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Abstract

Background—Many papers have been published in biomedical journals reporting on the 

development of prognostic and therapy-guiding biomarkers or predictors developed from high-

dimensional data generated by omics technologies. Few of these tests have advanced to routine 

clinical use.

Purpose—We discuss statistical issues in the development and evaluation of prognostic and 

therapy-guiding biomarkers and omics-based tests.

Methods—Concepts relevant to the development and evaluation of prognostic and therapy-

guiding clinical tests are illustrated through discussion and examples. Some differences between 

statistical approaches for test evaluation and therapy evaluation are explained. The additional 

complexities introduced in the evaluation of omics-based tests are highlighted.

Results—Distinctions are made between clinical validity of a test and clinical utility. To 

establish clinical utility for prognostic tests it is explained why absolute risk should be evaluated 

in addition to relative risk measures. The critical role of an appropriate control group is 

emphasized for evaluation of therapy-guiding tests. Common pitfalls in the development and 

evaluation of tests generated from high-dimensional omics data such as model overfitting and 

inappropriate methods for test performance evaluation are explained, and proper approaches are 

suggested.

Limitations—The cited references do not comprise an exhaustive list of useful references on this 

topic, and a systematic review of the literature was not performed. Instead, a few key points were 

highlighted and illustrated with examples drawn from the oncology literature.

Conclusions—Approaches for the development and statistical evaluation of clinical tests useful 

for predicting prognosis and selecting therapy differ from standard approaches for therapy 

evaluation. Proper evaluation requires an understanding of the clinical setting and what 

information is likely to influence clinical decisions. Specialized expertise relevant to building 

mathematical predictor models from high-dimensional data is helpful to avoid common pitfalls in 

the development and evaluation of omics-based tests.
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Introduction

High-throughput omics technologies have generated much excitement for their potential to 

provide detailed biological characterizations of disease that can be used to optimize care for 

patients. Omics is defined as “study of related sets of biological molecules in a 

comprehensive fashion. Examples of omics disciplines include genomics, transcriptomics, 

proteomics, metabolomics, and epigenomics” [1]. When there is interest to develop a 

clinical test based on omics assays to aid in decision making for patient care, omics 

variables are typically combined by means of a computational model that produces a result 

that can direct clinical actions. We will use the term “omics predictor” to refer to this 

computational model, which usually takes the form of a risk score or classifier for predicting 

clinical outcome or benefit from a particular therapy or class of therapies. The omics assay 

in combination with a fully specified computational model (omics predictor) is referred to as 

an “omics test” [1], although we sometimes use the terms omics predictor and omics test 

interchangeably in the discussions in this paper.

Many papers published in biomedical journals have reported the development of omics 

predictors for clinical outcomes, but very few of these predictors have advanced to the point 

of incorporation into omics tests that are ready for clinical use. An important reason for the 

lack of advancement of omics predictors into clinically useful omics tests has been poor 

integration of statistical, computational, and laboratory expertise with clinical expertise. Our 

goal in this paper is to highlight issues to consider in the development of omics predictors 

and to provide guidance on how to properly evaluate published omics predictors for their 

potential as useful clinical tests.

The two types of omics tests we focus on here are tests that predict prognosis and tests that 

provide information useful for selecting therapy [2]. A prognostic test produces a 

measurement that is associated with clinical outcome in the absence of therapy (natural 

disease course), or sometimes the definition is broadened to mean a measurement that is 

associated with outcome in the context of a standard therapy that all patients are likely to 

receive. A therapy-guiding test produces a measurement that can identify subgroups of 

patients that differ in the benefit they receive from a particular therapy. For example if the 

test produces a binary result it could indicate that patients who have a negative test result do 

not benefit from a new therapy relative to some standard therapy (including possibly no 

therapy) while patients with a positive test result do receive clinically meaningful benefit 

from the new therapy. Clinical benefit might include outcomes such as shorter duration of 

disease symptoms or longer survival. These same principles apply even to tests based on a 

single biomarker. Alternative terms for biomarkers that are useful for guiding therapy 

include treatment-selection markers, treatment-stratification markers, treatment effect 

modifiers, or predictive markers (use of the term “predictive” is somewhat idiosyncratic to 

the medical subspecialty of oncology).

McShane and Polley Page 2

Clin Trials. Author manuscript; available in PMC 2015 April 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Our discussion of statistical issues relevant to omics test development begins with basic 

principles for evaluation of prognostic and therapy-guiding tests (applicable even to tests 

based on a single biomarker). We expand from that point to special additional considerations 

for omics tests related to the high-dimensional nature of omics data, where there are usually 

far more measured variables per patient than the total number of patients in the study. This 

leads to additional statistical challenges in the development of predictor models from high-

dimensional omics data, as will be discussed.

