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Abstract

Gene expression changes during aging are partly conserved across species, and suggest that 

oxidative stress, inflammation and proteotoxicity result from mitochondrial malfunction and 

abnormal mitochondrial-nuclear signaling. Mitochondrial maintenance failure may result from 

trade-offs between mitochondrial turnover versus growth and reproduction, sexual antagonistic 

pleiotropy and genetic conflicts resulting from uni-parental mitochondrial transmission, as well as 

mitochondrial and nuclear mutations and loss of epigenetic regulation. Aging phenotypes and 

interventions are often sex-specific, indicating that both male and female sexual differentiation 

promote mitochondrial failure and aging. Studies in mammals and invertebrates implicate 

autophagy, apoptosis, AKT, PARP, p53 and FOXO in mediating sex-specific differences in stress 

resistance and aging. The data support a model where the genes Sxl in Drosophila, sdc-2 in C. 

elegans, and Xist in mammals regulate mitochondrial maintenance across generations and in 

aging. Several interventions that increase life span cause a mitochondrial unfolded protein 

response (UPRmt), and UPRmt is also observed during normal aging, indicating hormesis. The 

UPRmt may increase life span by stimulating mitochondrial turnover through autophagy, and/or 

by inhibiting the production of hormones and toxic metabolites. The data suggest that metazoan 

life span interventions may act through a common hormesis mechanism involving liver UPRmt, 

mitochondrial maintenance and sexual differentiation.
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Mitochondrial maintenance failure and aging

Mitochondrial malfunction is implicated in aging across species, including yeast [1–5] C. 

elegans [6, 7], Drosophila [8–10] and mammals [11, 12], indicating possible conservation of 
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basic mechanisms. Several non-exclusive and potentially synergistic mechanisms may 

contribute to the observed mitochondrial failure during aging (Figure 1). Evolutionary 

theory predicts trade-offs between reproduction and somatic maintenance required for 

optimal life span [13]. Increasing evidence suggests that growth and reproduction may occur 

at the expense of mitochondrial turnover, leading to longer-lived and more damage-prone 

mitochondria. For example, down-regulation of mitochondrial gene expression is observed 

in several species at the end of developmental growth and during adult aging [14–17]. 

Similarly, sex-specific selective pressures, including ones resulting from uni-parental 

inheritance of the mitochondria, may lead to sexual antagonistic pleiotropy (SAP) of genes 

with mitochondrial functions [18]. Finally, inherited mitochondrial mutations 

(heteroplasmy) and new mitochondrial mutations arising during development and aging may 

synergize with these effects to cause mitochondrial maintenance failure during aging.

Structural and functional abnormalities of mitochondria with age

Pioneering studies beginning in the 1970’s described the accumulation of mitochondria with 

abnormal structure in various tissues of Drosophila and other dipterans, including gut, flight 

muscle and fat-body [19–24]. Electron microscopy revealed abnormalities including a 

swollen appearance, inclusions, and disordered membrane structures. The abnormal 

mitochondria of flight muscle often have a characteristic rearrangement of the internal 

membrane described as a “whorl” or “swirl” [25, 26]. When mitochondria are isolated from 

tissues of aged flies, they exhibit functional abnormalities including decreased electron 

transport chain (ETC) enzyme activity and increased production of reactive oxygen species 

(ROS) [8, 27–30]. Mitochondria in tissues of mammals [31–33] and C. elegans [34, 35] 

show a similar range of structural and functional abnormalities with age. Consistent with a 

loss of normal mitochondrial function, human aging is associated with decreased metabolic 

rate and often with a disruption of energy homeostasis called metabolic syndrome [36, 37].

Mitochondrial dynamics and mitochondrial maintenance

Mitochondria are normally degraded in cells through selective macroautophagy (also called 

autophagy or mitophagy), involving engulfment by the autophagosome followed by fusion 

with the lysosome and degradation of the mitochondrial material (diagrammed in Figure 2) 

[38]. Decreased membrane potential may be one signal that marks mitochondria for 

degradation [39]. A decline in this process with age and the accumulation of partly-degraded 

mitochondrial material is implicated in the production of age pigment, or lipofuscin [40]. 

Mitochondria normally undergo dynamic changes in structure mediated by fission and 

fusion events [41], and a decrease in fission has been suggested as one mechanism for 

increased mitochondrial size with age in certain tissues. Fission is also implicated in normal 

mitophagy, in part by generating mitochondria of appropriate size for engulfment by the 

autophagosome. The importance of fission and fusion events in mitochondrial maintenance 

during aging is underscored by the identification of mutations in genes that control these 

pathways, including PARKIN, that predispose human patients to age-related 

neurodegenerative disease [39]. The PARKIN pathway promotes mitochondrial turnover by 

autophagy, and in Drosophila this pathway has been shown to also promote selective 

turnover of ETC components [42]. Notably, over-expression of Parkin in adult female 
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Drosophila is reported to alter mitochondrial dynamics during aging and to increase life span 

[43].

Gene expression changes during aging indicate mitochondrial 

maintenance failure

The patterns of gene expression observed during aging can vary with species, tissue and sex, 

however several conserved themes have emerged that are each consistent with a failure in 

mitochondrial maintenance (Figure 1). Genome-wide analysis of gene expression patterns in 

adult male Drosophila revealed that aging is characterized by down-regulation of 

mitochondrial genes and up-regulation of genes associated with innate-immune response, 

oxidative stress response, proteotoxicity response, and purine biosynthesis [14, 17]. These 

same patterns have been found in aging of one or more mammalian tissues [16, 44, 45]. Up-

regulated stress response and down-regulated metabolism genes have also been identified in 

certain studies of C. elegans aging [46]. The down-regulation of mitochondrial genes is 

expected to reduce mitochondrial turnover, resulting in longer-lived and more damage-prone 

mitochondria, consistent with the structural and functional abnormalities discussed above. 

Mitochondria are the main source of ROS in the cell, and compromised mitochondrial 

function during aging is associated with increased production of ROS [47]. The up-

regulation of innate immune response genes may result from the pro-inflammatory effects of 

mitochondrial DNA fragments, mitochondrial formyl peptides and ROS [14, 48, 49]; in 

Drosophila, increased microbial load also contributes to this up-regulation [50]. Reduced 

mitochondrial ATP production is expected to result in decreased rates of cellular protein 

synthesis and turnover, and the longer-lived proteins will be more susceptible to damage, in 

particular due to increased production of ROS. Consistent with this scenario is the up-

regulated basal expression of the proteotoxicity response, including heat shock proteins 

(Hsps) targeted to the cytoplasm and mitochondria [51–56]. Gene expression changes during 

aging are also sexually-dimorphic, for example, in the vertebrate liver [57], brain [45, 58] 

and heart [59, 60], where males tend to show relatively greater reduction in mitochondrial 

gene expression.

Mis-regulated apoptosis during aging

Apoptosis (programmed cell death) mechanisms involve regulation by the mitochondria in 

both mammals and invertebrates [61, 62]. Mis-regulated apoptosis is observed during aging 

and is consistent with tissue-specific outcomes for mitochondrial maintenance failure [63]. 

For example, mitochondrial malfunction and apoptotic-like events are implicated in age-

related muscle-wasting (sarcopenia) and neurodegenerative disease in mammals [33, 64]. 

Apoptotic-like events are also associated with aging in Drosophila muscle and fat cells [65]. 

In contrast, a down-regulation of apoptosis is associated with both cell senescence and 

cancer in mammals [66–68] and with tissue over-growth in the aging C. elegans gonad [69].
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Sexual antagonistic pleiotropy (SAP) and consequences of mitochondrial 

uniparental transmission

Aging and aging-associated diseases are hypothesized to result from antagonistic pleiotropy 

of gene function between developmental stages and the sexes [3, 6, 18, 68, 70–77]. 

Antagonistic pleiotropy is when a gene has a beneficial effect during the growth and 

reproductive period, such as increasing reproductive fitness, but is detrimental at later ages 

and contributes to aging. For example, the target-of-rapamycin (TOR) pathway promotes 

growth and can also inhibit autophagy [5, 78–80], making it a candidate for mediating a 

trade-off between growth and mitochondrial maintenance required for longevity (Figure 1). 

