c) CBCT before scatter 

correction. (d) CBCT after scatter correction. Display window [−125, 225] HU. (e) Profiles 

on the blue line in (a)~(d).
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Figure 10. 
(a) Ground truth image. (b) Registered planning CT image. (c) CBCT before scatter 

correction. (d) CBCT after scatter correction. Display window [−125, 225] HU. (e) Profiles 

on the blue line in (a)~(d).
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Figure 11. 
From top to bottom: planning CT image, CBCT image before scatter correction, CBCT 

image after scatter correction, and profiles along the horizontal line in the first row. The 

three columns are for pelvis phantom experiment, full-fan clinical case, and half-fan clinical 

case, respectively. Display windows are [−500, 500] HU, [−300, 300] HU, and [−400, 300] 

HU for the three columns.
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Figure 12. 
(a)–(c) Three CT images taken at planning, Fx 21, and Fx 43. (d) CBCT image before 

scatter correction. (e) CBCT image after scatter correction with CT at Fx 21. (f) CBCT 

image after scatter correction with CT at Fx 43. Display window [−125 225] HU. (g) 

Profiles on the dash line in the image.
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Figure 13. 
(a) A measured projection image. (b) A Boolean image showing STR>0.8 (white) or 

STR<0.8 (black). (c) Profile of STR along the dash line in (b). (d) Corrected primary signal 

along the dash line. (e) CBCT image after scatter correction with hard cutoff mapping. (f) 

CBCT image after scatter correction with soft cutoff mapping. Display window [−500 500] 

HU.
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Figure 14. 
(a) Reconstructed image without scatter correction. (b) CBCT reconstructed by the OBI 

system in Varian TrueBeam. (c) CBCT reconstructed by our proposed method. Display 

window [−300 300] HU.
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Table 1

Errors of HU value before/after scatter correction for the simulation studies.

emax (HU) e95% (HU) ē (HU)

Full-fan 456/37 136/10 44/3

Half-fan 584/128 386/34 78/9
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