A framework for evaluation of biomarker-based clinical tests

Several authors have discussed a framework for the evaluation of clinical tests [3–5] and 

pointed to the need to consider three important aspects of clinical tests: analytical validity, 

clinical validity, and clinical utility. Here we follow the definitions provided by McShane 

and Hayes [5]. Analytical validity refers to “analytical accuracy, reliability, and 

reproducibility of the test.” Clinical validity is the “demonstration that the test has a suitably 

strong association with a clinical outcome of interest.” Clinical utility implies that “use of 

the test to direct patient care has been shown to result in a favorable balance of benefits to 

harm leading to improved outcomes, compared to non-use” of the test. “Improvement in 

outcome may relate to overall survival, disease-free survival, quality of life, or cost of care.” 

All of these aspects must be considered in the statistical and clinical evaluations conducted 

during development of an omics predictor into an omics-based clinical test. For discussion 

of analytical validity, readers are referred to the paper by Pennello in this journal issue [6]. 

The discussions here will focus on clinical validity and clinical utility and the examples 

discussed are drawn from oncology.

Lack of statistical rigor in studies of prognostic and therapy-guiding omics 

tests

Statistically rigorous design and analysis methods have long been expected for clinical 

studies developing and evaluating new therapies, but many biomarker-based tests are not 

developed in a similarly rigorous environment. For omics tests the situation is perhaps even 

worse than for tests based on single biomarkers due to the need for new approaches for 

analysis of very high-dimensional data and the involvement of individuals with more varied 

types of scientific expertise, including laboratory, computational and bioinformatics 

expertise, where principles of clinical biostatistics are less familiar. Shortcomings in 

statistical and clinical rigor are frequently observed in published papers reporting 

development or evaluation of omics tests [7, 8]. Studies with poor designs (or perhaps more 

appropriately referred to as studies without a design) are common in the development and 

evaluation of both prognostic and predictive tests. Many studies aiming to evaluate a 

prognostic test fail to distinguish between a statistically significant association of an omics 

test result with a clinical outcome and a clinically useful association, and they fail to 

demonstrate that a test contributes clinically useful information after adjustment for standard 

clinical or pathological factors. For therapy-guiding tests, studies sometimes fail to include 

an appropriate control group, and this can lead to confusion between prognostic value of a 

test and its value for guiding therapy. These issues apply to tests based on single biomarkers 

as well as tests derived from high-dimensional omics data, but the latter present even more 
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challenges. Specifically, flawed evaluations of predictor performance are frequently 

observed in studies that develop tests based on high-dimensional omics data due to the 

hazards of naively developing and evaluating models derived from large numbers of 

predictor variables. Each of these issues is now discussed in more depth with examples 

provided from oncology to reinforce the concepts.

General study design principles

In oncology, the vast majority of omics predictors have been developed retrospectively 

using tumor specimens that had been collected previously and stored. A major advantage of 

a retrospective approach is that follow-up for clinical outcome is already available for 

immediate use. Unfortunately, many omics predictor development studies have not been 

conducted under ideal conditions. Rather, the majority of omics predictors have been 

developed on specimen collections that are haphazardly assembled (i.e., “convenience 

samples”) and are often comprised of tumor specimens from heterogeneous groups of 

patients with many different clinical presentations (e.g., disease stages or subtypes) who 

received a variety of different treatments. Treatments received may be unknown and there 

may be confounding between treatment selection and clinical characteristics of the patient. 

The cases for which specimens are available might also represent a biased collection of 

cases, for example because there were certain requirements for the quantity and quality of 

specimens to ensure that they were amenable to omics assay. Studies based on convenience 

specimen sets represent particularly treacherous terrain for reliable predictor development, 

but chances for development of a useful predictor from a retrospective specimen collection 

can be increased if great care is taken to avoid excessive heterogeneity and bias.

After initial development of a predictor, it is important to validate its performance on 

additional data sets. The best type of retrospective study design to use for validation is one 

conducted using specimens that were collected from completed well-designed prospective 

cohort studies or randomized clinical trials. These types of specimen collection are 

preferable for predictor development as well, if multiple such collections are available to 

allow for both development and validation. The advantage of using specimen collections 

from clinical trials and prospective cohort studies are that typically patient inclusion and 

exclusion criteria were carefully specified, specimens were acquired and processed in a 

reasonably standardized way, and patients for whom specimens are available are 

representative of the full patient cohort. Prior to performing assays on the specimens for 

purposes for validating a predictor, there should be a rigorous study design in place that 

includes complete specification of the predictor and a statistical analysis plan that is 

prospectively defined and followed to assess the predictor performance. Under these 

conditions, a high level of evidence for clinical utility of a predictor can be obtained [4].

Additional principles specific to the development and evaluation of prognostic or predictive 

tests also apply. These additional principles are now discussed in detail, separately, for 

prognostic and therapy-guiding tests. Multiple examples from the published literature are 

cited to illustrate the points.
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Principles for evaluation of prognostic tests

Statistical significance versus clinical utility for a prognostic test

To establish clinical validity of a claim that an omics predictor is prognostic requires one to 

show that the predictor results have a statistically significant association with a specified 

clinical outcome. In oncology, the usual endpoints of interest are disease recurrence, 

progression, survival, or composites of these endpoints. One might establish clinical 

validity, for example, by showing that a log-rank test comparing the clinical outcome of 

patients in the omics predictor-defined “favorable ” and “unfavorable” groups are 

statistically significantly different, but this would not necessarily establish clinical utility. To 

establish clinical utility, it would be necessary to show that the information provided by the 

test was not available from other standardly measured factors, that the additional 

information contributed could be acted upon clinically, and by so doing, the patient would 

be likely to have a better outcome as a result of the test-directed clinical management plan.