Sexual antagonist pleiotropy (SAP) is when a gene responds to sex-specific selective 

pressures, resulting in a benefit for one sex and a detriment for the other sex, or even a 

detriment for both sexes [18, 74, 81–83]. Likely examples of sexual antagonistic pleiotropy 

are the Drosophila sex peptide [84, 85], and pheromones of both Drosophila [86] and C. 

elegans [87, 88], that are produced in one sex but act to reduce life span in the other sex.

Sexual differentiation is controlled by environmental signals and the chromosomal sex of 

the animal, for example, X/X genotype for Drosophila and mammalian females and the C. 

elegans hermaphrodite, hereafter referred to as the C. elegans female (Figure 3) [89–91]. 

The presence of two X chromosomes sets the master regulatory gene for dosage 

compensation (DC) to the “on” state (Sxl in Drosophila, sdc-2 in C. elegans, and Xist in 

mammals) also called the binary “Switch-Gene” [18, 92]. In males, where only one X 

chromosome is present, the Switch-Gene is in the “off” state. Maternal factors provided to 

the zygote from the mother, including mitochondria, combine with chromosomal sex and the 

Switch-Gene on/off state to control sexual differentiation (Figure 3). Female sexual 

differentiation enables preferential transmission of mitochondria to the offspring through the 

oocyte. The extreme bias [93, 94] towards uni-parental transmission of mitochondrial 

genomes may be one force maintaining deleterious alleles in the population that contribute 

to aging, because it creates potentially powerful sex-specific selective pressures (Figure 4) 

[95–97]. Non-exclusive explanations for why mitochondria are preferentially inherited 

through the mother include the avoidance of conflicts between different mitochondrial 

genome alleles in the zygote [98], avoiding damage to the mitochondrial genome that might 

be greater in the more metabolically active sperm [99–101], and the potential to create the 

sexes and promote evolution [18, 102, 103].

The presence of more than one inherited mitochondrial allele (heteroplasmy) has been found 

to be common in Drosophila [94, 104, 105] mouse [98, 106] and humans [107]. 

Heteroplasmy has significant implications for aging, as studies in mouse show that the 

presence of more than one mitochondrial genotype can cause tissue-specific conflicts in 

metabolic regulation that result in deleterious phenotypes [98]. The female germ line has 

been confirmed to be acting as a selective sieve that reduces the transmission of non-optimal 

mitochondrial genomes in both Drosophila [108–110] and vertebrates, including mammals 

[11, 111, 112]. The data from Drosophila suggest that the mitochondria are being selected 

for their relative replication ability within the female germ line cells [108, 113]. Therefore 

natural selection is acting to optimize mitochondrial function both in the female germ-line, 
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where the selective sieve operates, as well as in the female soma, because only viable and 

reproductively successful females will be able to pass on their germ-line mitochondria. The 

female-biased action of mitochondrial selection is expected to allow for accumulation of 

mitochondrial mutations that are relatively deleterious to the male.

Because mitochondrial genes are inherited almost exclusively from the mother, natural 

selection can only act to optimize mitochondrial gene function and nuclear-mitochondrial 

gene interactions in females (Figure 4). This is expected to lead to mitochondrial genome 

function that is optimized for the female and less optimal for the male; a situation sometimes 

called “mother’s curse” [76, 93, 114]. Indeed, recent experiments in Drosophila support the 

existence of a load of mitochondrial mutations that preferentially promote aging in males 

[109]. Because natural selection cannot act to optimize mitochondrial gene function for the 

male, the expectation is that natural selection will act on nuclear genes in the male, in 

particular nuclear mitochondrial genes, to select for alleles that can compensate for the non-

optimal mitochondrial function (Figure 4). In turn, in the next generation, the female will 

inherit these nuclear alleles that are likely to be non-optimal for female physiology and 

female nuclear-mitochondrial genetic interactions. This ongoing battle between male and 

female is similar to a “Red Queen” situation [115–117] and may maintain deleterious alleles 

in the population that contribute to aging (sexual antagonistic pleiotropy, or SAP), in 

particular alleles affecting mitochondrial maintenance [18, 118]. In turn this mechanism may 

be beneficial for driving evolution and creating the sexes [18]. These models suggest that 

genes with sex-specific effects on aging should be common, and their functions should 

center on the mitochondria. One consequence of gene alleles exhibiting such SAP may be 

the failure in mitochondrial maintenance discussed above.

Genes with sexual antagonistic pleiotropy (SAP)

The evolutionary models predict that the deleterious effects of many genes will be sex-

biased or sex-specific, and these deleterious effects will be regulated by chromosomal sex 

and sexual differentiation pathways (Figure 1). This prediction is supported by the fact that 

the onset of senescence often correlates with the sexual and reproductive maturation of the 

animal [18, 115, 119, 120]. ROS signaling [121] can promote mammalian cell 

differentiation [122, 123], sexual differentiation in yeasts [124, 125] and reproduction in 

humans [126, 127]. In Drosophila, hydrogen peroxide induces the expression of numerous 

developmental and signaling genes [17]. It is tempting to speculate that reduced 

mitochondrial turnover and moderately increased basal ROS levels could be selected for in 

part because of a benefit for sexual differentiation and reproductive fitness, despite the 

negative consequences for aging.

Genes in several species have been identified that have sex-specific effects on life span 

and/or mitochondrial function indicative of SAP. For example, the Drosophila sex peptide 

and the Drosophila and C. elegans pheromones mentioned above are sex-specific and 

dramatically shorten life span, indicating that the genes that encode these factors exhibit 

SAP. In humans both p53 and MDM2 alleles are reported to have sex-specific effects on 

longevity and cancer rates [128, 129]. Human genome-side association studies have revealed 

sex-specific quantitative trait loci (QTL) that regulate mitochondrial content of blood tissue, 
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including male-specific effects of an allele of mitochondrial ribosomal protein gene 

MRPL37 [130]. In mice with an ETC complex III gene mutation, males have reduced life 

span, whereas females show a subset with increased life span [131]. Drosophila studies have 

identified many QTLs and genes with sex-specific and sexually-antagonistic effects on 

aging and mitochondrial function [73, 110, 132–136]. For example, Drosophila p53 exhibits 

developmental stage-specific and sex-specific effects on adult life span indicative of SAP 

[137], and these effects are modulated in a sex-specific way by foxo [82, 138]. Finally, 

Drosophila p53 dominant mutants have sex-specific effects on life span that are dependent 

upon the environment [137, 139], and recent studies show nucleus-by-mitochondria-by-

environment genetic effects on Drosophila life span [140].

Sex-specific regulation of p53 and foxo

Several lines of evidence indicate sex-specific activity of the conserved mitochondrial and 

life span regulators p53 and foxo. It is likely the details of their regulation will differ by 

species, tissue, and environmental condition, however several themes have emerged (Figure 

5). In humans, women are more sensitive to insulin than men with regards to glucose 

metabolism in the muscle and the liver, suggesting that insulin signaling may be greater in 

women than in men [141]. In Drosophila and mice, mutations that disrupt insulin/insulin-

like growth factor 1-like signaling (IIS) increase life span in females to a greater extent than 

in males, suggesting relatively greater activity of IIS in females than in males [18, 39, 142, 

143]. IIS negatively regulates the activity of the conserved transcription factor encoded by 

the foxo gene [144]. Consistent with the idea of relatively lower IIS in Drosophila males, 

several lines of evidence indicate relatively greater foxo protein activity in males (Figure 5). 

Several foxo protein transcriptional targets are expressed at higher levels in Drosophila 

males than in females [138, 145], in a foxo-dependent manner [82, 138]. Recent studies in 

Drosophila and beetles reveal the role of foxo in regulating sex-specific tissue growth and 

plasticity, with relatively greater activity observed in male tissues [146, 147]. In mammals, 

foxo gene family members and p53 interact genetically and regulate common target genes 

[148]. In Drosophila, the foxo gene was found to act preferentially in males to alter the 

effects of p53 on life span [82, 138], consistent with greater foxo activity in males.

Several lines of evidence suggest relatively greater p53 activity in females (Figure 5). In 

Drosophila, p53 limited life span to a greater extent in adult females than in adult males, 

suggesting greater p53 activity in females [137]. Interestingly, p53 also appears to be more 

active in human females as compared to males with regard to tumor suppression [149], and 

to have greater developmental phenotypes in female mice relative to male mice [150]. 

Studies of Drosophila life span reveal gene-by-sex-by-environment interactions for p53 that 

are opposite in male and female [137, 139]. In C. elegans females, p53 can have either 

positive or negative effects on life span depending upon the nature of the intervention [151] 

and the degree of stress [152]. Males were not analyzed, however it seems likely that the 

threshold for p53 positive versus p53 negative effects could differ between the C. elegans 

sexes under appropriate conditions. These studies indicate that SAP is common, including 

conserved regulators of mitochondrial function and life span such as p53 and foxo, and 

suggest that greater p53 activity in females may be common to Drosophila, mice and 

humans.
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In C. elegans, the DC pathway was found to negatively regulate IIS signaling during 

development in females, in part by reducing expression of the X-linked gene akt-2 (Figure 5, 

indicated in green). This result is consistent with the idea of the Switch-Gene on/off state 

regulating DC and IIS, however, it would seem to be more consistent with decreased IIS in 

females relative to males. One possible explanation might be that a partial repression of 

akt-2 and other X-linked genes in adults (i.e., escape from X-inactivation) might contribute 

to relatively greater AKT and IIS activity in females. Alternatively it might be that 

dimorphism in IIS signaling has a different pattern in C. elegans. Consistent with this latter 

possibility, in C. elegans, males are the longer-lived sex, and this was dependent upon foxo 

but not on daf-2 (the insulin-like receptor homolog) [153, 154]. In either event, the studies 

indicate that sexual dimorphism and SAP in life span regulation is common across species, 

including conserved regulators of mitochondrial function such as IIS, foxo and p53.

Mitochondrial mutations during development and aging

Mitochondrial mutations have long been hypothesized to contribute to aging. Because there 

are many copies of the mitochondrial genome per cell, one long-standing question is 

whether a mutation can become sufficiently abundant to have a deleterious effect. Mounting 

evidence indicates that this is often the case. Inherited mitochondrial heteroplasmy and new 

mitochondrial mutations arising during development and aging are implicated in a variety of 

human aging-related diseases [155–157], including Parkinson’s Disease [158], age-related 

macular degeneration [159], and cancer [155, 160]. Tissue-specific selective pressures 

acting on either heteroplasmy or new mutations are hypothesized to cause increased 

abundance of a particular mitochondrial genotype in a cell or tissue relative to surrounding 

cells or tissues, through at least three non-exclusive mechanisms (Figure 6A). (i) Cells can 

favor the replication and/or transmission of one mitochondrial genotype over another during 

cell division, through mechanisms that are not yet entirely clear [41, 157, 161]. (ii) One 

mitochondrial genotype may better favor survival of cells, as is suggested by studies of 

cancer [155, 160, 162]. (iii) One mitochondrial genotype may have an inherent replication 

advantage over another, such as a smaller genome or more active DNA replication origin 

[113, 163]. These mechanisms may cause deleterious mitochondrial alleles to accumulate in 

the cell to the point that they compromise normal cell function and promote aging.

Mitochondrial genomes do not recombine, or recombine at extremely low levels [164]. As a 

consequence, when a mitochondrial genome lineage acquires a new mutation there is no 

way for this mutation to be lost, a phenomenon called “Muller’s ratchet” [116]. Muller’s 

ratchet provides another mechanism for how mitochondrial DNA mutations might 

accumulate to levels sufficient to compromise cell function. Potentially each mitochondrial 

DNA lineage in the cell could accumulate a unique spectrum of mutations, such that no one 

mutation is present at high frequency, but most genomes have at least one or more 

detrimental mutations (Figure 6B). Because the mitochondrial genome contains a small 

number of genes encoding the ETC and translation components, these different mutations 

might often affect the same gene and/or the same process.

An increased load of mitochondrial mutations with age has been reported for Drosophila 

[165, 166], C. elegans [167], and mammals [12]. Experiments in mice suggest that most of 

Tower Page 7

Arch Biochem Biophys. Author manuscript; available in PMC 2016 June 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



this load results from expansion of mutations that arose during development, with a more 

minor contribution by new mutations arising during aging [106, 156]. The mitochondrial 

DNA mutator mouse has been particularly useful in investigating these relationships [168]. 

In this mouse the proofreading ability of the mitochondrial DNA polymerase is crippled, 

leading to greatly increased rates of mitochondrial mutation. Using this mouse both inherited 

mitochondrial mutations (heteroplasmy) and somatic mitochondrial mutations have been 

shown to contribute to aging phenotypes [106].

The total abundance of mitochondrial DNA in human tissues is also emerging as a marker 

for metabolic disease [169, 170] and cancer [171, 172], including sex-specific associations 

[173–175]. While there are some conflicting reports and technical issues associated with 

measurement of mitochondrial DNA, the data suggest that mitochondrial DNA copy number 

is mis-regulated in human metabolic disease and cancer, involving increases or decreases in 

abundance of intact genomes, as well as accumulation of damaged and deleted molecules 

[176]. In addition to promoting inflammation [111], mitochondrial DNA fragments are 

emerging as potential mediators of nuclear DNA damage during aging [155, 177, 178].

Sex-specific mitochondrial maintenance and aging

Additional observations support a role for sexual differentiation in contributing to 

mitochondrial maintenance failure during aging. In particular, mitochondrial function and 

mitochondrial regulatory pathways, including autophagy and apoptosis, show sex-specificity 

at the level of animals, tissues and cells. Life span typically differs between males and 

females, for example, human females have greater life expectancy than males [179]. 

Metabolic regulation also differs, for example, men have greater basal metabolic rate, 

whereas women are more sensitive to insulin with regard to glucose metabolism in muscle 

and liver [141]. Aging-associated diseases also show sex bias. For example, men have 

greater cardiovascular disease, cancer and stroke, whereas women have greater autoimmune 

disease and osteoporosis [180–185]. Genetic and environmental life span interventions are 

usually sex-biased in their effects in both invertebrates and mammals [18, 131, 135, 186–

188]. Notably, both dietary restriction and reduced insulin-like signaling cause greater life 

span increase in females in both Drosophila and mice. Experimental studies have begun to 

hint at possible cellular mechanisms underlying sex-dimorphism in stress resistance and 

aging, including sex-specific regulation of autophagy and apoptosis pathways.

Estrogen and testosterone are sex-specific regulators of mammalian stress 

response

Both estrogen receptor (ER) and androgen receptor (AR) are found associated with the 

mammalian mitochondria. Estrogen is most often reported to be anti-apoptotic in both 

muscle and neural tissues upon stress [180, 189]. For example, estrogen is cardioprotective 

in mouse ischemia-reperfusion model in ovariectimized females [190], and can also reduce 

infarct in males [191]. In mouse skeletal muscle cell line subjected to oxidative stress, the 

estrogen receptor is implicated in inhibiting CASPASE 3, as well as activating a p38 

MAPK/PI3K/AKT signaling cascade that prevents BAD activation and apoptosis [189]. In 

neonatal rat cardiomyocytes the protective effect of estrogen was associated with p38beta 
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MAPK activation and phosphorylation of mitochondrial MnSOD [192]. In mice, estrogen 

was found to be protective for female cardiomyocytes in vivo and in vitro through estrogen 

receptor and PI3K-dependent pathways [193]. In cultured adult mouse cardiomyocytes, 

female cells had greater levels of phosphorylated AKT at baseline and in response to stress, 

with consequently reduced apoptosis, perhaps to due to greater abundance of ER-alpha 

[194]. The results for testosterone in heart and muscle cells are more mixed [180]. For 

example, testosterone could decrease infarct in male mice subjected to ischemia-reperfusion 

[195]. Testosterone was also antiapoptotic in mouse skeletal muscle cell line subjected to 

oxidative stress, and the targets for testosterone benefit appeared different from estrogen, 

implicating HSP90 translocation and reduced BAX [196]. In contrast, testosterone was pro-

apoptotic in assays of cultured rat myocytes [180]. One explanation may be that the 

beneficial effects of testosterone are observed preferentially in male cells, such as recently 

shown for rat pancreatic cells [197]. In nervous tissue the effects of testosterone are more 

consistently positive, with implication of MAPK and AKT signaling [189].