Figure 1 displays two example scenarios in which an omics test has prognostic value, but the 

potential for clinical utility for the omics test in represented in Figure 1A is stronger than for 

the test in Figure 1B. Suppose that the survival curves represent time from surgery for 

primary breast cancer to distant recurrence of breast cancer when the patients do not receive 

additional therapy following surgery. An important decision that early stage breast cancer 

patients and their physicians face following surgery is whether or not the patient should 

undergo systemic chemotherapy treatment (called “adjuvant” chemotherapy in this setting). 

In Figure 1A, the outcome for patients predicted to be in the favorable subgroup is so good 

that it is unlikely that many of those patients would want to undergo chemotherapy 

treatment with its associated toxicities, inconvenience, and costs given the very small 

potential benefits in terms of freedom from distant recurrence. Thus, assuming that the 

omics test provides information not readily or reliably available from other standard clinical 

or pathological factors, the omics test could provide information useful in clinical decision 

making (spare some patients chemotherapy), and those patients would likely have a more 

favorable benefit to risk ratio by foregoing chemotherapy. An example of this type of 

prognostic test is the Oncotype DX recurrence score [9], which has been established to have 

the ability to identify a group of node-negative hormone receptor-positive breast cancers that 

have such low risk of distant recurrence when treated with endocrine therapy alone that 

systemic chemotherapy would not usually be recommended. In contrast, the prognostic 

value of the test illustrated in Figure 1B may have limited clinical utility. With sufficient 

numbers of events (distant recurrences), statistical significance could be established for the 

difference in survival represented by the two curves in Figure 1B, but unless different 

clinical management strategies would be employed for the patients in those two subgroups 

(both have predicted poor outcome and would likely receive chemotherapy) and those 

differing strategies would benefit the patients, the omics test with characteristics as 

represented in Figure 1B does not have clinical utility.
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Approaches for evaluation of clinical utility of a prognostic test compared to approaches 
for evaluation of a new therapeutic

The examples in Figure 1 suggest some important differences in the statistical approaches to 

evaluation of the clinical utility of a prognostic test compared to evaluation of the efficacy of 

a new therapy compared to a standard therapy (including possibly no therapy). To establish 

superiority of a new therapy in a randomized clinical trial one would power the trial to 

detect some prespecified magnitude of clinically meaningful improvement in outcome for 

the patients who receive the new therapy. In the prognostic marker setting in Figure 1A, it 

would be necessary to establish not only a difference in outcome between the two predictor-

defined subgroups, but it would also have to be established that the survival probabilities in 

the predictor-defined favorable subgroup were suitably high, for example by showing that a 

lower confidence bound on survival probability exceeded some threshold value, so that the 

clinical management would be different (e.g., no or reduced chemotherapy recommended). 

(The test-directed change in clinical management would also have to be shown to provide 

clinical benefit for the patient.) Alternatively, one could show that a prognostic test was able 

to identify a subgroup within a larger group of risk patients normally considered to have 

very favorable (low) risk who do unusually poorly under standard care (e.g., no 

chemotherapy following surgery) and who would benefit from more aggressive therapy. In 

the context of lung cancer, Subramanian and Simon discuss two example scenarios in which 

prognostic tests could be useful [8]: 1) identify high-risk completely resected stage I patients 

who might benefit from chemotherapy following surgery (stage IA patients usually do not 

receive chemotherapy following surgery and use of chemotherapy in stage IB varies), or 2) 

identify stage II patients who have a low risk of recurrence in the absence of chemotherapy 

(usually chemotherapy is recommended for stage II patients).

Evaluation of a prognostic test in the context of standard clinical and 

pathological factors

Another difference between prognostic test evaluation and therapy evaluation is that in 

conventional randomized treatment trials, one can rely on randomization to approximately 

balance other standard prognostic factors between the two treatment arms (potentially 

enhanced in small trials by stratifying randomization on key prognostic variables), and 

usually studies are powered to globally assess the treatment benefit in the randomized 

eligible patients. In contrast, to establish the highest level of clinical utility for a prognostic 

test it should be demonstrated that the test provides clinically significant information beyond 

that provided by standard prognostic factors. It is a much more data intensive task to show 

value added beyond standard prognostic variables or to show prognostic value added in each 

of several finer subgroups defined by one or more standard prognostic variables. Further, the 

possibility exists that even if prognostic separation of predictor-defined subgroups is 

established in each of one or more subgroups, within certain subgroups the patients 

predicted to have favorable (unfavorable) outcome may not have sufficiently good (poor) 

outcome that a change in clinical management strategy would be considered.