Taken together, the data demonstrate that mammalian sex-steroids are powerful regulators 

of stress response at the level of tissues and individual cells. Both estrogen and testosterone 

are implicated in activation of MAPK/PI3K/AKT/TOR signaling pathways (Figure 5, 

indicated in orange) [198–201]. One interpretation is that male and female cells are adapted 

to physiological levels of the corresponding sex-specific hormones for near-optimal stress 

response in the intact animal, and that under specific conditions these hormones can have 

either positive or negative effects [202]. For example, through their ability to promote IIS 

and TOR signaling these mammalian steroids may promote growth and sexual 

differentiation at the expense of mitochondrial turnover and maintenance important for 

longevity (Figures 1, 2, 5) [199, 200]. Notably, circulating steroid hormones are also 

implicated in regulating sex differences in aging in C. elegans and Drosophila [203–205].

Sex-specific autophagy and apoptosis in mammalian cells and tissues

One theme that has emerged is that in mammals female cells are generally more resistant to 

stress than are male cells. This might be related to the better regulation of mitochondrial 

functions predicted by the evolutionary theories discussed above. In vivo and in vitro studies 

have characterized sex-specific differences in stress resistance of specific tissues, including 

the heart and the brain.

The heart and cultured cardiomyocytes show better stress response in mammalian females. 

In humans, women show less apoptosis and less maladaptive remodeling relative to men in 

response to acute coronary ischemia [206]. Under normal conditions men’s hearts have 

increased expression of CARBONIC ANHYDRASE 3, a gene associated with hypertrophy 

and heart failure, and decreased expression of APOJ/CLUSTERIN, an autophagy regulator 

thought to be protective upon inflammatory injury [207]. Studies of human cells and rodent 

models indicate that estrogen is generally protective but may not be responsible for all the 

sex differences in heart stress responses.

Autophagy appears to be important in mediating heart stress response. Most studies indicate 

that autophagy limits myocyte death during acute ischemia-reperfusion and improves 
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subsequent heart function, as shown for mouse myocyctes in vitro and in vivo using 

inhibitors of autophagy pathways [208]. However, certain studies have reported negative 

effects of autophagy [180]. For example, upon ischemia-reperfusion, inhibition of Beclin1 

reduced rat cardiomyocyte cell death [209], and Beclin1 mutant mice had reduced infarct 

[210]. One suggestion is that autophagy may be protective during ischemia but detrimental 

during reperfusion [210]. Autophagy also appears to be important in mediating sex 

difference in heart stress response. In adult mouse heart, fasting caused greater activation of 

AKT and AMPK signaling and greater glycogen accumulation in females than in males, 

consistent with greater autophagy pathway activation upon stress in females [211]. In rat, 

greater basal autophagy markers were observed in male heart, associated with greater 

protein carbonyl content and possibly indicating greater baseline oxidative stress [212]. 

However, in response to acute ischemia-reperfusion, female rat heart showed greater 

autophagy markers than male, associated with smaller infarcts and fewer apoptotic cells 

[213].

Additional tissues show greater resistance to stress in mammalian females. In humans, 

peripheral blood mononuclear cells isolated from women were more resistant to radiation-

induced apoptosis than were those from men [214]. In mice, females were more resistant to 

ischemia in the liver than were males [215], and similarly, rat females were more resistant to 

post-ischemia renal failure than were males [216]. Also, vascular smooth muscle cells 

isolated from male rats preferentially underwent apoptosis in response to UVB stress, 

whereas cells from females exhibited greater autophagy markers and increased survival 

[217].

The brain and cultured neurons show striking differences in stress response between males 

and females (summarized in Figure 7). In rodents, nutrient starvation killed neurons and 

fibroblasts isolated from males to a greater extent than those from females, and the increased 

survival of female neurons was associated with accumulation of triglycerides and lipid 

droplets [218]. Interestingly, inhibiting autophagy rescued male neurons but increased the 

death of male fibroblasts. In mice subjected to moderate hypoxia-ischemia, females were 

more resistant to brain injury, and in neonates, males showed preferential AIF translocation 

whereas the females showed preferential CASPASE 3 activation [219]. Similarly, in rat 

neonates, ischemia caused greater CASPASE 3 activation in female brain relative to males, 

and females had greater basal levels of autophagy markers [220]. Consistent with greater 

stress sensitivity in male brain, a mutation of the mouse Dual endothelin-1/VEGF signal 

peptide-activated receptor (DEspR) caused autophagic neuronal cell death in vivo 

specifically in males, perhaps through altered TOR pathway signaling [221].

Studies of mouse brain ischemia reveal mechanistic differences in neuronal cell death 

between males and females. In females cell death is associated with CYTOCHROME c 

release from mitochondria, and is caspase-dependent, whereas death of male cells is 

associated with AIF release from mitochondria, and is caspase-independent (Figure 7, 

indicated in black) [222]. Moreover, in females PARP is protective, whereas in males cell 

death is induced by PARP [223, 224]. Consistent with this conclusion, in Parp-1 knockout 

mice the infarct in males is reduced whereas in females the infarct is more severe [225–227]. 

Both NAD+ depletion and PAR polymer formation may be toxic events during mouse 
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ischemia [228]. Nicotinamide supplementation blunted the loss of NAD+ levels upon stress, 

and reduced infarct in wild type males, and Parp-1 knockout mice of both sexes, but had no 

effect in wild type females [226], consistent with the negative effect of PARP in males. 

Intriguingly, over-expression of Parp in adult Drosophila nervous tissue decreased life span 

in males and increased life span in females [229], suggesting a possible conservation of 

mechanisms (Figure 7, indicated in orange).

The data indicate that mammalian gonadal sex hormones such as estrogen and testosterone 

play an important role in mediating sex-specific differences in stress resistance and disease 

phenotypes. However, gonadal sex hormones are not required for all the sex differences in 

mammalian cellular stress resistance. In the female mouse brain the X-linked inhibitor of 

apoptosis protein (XIAP) gene showed greater expression at baseline, and greater reduction 

upon ischemia than in males, consistent with preferential activation of CASPASE 3, and 

these differences were independent of the presence of gonads and estrogen supplementation 

[222]. In addition, the differences in rodent brain stress resistance are observed in neonates, 

as well as in cultured cells [230–234]. Sex-specific differences in susceptibility to apoptosis 

were apparent in mouse embryonic cells where female cells were more sensitive to apoptosis 

induced by ethanol and camptothecin [235, 236]. Moreover, in cultured mammalian 

embryos females had better survival in response to heat and oxidative stress, and this 

correlated with increased expression of several X-linked genes. These genes encode 

GLUCOSE-6-PHOSPHATE DEHYDROGENASE (G6PDH), which generates reducing 

equivalents critical for oxidative stress resistance, and XIAP, which inhibits caspase activity 

[237]. These results suggest that there are inherent differences in stress resistance of male 

and female mammalian cells independent of gonadal sex hormones, and that these 

differences correlate with differences in X-linked gene expression. Studies of mice with 

altered sex chromosome content further support this conclusion.

Sex chromosome effects and escape from X-inactivation

Sophisticated manipulation of mouse sex chromosomes combined with optional removal of 

gonads reveals effects of the sex chromosome complement (i.e., number of X chromosomes 

and presence/absence of Y) independent of the gonads and gonadal sex hormones [238]. 

These phenotypes may or may not involve sex-specific hormones produced by tissues other 

than the gonads, such as fat or liver. For example, the X chromosome complement but not 

the Y chromosome had an effect on body weight [238]. Notably, X/X cells had greater 

expression of Akt1, Akt3 and several other genes relative to X/Y cells, and these changes 

were hypothesized to result from escape from X-inactivation and/or effects of sex 

chromosomes titrating chromatin factors away from the autosomes [239]. Strikingly, X/X 

mice were more sensitive to heart ischemia-reperfusion and apoptosis than were X/Y mice, 

(i.e., opposite to the observations in gonad-intact mice). The effect was due to the presence 

of two X chromosomes as opposed to the absence of the Y, and was associated with greater 

expression in the female heart of several genes that escape X-inactivation, including Eif2s3x, 

Kdm6a, Kdm5c, and Usp9x [240]. Eif2s3x encodes a translation initiation factor and Kdm5c 

and Kdm6a encode histone demethylases that could potentially affect expression of 

numerous autosomal genes. Interestingly, Usp9x encodes a ubiquitin-specific protease 

implicated in cell death pathways and negative regulation of mTOR. The different effect of 
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sex chromosome composition in the presence/absence of gonadal sex hormones underscores 

the complexity and compensatory nature of sex-specific factors, consistent with the idea that 

males and females have evolved distinct regulatory networks [238].

Many genes escape from X-inactivation in humans and mice during development and in the 

adult, and the degree of expression depends upon the tissue, the stage of development and 

the age of the animal [241, 242]. Escape from X-inactivation is implicated in disease, 

including cancer and autoimmune disease. In mice, inactivation of Xist in the adult 

hematopoietic system caused cancer and lethality [243]. In humans, escape from X-

inactivation is implicated in increasing expression of O-LINKED N-

ACETYLGLUCOSAMINE TRANSFERASE (OGT) and the CD40 ligand CD40LG. OGT 

is a nutrient-sensitive chromatin modifier with effects on immune function and metabolism 

[244] and CD40LG is an immune signaling molecule [245], and increased expression of 

these genes could conceivably predispose women to autoimmune disorders. Numerous 

genes that regulate autophagy, apoptosis and metabolism are located on the human X 

chromosome and escape from X-inactivation to differing degrees, including G6PD, XIAP 

and LAMP2 [246]. Interestingly, in C. elegans, dosage compensation is required for 

regulation of X-linked regulators of IIS including pdk-1 and akt-2, and for normal dauer 

arrest and longevity [247–249]. The data from mammals indicate that the degree of escape 

from X-inactivation varies between tissues and between individuals for each gene [246].

In summary, the preferential resistance of female mammals to several types of stress is 

recapitulated at the level of cells and tissues, and correlates with sex-specific regulation of 

mitochondrial pathways including autophagy and apoptosis. These results might be 

compatible with the evidence for increased p53 activity in females, in that p53 can positively 

regulate autophagy through transcriptional activation, and can negatively regulate autophagy 

through direct effects [250]. One general theme that emerges is that female cells show 

relatively greater resistance to stress mediated by female-specific hormones and cell-

autonomous effects including X-linked gene activation. The data suggest that females take 

advantage of the presence of two copies of critical X-linked genes, and a female state of 

dynamic DC to achieve expression of these genes across a greater dynamic range than is 

possible in males. This additional level of dynamic X-linked gene expression and regulation 

may allow females to more effectively regulate mitochondrial function and stress resistance. 

At the same time, the variable escape of genes from X-inactivation is implicated in disease, 

including aging-related disease [244].

Hormesis and mitochondrial maintenance failure in aging

Conditioning hormesis refers to the phenomenon where a mild stress treatment protects 

against a subsequent and more severe stress treatment [251]. For example, pre-treatment of 

mammalian cells, Drosophila flies and C. elegans worms with a mild oxidative stress 

protects the cells and animals from the lethal effects of a subsequent and more severe 

oxidative stress [252, 253]. Mild stress treatments including oxidative stress, heat and 

ionizing radiation can also sometimes lead to increased animal life span, a phenomenon also 

referred to as hormesis [254–256]. Hormesis is generally thought to result from the up-

regulation of stress response genes, including proteolytic systems and Hsps [54, 257–260]. 
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Several interventions that can increase life span have been found to involve mitochondrial 

stress. Because mitochondrial malfunction and mitochondrial stress are observed during 

normal aging, these observations suggest a hormesis-type mechanism where mitochondrial 

stress applied early in life protects against mitochondrial stress and failure during aging [9, 

261, 262].

The autophagy/life span paradox

When autophagy is inhibited during animal development there are negative consequences 

for tissue structure and function and the viability of the adult animal [263–265]. In contrast 

the role of autophagy in longevity of the adult animal is less clear. Several interventions that 

can increase life span in adult C. elegans, including dietary restriction, p53 mutation, TOR 

pathway inhibition, germ-line ablation, and mitochondrial gene mutants have been found to 

be dependent upon autophagy, in that coincident inhibition of autophagy prevents the life 

span increase [266–270]. Similarly, interventions that can extend life span in adult 

Drosophila including the TOR pathway inhibitor rapamycin [271] and spermidine [272] 

were reported to require autophagy. These observations indicate that increased autophagy is 

part of the mechanism(s) for increased life span, and by implication, that autophagy might 

be a rate-limiting process for adult longevity. However, when conditional RNAi was used to 

inhibit autophagy in otherwise normal adult C. elegans there was no reduction in life span, 

indicating that autophagy is not normally rate-limiting for adult C. elegans life span [268, 

270]. Similarly, when conditional RNAi was used to inhibit autophagy in adult Drosophila, 

both starvation resistance and immune function were reduced, yet there was no reduction in 

life span, indicating that autophagy is not normally rate-limiting for adult Drosophila life 

span [271, 273]. Over-expression of the Drosophila Atg8a gene in nervous tissue [274] and 

muscle tissue [275] has been reported to increase adult autophagy levels and increase life 

span, however these interventions were not specific to the adult stage, and the life span 

changes might be due to effects in addition to altered adult autophagy. Therefore, the 

paradox is that autophagy is required for many (and possibly all) interventions that increase 

life span in the adult [268], yet autophagy is not normally rate-limiting for adult life span.

One suggestion for how to reconcile these seemingly conflicting observations is that 

increased adult autophagy is not sufficient for life span extension unless accompanied by up-

regulation of biosynthetic pathway(s) to direct the appropriate utilization of the liberated 

materials [270]. This would imply that under normal conditions some pathway other than 

autophagy is rate-limiting for adult life span, possibly a biosynthetic pathway such as purine 

biosynthesis or mitochondrial biogenesis. An alterative explanation is that autophagy might 

be toxic in the oldest animals, such as part of an autophagic cell death pathway. Intriguingly, 

inhibition of Atg7 by RNAi in adult fly epidermis delayed aging-related changes [276], 

suggesting that autophagy might contribute to aging of this tissue. Autophagy is also 

implicated in neuronal cell death during aging [277]. In this scenario the acute activation of 

autophagy earlier in adult life is beneficial through a hormesis-type mechanism that dis-

favors subsequent autophagic cell death during aging, perhaps through a mechanism such as 

selective degradation of non-optimal mitochondrial genomes [278] (Figure 2), even though 

these genomes are not yet life span-limiting. Finally, it is conceivable that inducing 

autophagy in a tissue where it is not life span-limiting and where RNAi is effective, could 
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send a signal to induce autophagy in a tissue where autophagy is life span-limiting but RNAi 

is not effective, such as certain neurons [279, 280]. Continued investigation of the 

relationship between tissue-specific autophagy regulation, hormesis and life span will be an 

important area for future research.