The paper by Hatzis and colleagues [10] illustrates the complexities of interpreting the value 

added by an omics predictor in the presence of heterogeneity in important standard factors. 
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As seen in Figure 2 (middle) of that paper, the omics predictor described there separates 

patients (all of whom received a standard chemotherapy regimen plus endocrine therapy) 

into two groups designated as treatment sensitive and treatment insensitive, with the 

sensitive group having 3-year distant relapse-free survival = 92% and the insensitive group 

having 3-year distant relapse-free survival = 75%. (Although the names of the predictor-

defined subgroups might seem to imply the predictor has value for selecting therapy, the 

design of the Hatzis study precludes one from drawing such a conclusion, a concept that will 

be further discussed under the topic of therapy-guiding tests.) Separating the patients into 

subgroups defined by estrogen receptor (ER) status (known to be a weak prognostic marker 

but a strong marker for guiding use of endocrine therapy in breast cancer) and examining the 

predictor performance in each of the ER subgroups separately suggests that the clinical 

utility of the prognostic information provided by the omics predictor may differ between the 

ER-defined subgroups (see Figure 3 in Hatzis et al [10]). The predictor-defined sensitive 

group in the ER-positive subgroup has 3-year distant relapse-free survival = 97%, whereas 

the sensitive group within the ER-negative subgroup has 3-year distant relapse-free survival 

= 83%. If these estimates represent the true underlying survival distributions, one would be 

unlikely to consider additional therapy for the predictor-defined sensitive ER-positive 

patients while alternative therapy (in addition to, or in place of standard therapy) might still 

be considered for the ER-negative patients called sensitive by the predictor. It is also 

possible that the ER-positive patients called sensitive by the predictor are even being 

overtreated and would do just as well with less therapy (e.g., endocrine therapy alone), 

although this cannot be established either way from the evidence supplied by the Hatzis 

study [10].

Figure 2 presents a hypothetical example to illustrate how mixing together, in different 

ratios, patient subgroups with distinct baseline prognostic characteristics can confuse the 

evaluation of clinical utility of a prognostic test. Patient groups 1 and 2 represented in 

Figures 2A–B have different baseline prognostic characteristics, although within each group 

the predictor is able to separate patients into subgroups with different prognosis. When 

combined in proportion 75% (group 1) and 25% (group 2) as in Figure 2C, one might 

conclude that survival for patients in the GOOD prognosis subgroup is sufficiently favorable 

that no additional treatments would be recommended for that subgroup, whereas additional 

treatment might be recommended for the POOR subgroup. When combined in proportion 

25% (group 1) and 75% (group 2) as in Figure 2D, one might conclude that survival in both 

the GOOD and POOR prognosis subgroups is sufficiently unfavorable that additional 

treatments would be recommended for both subgroups. The test represented in Figure 2C 

has potential clinical utility, but the test in Figure 2D might not viewed as having clinical 

utility.

Heterogeneity in standard prognostic factors has implications for comparing predictor 

performance across different patient cohorts from different studies as well. The lung cancer 

predictor studied by Kratz and colleagues [11], for example, exhibited substantially different 

absolute levels of risk within each of the predictor-defined risk groups across the two 

different validation patient cohorts studied. One validation cohort was comprised of 433 

patients with stage I non-squamous non-small-cell lung cancer who had surgery at hospitals 

in the Kaiser Permanente Northern California system. The second validation cohort was 
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comprised of 1006 Chinese patients who had undergone surgery for early-stage non-small-

cell lung cancer at one of several institutions participating in the China Clinical Trials 

Consortium. Among these 1006 Chinese patients, there were 471 patients who had stage I 

disease. For the Kaiser cohort (all stage I), the predictor divided patients into three risk 

groups with 5 year overall survival of 71.4% (95% CI 60.5–80.0) in the low-risk group, 

58.3% (95% CI 48.9–66.6) in the intermediate-risk group, and 49.2% (42.2–55.8) in the 

high-risk group. For the Chinese cohort restricted to stage I, 5 year overall survival estimates 

in the three risk groups were 83.0% (95% CI 73.8–89.1) in the low-risk group, 67.7% (95% 

CI 54.8–77.7) in the intermediate-risk group, and 64.6% (57.9–70.5) in the high-risk group. 

The two cohorts overall (stage I only in the Kaiser cohort and stages I-III in the Chinese 

cohort) differed on the distribution of sex (55% female in Kaiser versus 38% female in 

Chinese), smoking history (85% positive history in Kaiser versus 49% positive in Chinese), 

and obviously with regard to ethnicity. (Covariate distributions were not reported separately 

for the stage I subgroup of the Chinese cohort.) The absolute levels of risk within each 

predictor-defined risk group differed between the two cohorts, although hazard ratios 

estimated from multivariable analyses (adjusting for slightly different standard prognostic 

factors) conducted on each overall cohort (n=433 for Kaiser and n=1006 for Chinese) were 

similar (hazard ratios relative to low risk group were 2.04 (95% CI 1.28–3.26) high risk and 

1.66 (95% CI 1.00–2.74) intermediate risk for Kaiser; 2.37 (95% CI 1.63–3.43) high risk 

and 1.60 (95% CI 1.03–2.49) intermediate for Chinese). In the United States, patients with 

stage IA non-small-cell lung cancer typically do not receive adjuvant therapy. In contrast, 

there is more controversy surrounding the use of chemotherapy for treating stage IB 

patients, but many stage IB patients will receive chemotherapy. For determining clinical 

utility, it would have been useful to consider analyses of stage IA and IB separately because 

the absolute risk levels may differ and result in different treatment choices.