The mitochondrial stress response and unfolded protein response (UPRmt)

A stress response in the mitochondria involving a retrograde signal to the nucleus was 

characterized in yeast involving activation of the RTG transcription factors and induction of 

genes in the glutamate biosynthetic pathway [4, 5]. As the source of nitrogen for 

biosynthetic pathways, maintenance of glutamate levels appears critical to maintain viability 

in respiration-deficient cells. Retrograde stress responses have since been characterized for 

Drosophila, mammals and C. elegans [281, 282]. The metazoan mitochondrial stress 

response is characterized by induction of specific Hsp genes in the nucleus and the targeting 

of the Hsps to the mitochondria, and has several links to mitochondrial maintenance failure 

during aging. For simplicity all mitochondrial stress responses resulting in the induction of 

nuclear Hsp genes and the targeting of the Hsps to the mitochondria are referred to here as 

the mitochondrial unfolded protein response (UPRmt), however, as discussed below, there 

appears to be more than one type of UPRmt.

The Drosophila small Hsp called Hsp22 is a member of the alpha-crystallin family found in 

all metazoans [54, 55]. Drosophila Hsp22 is induced in response to heat stress and oxidative 

stress [14], and is targeted to the mitochondrial matrix [283], indicating a UPRmt. Hsp22 is 

also up-regulated during normal adult aging, and shows one of the largest aging-related 

increases known for a eukaryotic protein (>150 fold) [51, 52]. When Drosophila strains were 

genetically selected for increased life span, they were found to show increased Hsp22 

expression during the first half of adult life, suggesting that Hsp22 in young flies might be 

beneficial for life span [284], possibly through a hormesis mechanism. Consistent with this 

idea, experimentally up-regulated expression of Hsp22 is reported to increase life span 

[285]. In contrast, high-level over-expression of Hsp22, particularly at late ages, may be 

toxic [286], and the time course of Hsp22 induction in aging flies is a biomarker of 

remaining life span [287].

The Drosophila mitochondrial ribosomal protein S12 is encoded by the gene tko, and is 

required for translation in the mitochondria [288]. A partial-loss-function mutation 

(tko[25t]) causes disrupted mitochondrial ribosomal structure and ETC deficiency, and a 

dramatic up-regulation of Hsp22 [289]. These studies identify Hsp22 as a robust marker of 

mitochondrial stress and aging in Drosophila, and suggest that Hsp22 is induced in response 

to UPRmt. A UPRmt has been characterized in mammalian cells [290], C. elegans [291, 

292] and Drosophila [278, 293] involving up-regulated expression of mitochondrial Hsp60 

and mitochondrial Hsp70, and in C. elegans the retrograde signal was shown to require the 

signaling gene ubl-5. Based on the similarities, the induction of Drosophila Hsp22 by 

mitochondrial protein folding disruption and by aging is hereafter referred to as the UPRmt, 

similar to the UPRmt characterized by induction of mitochondrial Hsp60 and mitochondrial 

Hsp70, however it remains possible there is more than one UPRmt pathway for 

mitochondrial Hsp induction.
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The Drosophila protein Ref(2)P is the homolog of mammalian p62, a conserved protein 

implicated in marking mitochondria with UPRmt for autophagy [278, 294–297]. Drosophila 

Ref(2)P is induced in response to stresses that cause UPRmt, and is also induced during 

normal aging, consistent with an aging-associated UPRmt [9, 14, 17, 294, 298, 299].

In Drosophila muscle tissue, the over-expression of foxo, the IIS inhibitor Pten, and the foxo 

target 4E-BP could each stimulate autophagy, suggesting that reduced IIS and consequent 

foxo protein activation may normally stimulate autophagy [298]. In C. elegans, reduced IIS 

and FOXO activation cause up-regulated expression of mitochondrial MnSOD, and a 

retrograde ROS signal is implicated in this response, sometimes called “mitohormesis” [262, 

300]. Some evidence indicates that mitohormesis does not involve the UPRmt [301]. 

However, given that the mitohormesis response induces mitochondrial MnSOD, and that 

over-expression of mitochondrial MnSOD can induce the UPRmt and increase life span in 

both Drosophila [302, 303] and C. elegans [304], it is tempting to speculate that these 

mitochondrial stress responses may be related. Life span extension in C. elegans can also be 

induced by paraquat and this involves a retrograde ROS signal that requires a mitochondrial 

MnSOD as well as the conserved caspase-dependent intrinsic apoptosis pathway [305]. This 

caspase-dependent ROS signaling is also proposed to be distinct from the UPRmt [306]. 

Therefore there may be a life span-extending mechanism involving a retrograde ROS signal 

that is distinct from the UPRmt, however, because both ROS and the UPRmt are up-

regulated during normal aging, each of these life span-extending interventions may be 

examples of hormesis [9].

In support of the idea of more than one mitochondrial stress response pathway that can 

increase life span, certain factors required for induction of the UPRmt in C. elegans are 

specific for the particular type of mitochondrial stress [307–311]. Moreover, induction of a 

C. elegans UPRmt using constitutively active alleles of the transcription factor ATFS-1 

failed to increase life span, indicating that not all UPRmt can increase life span [312]. These 

results support the idea that there is more than one type of retrograde mitochondrial stress 

signal that can increase life span, and the beneficial effects may be limited to specific 

conditions such as the nature of the stress, and the age and sex of the animal.

Recently numerous life-span extending interventions have been found to be associated with 

and/or require the UPRmt. In both Drosophila and C. elegans, RNAi inhibition of certain 

genes encoding ETC components can increase life span [7, 313–315]. This result was 

initially interpreted to suggest that life span increase might be due to decreased metabolic 

activity. However, subsequent analysis in C. elegans revealed that this intervention induces 

the UPRmt and requires the activity of ubl-5 for life span increase [313]. In both Drosophila 

and C. elegans, over-expression of the mitochondrial enzyme MnSOD can increase life 

span, and this was found to cause up-regulated expression of mitochondrial Hsps associated 

with the UPRmt including Hsp22 and Hsp60 [303, 304, 316]. RNAi knockdown of ETC 

components in the Drosophila muscle tissue induced the UPRmt and increased life span and 

muscle function with age, and coincident knockdown of UPRmt genes (Hsp60C or Clpx) or 

autophagy genes blocked the life span increase [317]. Notably, the UPRmt in the Drosophila 

muscle caused expression and secretion of ImpL2 (an insulin-binding protein homolog), and 

this was required for life span extension [317], indicating that signaling to some other tissue 
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is required for increased life span. ImpL2 overexpression increases life span suggesting a 

mechanism of reduced IIS [318]. In mice a genome-wide association study of life span 

implicated the mitochondrial ribosomal protein S5 gene (Mrps5), and Mrps5 gene 

expression levels were negatively correlated with mouse strain life span [261]. Moreover, 

analysis in C. elegans confirmed that knockdown of the homologous mitochondrial 

ribosomal subunit gene caused the UPRmt and a life span increase dependent upon ubl-5. 

Experiments in C. elegans also implicate the UPRmt in the life span extending effects of the 

drugs rapamycin and resveratrol as well as manipulation of NAD(+) levels and SIRTUIN 

activity [261, 319]. Finally, several additional interventions reported to increase mouse life 

span, including mutations of ETC components p66SHC [320] and SURF1 [321, 322], and 

ectopic targeting of cytoplasmic catalase to the mitochondria [323], may be causing protein 

folding stress in the mitochondria and a beneficial UPRmt.

Dynamic interactions between mitochondria and nuclear chromatin state

In further support of a hormesis model, it is noteworthy that most life span interventions 

involve a retrograde mitochondrial-to-nuclear signal that is up-regulated or altered during 

normal aging: UPRmt, ROS, and purine metabolism (Figure 8). Basal levels of UPRmt 

signaling may be part of the normal regulation of mitochondrial turnover [41, 317], and 

studies indicate increased UPRmt during normal aging [9, 14, 17, 298, 316]. Similarly, 

retrograde ROS signaling is implicated in regulating normal metabolic cycles [324] and 

mitochondrial turnover [41], and extensive literature documents increased ROS with aging 

[47]. Finally, purines including ATP and NADH are important retrograde signals for 

circadian gene expression [324, 325]; Drosophila studies implicate nucleotide levels in 

compensating for mitochondrial malfunction [293], and all the genes of the purine 

biosynthetic pathway are up-regulated during normal aging [14, 17]. These cyclical 

retrograde signals generated by mitochondrial metabolism are thought to be involved in the 

regulation of dynamic chromatin states in the nucleus [324–326], and this may include DC 

and X-linked gene expression (Figure 8). Consistent with this idea, in C. elegans, TOR 

signaling has recently been found to regulate DC [249], and in turn DC has been found to 

regulate IIS through alterations in X-linked gene expression [247].

Autophagy gene expression and the autophagy pathway are circadian-regulated in human 

heart [327], liver [328], skeletal muscle [329], and brain [330], and in the metabolic rhythms 

of yeast [331]. The Sirtuins are conserved NAD-dependent protein deacetylases that act in 

the nucleus to regulate chromatin state and circadian gene expression [325]. Interestingly, 

both ER-alpha and the Sirtuin SIRT3 have been implicated in mediating a retrograde UPRmt 

signal in human breast cancer cells [332]. In C. elegans, the Sirtuin SIR-2.1 and NAD were 

found to promote longevity by inducing a favorable UPRmt [319]. By responding to 

mitochondrial signals including NAD, ROS and UPRmt the Sirtuins may regulate circadian 

rhythms of autophagy to promote optimal mitochondrial turnover and homeostasis, to the 

benefit of longevity [333].
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Tissue-specific and cell-specific consequences of mitochondrial failure in 

aging

Recent studies support the conclusion that mitochondrial maintenance failure is a common 

feature of aging, and has tissue-specific and cell-specific phenotypes. Aging phenotypes 

vary between individuals and between different tissues in the same animal in Drosophila, 

mammals and C. elegans with regard to tissue deterioration and changes in gene expression 

[51, 334–337]. Recently the induction of Hsp22 during aging in Drosophila oenocytes was 

found to vary dramatically between different cells, and between different developmental cell 

lineages. These variegated patterns suggest a heritable event during developmental cell 

divisions that predisposes a particular cell lineage to more rapid aging-associated UPRmt, 

such as possibly a mitochondrial mutation [316]. Oxidative stress is associated with aging in 

multiple tissues [47], for example mammalian skeletal muscle [338], and flight muscle in 

Drosophila [51, 339], whereas reductive stress is implicated in inherited cardiomyopathies 

involving mutations in small Hsps and potentially in ischemia [340]. The aging-like 

phenotypes of the mitochondrial mutator mouse support a causative role for mitochondrial 

mutations in aging, however previously the phenotypes identified did not always indicate 

increased oxidative stress [341–343], which is typically associated with mammalian aging. 

Recent results suggest that the consequences of the mitochondrial mutations are tissue-

specific and that indeed the mutator mouse has increased markers of oxidative damage in 

muscle tissue [344, 345].

The liver may be a particularly important target tissue for life span interventions, in 

particular the UPRmt [9, 346]. In Drosophila both MnSOD over-expression and Hsp22 

over-expression caused up-regulation of Hsp22 preferentially in the oenocytes [316], which 

are the Drosophila liver-like cells [347–349]. In C. elegans life span extension required 

UPRmt in the gut [313], which is thought to be a liver-like tissue. Finally, in mammals, the 

liver mitochondria exhibit characteristic changes in response to DR [350], and a hepatocyte 

cell line was particularly sensitive to induction of UPRmt [261]. As a central regulator of 

lipid metabolism, liver may favor life span by generating and mobilizing fat reserves that 

favor long-term survival [269]. A related possibility is that liver limits life span through the 

production of hormones and toxic metabolites (Figure 2). Finally, liver may be especially 

sensitive to mis-regulation of mitochondria and autophagy during aging [328, 346]. For 

example, accumulation of age pigment is observed in the mammalian liver as well as in the 

Drosophila oenocytes [316, 351–353]. Further investigation of tissue-specific, cell-lineage 

specific, and cell-specific causes and outcomes for mitochondrial failure during aging 

should be an important area for future research.

A common mechanism for metazoan life span interventions?

Because the UPRmt and autophagy are implicated in the mechanism of several genetic and 

pharmacologic life span interventions, and because the UPRmt is also observed during 

normal aging, it suggests a possible conserved hormesis mechanism. The common result 

may be increased autophagy and the breakdown and replacement of abnormal mitochondria, 

including the preferential destruction of mutated mitochondrial genomes. The related 

possibility is that the UPRmt reduces the production of one or more hormones or toxic 
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metabolites by the liver mitochondria. The hormones might promote sexual differentiation 

and reproduction at the expense of longevity (Figures 1, 2).

Extensive data indicates that hormones that promote sexual differentiation can decrease life 

span. IIS shortens life span and promotes sexual differentiation in both invertebrates and 

mammals [144, 354–356] [120, 357–360], including the production of sex-specific 

hydrocarbons by the Drosophila liver-like cells [361]. Ample precedent for the negative 

effects of hormones comes from the fact that factors produced by the gonads can shorten life 

span in both C. elegans [362] and Drosophila [363, 364]. The Drosophila steroid hormone 

ecdysone and the terpene hydrocarbon hormone juvenile-hormone promote growth and 

sexual differentiation and also decrease life span [203, 365–367]. The Drosophila gene 

takeout encodes a lipophilic hormone-binding protein, and overexpression of takeout was 

reported to reduce sex-specific behaviors and increase life span [368], consistent with a 

negative effect of hormones on life span.

Not all hormones decrease life span. Hormones can sometimes inhibit sexual differentiation 

and promote life span, typically by opposing the effects of other hormones. For example, in 

C. elegans, the bile-acid-like steroid hormone dafachronic acid can either positively or 

negatively regulate life span depending on genetic background, dietary environment and 

signaling state of the animal [369–373]. In mice, fasting causes the liver to produce 

Fibroblast growth factor-21, which in turn can inhibit GH/IIS signaling, decrease 

reproduction [374] and increase life span [375]. In Drosophila, the neuropeptide 

adipokinetic hormone is a Drosophila equivalent of glucagon that acts in opposition to IIS. 

Adipokinetic hormone promotes mobilization of lipid stores and is reported to increase life 

span [376–378].

Several observations are consistent with a model where metazoan life span interventions act 

by reducing the production of sexual-differentiation hormones and toxic sex-specific 

metabolites by the mitochondria. The mitochondria are essential for the production of 

steroid hormones [379]. By producing hormones that promote sexual differentiation, the 

mitochondria in the liver-like cells and gonads could ultimately lead to their own demise by 

causing trade-offs and SAP throughout the tissues of the body. Notably, in C. elegans, 

inhibiting mitochondrial function early in life was beneficial [380, 381], whereas inhibiting 

mitochondrial function later in life was not, consistent with the possibility that mitochondria 

produce compounds that ultimately lead to their own demise. The Drosophila mitochondrial 

ribosomal protein S12 gene mutation tko not only causes UPRmt, but also reduces 

expression of sex-specific genes and sex-specific behaviors [289], consistent with a role for 

the mitochondria in promoting adult sexual differentiation.

Increasing evidence implicates liver-like cells as an important source of life-span limiting 

sexual-differentiation hormones and toxic sex-specific metabolites. Increased life span in the 

Ames dwarf mouse strain is associated with loss of sex-dimorphic gene expression in the 

liver [382], indicating reduced sex-specific liver metabolism. In Drosophila, up-regulation of 

MnSOD in young animals can extend fly life span, and also induces UPRmt markers and 

reduces the accumulation of age pigment in the liver-like oenocytes, suggesting reduced or 

altered oenocyte metabolism [316]. The oenocytes also produce sex-specific hydrocarbons 
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that mark fly sexual identity [348, 349, 361] and pheromones that reduce fly life span [86], 

and it is likely that production of these compounds is also reduced by the UPRmt.

In conclusion, it can be argued that most of the life span-extending interventions in 

metazoans can be interpreted in terms of a mechanism involving hormesis, and in particular 

the liver UPRmt. Non-exclusive possibilities for the mechanism of increased life span 

include production of new and better-functioning mitochondria, altered DC, and the reduced 

production of hormones and toxic metabolites.