The preceding examples highlight how examination of only the hazard ratio associated with 

a prognostic test in a multivariable analysis adjusted for standard prognostic factors is 

generally not sufficient to interpret the potential clinical value of a prognostic test in the 

context of those known prognostic variables. In a poor risk category defined by some 

combination of standard prognostic variables, the outcome may be fairly poor in both the 

favorable and unfavorable subgroups defined by the new prognostic test and there would be 

no change in the clinical management of patients with poor risk standard variables on the 

basis of the results of the new prognostic test. Another possibility is that there is an 

interaction between the standard variables and the new prognostic test such that the new test 

is prognostic in some categories defined by standard variables but not in others. Unless these 

interactions are appropriately modeled and the study is sufficiently powered to detect such 

interactions (which is rare), the lack of prognostic value of the new test in certain standard 

prognostic groups could go unnoticed. In the situations just discussed the overall conclusion 

about the clinical utility of the new prognostic test would be driven by whichever prognostic 

categories based on standard variables were most abundantly represented in the study. These 

points all argue for avoiding studies that include patients representing an extremely 

heterogeneous mixture of standard clinical and pathological characteristics when trying to 

determine the clinical value added by a new test. It is usually more appropriate to consider 
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patient subgroups segregated according to how they are currently managed clinically, and 

then evaluate what additional clinically useful information can be provided by the new test.

Principles for evaluation of therapy-guiding tests

Importance of an appropriate control group for evaluation of a therapy-guiding test

Putative therapy-guiding biomarker-based tests are most reliably evaluated in the context of 

randomized clinical trials. Randomized treatment is the best safeguard against confusion 

between test prognostic value and subgroup-specific benefit or lack of benefit from a 

particular therapy. It also avoids potential confounding between treatment choice and other 

patient characteristics. If the therapy is a new therapy, then the test might be co-developed 

with the therapy in the context of a prospective clinical trial. If the test is being developed to 

guide use of an existing therapy, then it might be possible to use retrospective specimen 

collections from completed clinical trials to develop and evaluate the test. To simplify 

discussion we refer to the situation of assessment of the value of a test for choosing between 

a new therapy and a standard therapy (which might be no therapy), although the basic 

principles apply for both new and existing therapies.

Figure 3 illustrates two possible scenarios to explain the main points. Figure 3A shows the 

association between the test result and outcome when all patients are treated with the new 

therapy. Sometimes investigators prematurely conclude that such an observation establishes 

that the test can be used to select patients who will benefit from the new therapy relative to 

standard clinical management, but this could be an erroneous conclusion as shown by Figure 

3B. The situation depicted in Figures 3A–B represents a test that is prognostic but is not 

useful for guiding therapy because the patients who are positive on the test have better 

outcome regardless of whether they receive the new versus standard therapy. In addition for 

this example, there is no benefit of the new therapy relative to standard in either test-defined 

subgroup.

Figures 3C–D demonstrate a situation in which studying the test in patients receiving the 

new therapy only could lead one to erroneously discard a therapy that is useful for guiding 

therapy. The test depicted in Figures 3C–D is useful for guiding therapy because patients 

predicted to be sensitive to the new therapy by the test have a better outcome when they 

receive the new therapy compared to standard, whereas patients predicted by the test to be 

insensitive to the new therapy have a better outcome when they receive standard therapy. If 

the performance of the test had been examined only in patients who received the new 

therapy, in might have been incorrectly concluded that the test result has no relationship to 

benefit from the new therapy.

Figures 3E–F demonstrate a situation where interpretation of clinical value of the test is 

more complex and dependent on factors in addition to survival benefit. In this scenario the 

patients who are predicted to be sensitive by the test have inferior outcome compared to test-

negative patients when all receive standard therapy, but the test-positive patients 

preferentially benefit from the new therapy. This preferential benefit from the new therapy 

improves their outcome to result in outcome similar to that for patients who are negative for 

the test and receive either the new therapy or standard therapy. The determination of which 
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treatment to offer a patient who is predicted by the test to be insensitive to the new therapy 

would depend on additional factors such as toxicities, convenience, and cost of the different 

therapy options.

Many scenarios in addition to those presented in Figure 3 are possible. The test may or may 

not have prognostics value. Both patient subgroups might receive some benefit from the new 

therapy, but the magnitude of benefit might be different in the two test-defined subgroups. 

The statistical power for detecting benefit of the new treatment might also be different in the 

two test-defined subgroups due to differential magnitude of benefit and/or different samples 

sizes and numbers of events in the test-defined subgroups.

To move from establishing clinical validity of a putative therapy-guiding test to clinical 

utility ultimately requires consideration of a variety of factors in addition to survival benefit. 