Implications for sex-specific interventions in human aging and disease

The increasing understanding of mechanisms for sex-dimorphic stress responses and 

mitochondrial maintenance may lead to improved interventions for human age-related 

diseases based on sex. For example, diabetes and metabolic syndrome increase the risk for 

heart attack to a greater extent in women than in men [383], underscoring the importance of 

dealing with these issues in female heart disease [384]. Sex-specific steroids may decrease 

stroke incidence in the corresponding sex, and possible sex-specific interventions are 

currently under study [185, 385]. Sex-dimorphic regulation of human immune response 

includes greater regulation by the IFNy cytokine in males and greater regulation by the IL6 

cytokine in females [386–388], suggesting possible sex-specific targets for interventions in 

immune disorders and the inflammation associated with aging [389, 390]. Drugs currently 

used to treat heart disease have different efficacy and side effects in women compared to 

men, perhaps related to the sex-dimorphism in regulation of autophagy and apoptosis 

discussed above, and this makes sex an important consideration when designing treatment 

regimens [391]. The NIH has recently strengthened rules for including both sexes in 

biomedical research [392]. It appears likely that our increasing understanding of sex-specific 

regulation of stress responses and mitochondrial maintenance will continue to lead to 

improved interventions in human aging and disease.
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Highlights

Gene expression changes during aging indicate mitochondrial maintenance failure

Sexual differentiation may promote mitochondrial maintenance failure during aging

Sexual differentiation, autophagy and dosage compensation regulate stress resistance, 

mitochondrial maintenance and aging

Life span interventions in metazoans may involve hormesis and inhibition of sexual 

differentiation by liver UPRmt
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Figure 1. 
Model for aging gene expression patterns. Chromosomal sex and sexual differentiation 

pathways (Sex), in concert with insulin/IGF1-like signaling (IIS) and Target-of-Rapamycin 

(TOR) pathways, promote growth, sexual differentiation and reproduction at the expense of 

costly mitochondrial gene expression and turnover. AP, antagonistic pleiotropy; SAP, sexual 

antagonistic pleiotropy. Reduced mitochondrial turnover leads to abnormal mitochondria, 

the UPRmt, and the stress-response gene expression patterns that characterize aging 

(indicated in red). Mitochondrial mutations and heteroplasmy synergize with these effects to 

produce abnormal mitochondria during aging. Mito, mitochondria. AMP, anti-microbial 

peptide. Gst, Glutathione-S-transferase. Hsp, heat shock protein. HSF, heat shock 

transcription factor. UPRmt, mitochondrial unfolded protein response. ER UPR, 

endoplasmic reticulum unfolded protein response.
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Figure 2. 
Models for life span extension by UPRmt and hormesis. Mitochondria (indicated in green) 

contain multiple mitochondrial genomes (black circles). A mitochondrial genome mutation 

(indicated by X) causes UPRmt and loss of membrane potential. These changes signal 

marking by Ref(2)P (indicated with red squares) and activation of the PINK/PARKIN 

pathway for fission of mitochondria and destruction by the autophagy pathway (cartooned in 

orange). Degradation products are recycled for use in biogenesis of new mitochondria. 

Induction of the UPRmt in young animals (hormesis) would inhibit the production of toxic 

metabolites including hormones and age pigment. Hormones promote sexual differentiation 

and the deleterious effects of many genes (through sexual antagonistic plieotropy, SAP). 

Sexual differentiation and SAP in turn inhibit mitochondrial turnover and maintenance, 

resulting in aging, oxidative stress and a toxic aging-associated UPRmt.
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Figure 3. 
Sex-specific regulation of aging and oxidative stress in Drosophila, C. elegans and 

mammals. In females (X/X) the master regulatory gene (or “Switch-Gene”) for Dosage 

Compensation (DC) is in the “on” state: Sxl in Drosophila, sdc-2 in C. elegans, and Xist in 

mammals. In males (X/Y) these genes are in the “off” state. Chromosomal sex, the Switch-

Gene on/off state, and DC regulate mitochondrial maintenance as follows: Sexual 

differentiation, in particular DC, is required for animal viability including mitochondrial 

maintenance during development. In the adult, sexual differentiation mediates trade-offs 

between growth and reproduction and long-term mitochondrial maintenance that leads to 

aging and oxidative stress (see also Figures 1, 2). Female sexual differentiation mediates the 

preferential transmission of the mitochondria to offspring. Maternal factors, including 

mitochondria, are provided to the egg from the mother and are required for viability and 

sexual differentiation. In C. elegans (X/X) is the hermaphrodite, and the Y chromosome is 

absent in males (genotype X/O).
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Figure 4. 
Model for the genetic interaction between the mitochondrial genotype (M) and an autosomal 

gene (p53). Three possible autosomal genotypes are presented: (1.) Male and female 

homozygous for p53[Regular]. (2.) Male and female heterozygous for p53[Regular] and 

p53[Altered]. (3.) Male and female homozygous for p53[Altered]. Blue-color arrows 

indicate genotypes potentially beneficial for the indicated sex; red-color arrow indicates 

genotype potentially detrimental for that sex. For example, arrows might relate to larval 

survival and/or adult survival and reproduction. Details: (1.) In females natural selection acts 

to optimize the fit of both nuclear and mitochondrial alleles (p53Reg and M). (2. & 3.) In 

males natural selection can only act to optimize how nuclear genes cope with the 

mitochondrial genome (M), leading to selection for p53Alt. (3.) In females, p53Alt tends to 

be non-optimal. Reg, Regular. Alt, Altered.
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Figure 5. 
Model for sex-specific regulation of mitochondrial maintenance pathways. Chromosomal 

sex determines the on/off state of the master regulator of dosage compensation (DC) the 

“Switch-Gene”: Sxl in Drosophila, sdc-2 in C. elegans, and Xist in humans. This sets DC to 

either the male (M) or female (F) state. Chromosomal sex also directs the expression the 

dsx-like gene in either the male or female state, which in turn regulates somatic sexual 

differentiation. Females exhibit relatively greater IIS and p53 activity (indicated in pink). 

Males exhibit relatively greater Foxo activity (indicated in blue). In C. elegans, DC 

negatively regulates expression of the X-linked gene akt-2, which is a positive regulator of 

IIS (indicated in green). In mammals, the gonadal hormones testosterone and estrogen 

activate a MAPK/PI3K/AKT/TOR signaling pathway that can activate IIS and potentially 

inhibit autophagy (indicated in orange).
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Figure 6. 
Potential mechanisms for mitochondrial mutation load increase within a cell. Two non-

exclusive mechanisms are diagrammed. A. Tissue-specific selective pressures can promote 

the replication/survival of one mitochondrial allele over another. B. Muller’s ratchet. 

Because mitochondrial genomes do not recombine there is no mechanism to remove 

deleterious mutations from a mitochondrial genome lineage. Eventually all mitochondrial 

genomes may accumulate one ore more detrimental mutations (indicated by symbols).
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Figure 7. 
Sex-specific regulation of cell death in response to stress in neurons. In male mouse 

neurons, cell death is promoted by PARP and AIF, and is independent of caspase activity 

(indicated in black). In female mouse neurons, cell death is promoted by CYTOCHROME C 

and caspase, and is inhibited by PARP activity (indicated in black). In Drosophila, over-

expression of PARP in nervous tissue increases life span in females, and decreases life span 

in males (indicated in orange).
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Figure 8. 
Nuclear chromatin state and metabolic circadian rhythms in mitochondrial maintenance. 

Chromosomal sex and the Switch-Gene on/off state regulate nuclear chromatin state, dosage 

compensation (DC) and gene expression. The nucleus regulates mitochondrial maintenance 

through expression of genes for mitochondrial biosynthesis and turnover (autophagy/

mitophagy), detoxification and Hsps. The mitochondria send retrograde signals to the 

nucleus including ROS, UPRmt (including peptides, not shown), and purines, including 

ATP and NADH. Redox-sensitive transcription factors, PARP and SIRTUINS regulate 

nuclear chromatin state in response to mitochondrial ROS and purines.
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