These factors may include toxicities of the therapy options, potential risks associated with 

use of the test (e.g., if the test requires obtaining a specimen by a difficult invasive biopsy 

procedure), and costs associated both with the test and the therapy options. More detailed 

discussion and numerous examples of how to properly evaluate clinical utility of putative 

therapy-guiding tests can be found elsewhere [12]. Several prospective trial designs have 

been proposed for evaluation of clinical utility of therapy-guiding biomarker-based tests, but 

prospective trials are typically large, expensive, and difficult to conduct; therefore, 

retrospective evaluations are often attempted first [4]. Readers interested in prospective 

biomarker-based clinical trial designs are referred elsewhere for further discussion [2, 13–

14].

Common pitfalls in the development of omics-based tests

Development and evaluation of prognostic and therapy-guiding tests from high-dimensional 

omics data adds substantial complexity to the difficulties already inherent in the evaluation 

of tests based on single biomarkers. A thorough discussion is beyond the scope of this paper, 

but it is worthwhile to briefly describe some of the common pitfalls encountered in the high-

dimensional data setting. Readers interested in an extensive discussion of a multitude of 

considerations in the development of omics-based tests and evaluation of their readiness for 

use in clinical trials where they will be used to guide clinical management for patients are 

referred to McShane et al [15].

Predictor development process

A schematic of the typical process followed to develop an omics predictor is represented in 

Figure 4. A number of initial data pre-processing steps are usually performed to transform 

raw omics data into summary measurements for each of many features per subject, for 

example the expression levels for 10,000 genes, abundance of thousands of proteins, and so 

forth, for each patient. Standard statistical modeling approaches cannot easily handle these 

large numbers of independent variables so some type of data reduction step is usually 

employed to either select subsets of variables for inclusion in the model (termed “feature 

selection”) or to derive “meta-variables”, where each meta-variable consists of combinations 

of original variables, for example principal components derived from the original variables. 

Some type of algorithm is then applied to develop a predictor model from that reduced set of 

McShane and Polley Page 10

Clin Trials. Author manuscript; available in PMC 2015 April 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



variables into the form of a classifier or risk score. This entire process may occur 

seamlessly, or as two distinct steps (feature selection followed by model building). A variety 

of machine learning algorithms including random forests, support vector machines, and 

nearest neighbor classifiers are available [16]. Alternatively, more conventional statistical 

modeling techniques such as discriminant analysis (for binary endpoints) or Cox 

proportional hazards regression modeling (for time-to-event data) may be used once the 

number of variables has been reduced. Book-length treatments of model building 

approaches are available for interested readers [16, 17].

Guard against overfitting complex models to high-dimensional data

Due to the high-dimensionality of omics data and complexity of many of the predictor 

models, there is substantial opportunity to inadvertently overfit models built from omics 

data. Overfitting refers to development of models that exaggerate minor fluctuations in the 

data due to fitting to random noise. A model that has been overfit to an initial data set 

(“training set”) will not exhibit good performance on a completely independent data set 

(“testing set”). The potential for overfitting can be reduced if constraints are placed on 

model complexity and one remains vigilant by monitoring model performance using internal 

validation strategies such as bootstrapping, cross-validation, or other resampling methods to 

compute preliminary estimates of model performance during the model building process 

[18]. Model complexity can be controlled using regularization techniques, which are 

methods to control smoothness of a fitted model or the number or magnitude of parameters 

in the model. Familiar examples of approaches incorporating regularization are penalized 

regression modeling methods such as ridge regression and lasso regression [16]. Internal 

validation, while advisable and helpful, is not foolproof. If the full training data set is subject 

to some major bias, for example bias due to some confounding with experimental artifacts, 

internal validation will not detect the problem. The most reliable way to assess model 

performance is to assess the model on a completely independent external testing data set.

Assessing predictor performance

Two key aspects of predictive model performance are discrimination and calibration [19]. 

To assess how well a predictor is calibrated, one examines the agreement between the 

probability of developing the outcome of interest (within a certain time period) or possessing 

the characteristic of interest and the observed frequencies of the same. Calibration is usually 

assessed graphically. Discrimination is the ability of a model to distinguish individuals who 

experience the outcome of interest or possess the characteristic of interest from individuals 

who don’t experience the event or do not possess the characteristic. An example of a widely 

used measure of discrimination is the C-index. For a simple binary prediction problem one 

might also examine positive and negative predictive value. Readers are referred to Moons et 

al [19–20] for a thorough discussion of development and validation of prediction models.

An unacceptable practice that is still found in some published articles presenting omics 

predictors is to assess predictor performance by plugging into the predictor the same data 

that were used to build it without use of proper resampling methods [7–8, 21]. Model 

performance estimates calculated this way (called “resubstitution estimates”) are highly 

biased in the direction of optimistic estimation of model performance. For example, 
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Subramanian and Simon [8] showed through simulation that if one fits a model to data that 

are completely noise with no association between omics variables and survival outcome, a 

model built to predict into two prognostic classes will show dramatic separation of survival 

curves between the predicted classes on the training data; however the resulting model will 

have no ability to classify cases into subgroups having different prognosis on a completely 

independent data set (see Figure 2 in [8]).

A variation on resubstitution is the practice of using combined training and testing sets 

(“full” data) to identify informative features and then building the prediction model using 

those features to assess the model performance by an internal validation strategy on the 

training data. This approach, which we call “partial resubstitution”, allows information from 

the initial feature selection carried out on the full data set (which included the testing data) 

to leak into the predictor. As shown by Simon and colleagues, the bias in the accuracy 

estimate can be remarkably large even using partial resubstitution [21].

Bias can creep into model performance estimates in ways other than computing 

resubstitution estimates. One example of another flawed approach is to report model 

performance estimates on the combined training and testing sets, rather than on the testing 

set alone as would be appropriate. Even subtle decisions made when iteratively fitting 

models to the same training data can lead to a potential for bias in internally validated 

predictor performance metrics (see iterations in steps B–D in Figure 4). For example, if a 

decision is made to pre-process the raw omics data in a different way because it leads to a 

predictor with better performance on the testing (validation) data, then even a performance 

metric computed by internal validation on the training data could potentially be subject to 

some bias. The potential bias results from the look at the testing data to select pre-processing 

method, and from the fact that the final model was selected as the best performer among 

multiple models evaluated on the same testing data.

Bias also occurs when one builds a predictor model using a data set ignoring standard 

prognostic variables but then attempts to show on that same data set that the predictor 

contributes significant information beyond that provided by the standard variables by 

including calculated predictions into a multivariable model along with the standard variables 

and showing that the predictions make a statistically significant contribution to the model. 

This approach will lead to an exaggerated assessment of the ability of the predictor to 

contribute information over and above the information provided by the standard variables. 

This exaggeration occurs because the omics predictor has been specifically constructed to 

predict the outcome in the same data set, whereas the standard variables do not have a 

similar advantage.

Failure to maintain strict separation between training and testing sets can also introduce bias 

into assessments of putative therapy-guiding predictors. Suppose that one develops a 

prognostic predictor with omics data generated using specimens from patients accrued to the 

standard therapy arm (or arm receiving no therapy) of a clinical trial and then applies that 

predictor to data generated from patients on the experimental therapy arm. Simon and 

Freidlin [22] showed how this approach would lead to a biased evaluation of the treating-

guiding ability of a predictor. The bias derives from the fact that the prognostic ability of the 
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predictor would be exaggerated on the standard therapy arm (from which data were used to 

build the predictor) but would not have the same bias “advantage” when applied to the 

experimental therapy arm. The differential in apparent prognostic ability between arms 

could give rise to a spurious effect that could look like therapy-guiding ability of the 

predictor. Zhu et al [23] used an analysis approach like the one just described to conclude 

that the gene signature they developed had ability “to select patients with stage IB to II 

NSCLC most likely to benefit from adjuvant chemotherapy with cisplatin/vinorelbine.” 

Because their predictor was developed using the control arm (no chemotherapy) from the 

same trial, their results could be subject to the type of bias described by Simon and Freidlin 

[22]. The predictor must be evaluated on a completely independent data set in order to 

assess whether it has ability to accurately select patients who would benefit from 

chemotherapy.

Concluding remarks

Use of biomarker-based tests, including tests based on omics data, has steadily increased 

over the last several years in concert with efforts to refine treatment strategies to maximize 

chances patients will receive treatments that most benefit them. Proper development and 

evaluation approaches for tests that are useful in making treatment decisions for patients 

with diseases or other medical conditions is a relatively new topic for many biostatisticians 

and medical researchers compared to classical statistical methodology for clinical trials 

evaluating new therapies. We hope that the discussions presented here have highlighted 

some of the important statistical issues in this burgeoning area of biomedical research and 

will help to promote best practices for development and evaluation of prognostic and 

therapy-guiding clinical tests.
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Figure 1. Evaluation of a prognostic test
Patients are uniformly treated with a standard therapy, and the test is performed on all 

patients. GOOD denotes a test result intended to indicate favorable prognosis, and POOR 

denotes a test result intended to indicate unfavorable prognosis.

A) The survival curves in plot A show a situation where event-free survival for patients in 

the GOOD prognosis group might be considered sufficiently favorable that no additional 

treatments would be recommended for that group.

B) The survival curves in plot B show a situation where event-free survival in both the 

GOOD and POOR prognosis groups might be considered sufficiently unfavorable that 

additional treatments would be recommended for both groups. In this setting the prognostic 

test results would not influence therapy decisions for the patients in either group.
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Figure 2. Effect of patient heterogeneity on assessment of clinical utility of a prognostic test
Patients are uniformly treated with a standard therapy. GOOD denotes a test result intended 

to indicate favorable prognosis, and POOR denotes a test result intended to indicate 

unfavorable prognosis. Patients can also be segregated into two groups on the basis of other 

standard clinical and pathological factors, and these are designated as group1 and group 2.

A) Plot A shows the event-free survival curves for the subgroups identified by the 

prognostic test within patient group 1.

B) Plot B shows the event-free survival curves for the subgroups identified by the prognostic 

test within patient group 2.

McShane and Polley Page 16

Clin Trials. Author manuscript; available in PMC 2015 April 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



C) Plot C shows the event-free survival curves for the subgroups identified by the prognostic 

test applied to groups 1 and 2 combined in proportion 75% (group 1) and 25% (group 2). 

For the setting depicted here, prognosis in the subgroup predicted to have GOOD prognosis 

by the test might be considered sufficiently favorable that no additional treatments would be 

recommended for that subgroup, whereas additional treatment might be recommended for 

the POOR subgroup.

D) Plot D shows the event-free survival curves for the subgroups identified by the 

prognostic test applied to groups 1 and 2 combined in proportion 25% (group 1) and 75% 

(group 2). For the setting depicted here, prognosis in both subgroups identified by the test 

might be considered sufficiently unfavorable that additional treatments would be 

recommended for both, and the prognostic test results would not influence therapy decisions 

for any patients.
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Figure 3. Evaluation of a therapy-guiding test
A test is performed on all patients, and the patients are randomly assigned to treatment with 

the standard therapy (STND TRT) or the new therapy (NEW TRT). SENS denotes a test 

result that is intended to predict benefit (sensitivity) from NEW TRT relative to STND TRT. 

INSENS denotes a test result intended to predict lack of benefit (insensitivity) from NEW 

TRT compared to STND TRT.

A–B) The event-free survival curves in plots A–B show a situation in which the test is not 

useful for guiding therapy because within each category of test result the NEW and STND 

treatments result in the same event-free survival. If only plot A was examined, one might 

mistakenly conclude that the test identifies which patients benefit from NEW TRT.

C–D) The event-free survival curves in plots C–D show a situation in which the test is 

useful for guiding therapy because patients predicted by the test to be SENS have a better 

outcome when they receive NEW TRT compared to STND, whereas patients predicted by 

the test to be INSENS have a better outcome when they receive STND TRT compared to 

NEW.

E–F) The event-free survival curves in plots E-F show a situation in which the usefulness of 

the test for guiding therapy is not clear-cut. Patients predicted by the test to be SENS have a 

better outcome when they receive NEW TRT compared to STND; whereas, patients 

predicted by the test to be INSENS have the same event-free survival outcome regardless of 

treatment. (It is assumed the STND TRT has already been shown to offer benefit over no 

therapy.) In this setting, the utility of the omics test depends on whether one would prefer to 

give the NEW or STND TRT to patients whose test results are INSENS, and this may 

depend on other factors such as cost, convenience, and toxicity of NEW TRT compared to 

STND. If NEW therapy is preferred for all patients, then the omics test is not useful for 

therapy selection in this setting.
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Figure 4. Schematic of omics predictor development process
Step A: Specimens are gathered from potentially multiple sources and raw omics data are 

generated in possibly multiple laboratories. Some specimen eligibility criteria may have 

been applied, e.g., sufficient quality and quantity of biological material must be available.

Step B. Raw omics data undergo pre-processing to screen out poor quality or unreliable 

data. Data normalization, calibration, and other adjustment methods are typically applied in 

an effort to correct for artifacts such as laboratory equipment drift, and batch effects due to 

assay run or reagent lots. If the omics data originate from multiple sources, the pre-

McShane and Polley Page 20

Clin Trials. Author manuscript; available in PMC 2015 April 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



processing steps used may vary across different subsets of the data. Different data pre-

processing steps applied to the same raw omics data will generally produce different results 

and may affect the performance of the predictor. Successful omics predictors must be robust 

to routine amounts of variation due to specimen handling or laboratory assay variation that 

cannot be controlled when the predictor is used in clinical practice.

Step C. The high dimension of typical omics data often requires that the number of features 

considered for use in predictor building be reduced. This can be accomplished by 

application of data reduction techniques that may or may not use outcome data. Examples of 

data reduction techniques that do not use outcome data include clustering to identify features 

contributing redundant information or principal components analysis to create “meta-

features”, which are linear combinations of the original feature values. Data reduction 

approaches that use outcome data include univariate statistical analyses to identify features 

that individually have high correlation with outcome, for example using t-tests to identify all 

features that exhibit statistically significant mean differences between two outcome classes. 

Sometimes feature identification is incorporated seamlessly into the predictor building 

process and there is no distinct break between steps C and D.

Step D. A variety of regression modeling approaches, decision tree algorithms, or other 

machine learning techniques can be used to develop predictors from the feature data. It is 

common for there to be multiple iterations of predictor training steps B through D to make 

model adjustments until convergence on a predictor that looks promising.

Step E. Ideally, a predictor should be validated on a new data set that was in no way used to 

derive it. This external independent data should be obtained under specimen processing and 

handling conditions expected in routine clinical settings, from patients who are 

representative of the population in which the test is intended to be used. Internal validations, 

even if carefully conducted, always have potential limitations due to the possibility of biases 

affecting the entire data set.
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